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Typical quasistatic compression algorithms for generating jammed packings of purely repulsive,
frictionless particles begin with dilute configurations and then apply successive compressions with
relaxation of the elastic energy allowed between each compression step. It is well-known that during
isotropic compression these systems undergo a first-order-like jamming transition at packing fraction
φJ from an unjammed state with zero pressure and no force-bearing contacts to a jammed, rigid state
with nonzero pressure, a percolating network of force-bearing contacts, and contact number z = 2d,
where d is the spatial dimension. Using computer simulations of 2D systems with monodisperse
and bidisperse particle size distributions, we investigate the second-order-like contact percolation
transition, which precedes the jamming transition with φP < φJ and signals the formation of a
system-spanning cluster of non-force-bearing contacts between particles. By measuring the number
of non-floppy modes of the dynamical matrix, the displacement field between successive compression
steps, and the overlap between the adjacency matrix, which represents the network of contacting
grains, at φ and φJ , we find that the contact percolation transition also signals the onset of nontrivial
mechanical response to applied stress. Our results show that cooperative particle motion occurs in
unjammed systems significantly below the jamming transition for φP < φ < φJ , not only for jammed
systems with φ > φJ .

PACS numbers: 83.80.Fg,64.60.ah, 61.43.-j,61.43.Gt

I. INTRODUCTION

The jamming transition in athermal [2], purely re-
pulsive particulate systems, such as granular media,
foams [3], colloidal microgel particles [4], and emul-
sions [5] has been characterized extensively in computer
simulations [6] and experiments [7]. For example, when
model frictionless spheres are compressed to packing frac-
tions above φJ , static particle configurations undergo a
first-order-like transition from an unjammed state at zero
pressure and no force-bearing contacts between particles
to a jammed state with nonzero pressure (and elastic
energy), a rigid backbone of force-bearing contacts that
spans the system, no nontrivial zero eigenmodes [8] of the
dynamical matrix, and nonzero contact number z = 2d.
Signatures of the jamming transition, such as anomalous
scaling of the zero-frequency shear modulus with packing
fraction [9] and diverging length scales [10, 11] associated
with cooperative particle rearrangements, have been in-
vestigated in thermal systems [4] in the zero-temperature
limit and in sheared systems [12–15] in the zero-shear rate
limit, but mainly for packing fractions near and above φJ .

However, there have been few detailed studies of the
structural and mechanical properties of unjammed ather-
mal particulate systems well below φJ . As shown in
Fig. 1, typical quasistatic compression algorithms used to
generate static packings in experiments start with a di-
lute collection of particles, and the sample is successively
compressed by small amounts with energy relaxation al-
lowed between each compression step. For φ < φJ ,
the configurations are not completely rigid, and thus at

long times after each small compression, particles can
rearrange until all interparticle forces are zero. Despite
this, particle motion in unjammed systems that occurs
in response to compression and other perturbations can
be highly heterogeneous, cooperative, and non-affine at
packing fractions well below φJ .

In this manuscript, we describe computational studies
of a novel second-order-like transition—the contact per-
colation transition at φP—in athermal particulate sys-
tems of purely repulsive, frictionless disks that signals
the formation of a system-spanning cluster of connected
non-force-bearing interparticle contacts and the onset of
nontrivial response to applied stress well below the jam-
ming transition. These systems display robust power-law
scaling behavior near φP , but with a correlation length
exponent that differs from the corresponding values for
random continuum [17] and rigidity percolation [18]. In
addition, we find that the number of ‘blocked’ degrees
of freedom, the accumulated particle displacements be-
tween successive compressions, and the overlap between
the contact networks of the configurations at φ and φJ

begin to increase significantly near φP . These results,
which hold for both bidisperse and monodisperse par-
ticle size distributions, emphasize that cooperative and
nonaffine response to applied stress occurs in athermal
particulate systems significantly below the jamming tran-
sition, not only for jammed systems with φ > φJ as has
been emphasized in previous work.
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FIG. 1: (Color online) Typical snapshots from the quasistatic isotropic compression algorithm to generate static particle
configurations as a function of packing fraction φ. Particles with a given shading belong to the same cluster of mutually
contacting particles. For (left) φ < φP , the system is unjammed, and the largest cluster of contacting particles does not
percolate. The largest cluster begins to percolate for (middle) φP < φ < φJ , but the system remains unjammed since it
possesses nontrivial zero-frequency (floppy) modes of the dynamical matrix and the interparticle forces at each contact are
zero. For (right) φ > φJ , the system is jammed with a percolating cluster of contacting particles that is rigid except for a small
number of rattlers [1] and nonzero interparticle forces at each contact.

II. METHODS

We focus on systems composed of frictionless disks in
2D that interact via the purely repulsive linear spring
potential:

V (rij) =
ǫ

2

(
1−

rij
σij

)2

Θ

(
1−

rij
σij

)
, (1)

where ǫ is the characteristic energy scale, θ(x) is the
Heaviside step function, rij is the separation between
the centers of disks i and j, and σij = (σi + σj)/2 is
their average diameter. We studied systems with either
monodisperse or bidisperse (50 − 50 by number of large
and small disks with diameter ratio σl/σs = 1.4 [6])
particle size distributions and system sizes in the range
N = 100 to 6400 and implemented periodic boundary
conditions in a unit square. We employed a quasistatic
isotropic compression algorithm to generate static pack-
ings over a range of packing fractions [19]. We initialize
each system with random particle positions at φ = 0 and
zero velocities. We then compress the system in steps
of ∆φ = 10−3 and relax the small particle overlaps after
each step by solving Newton’s equations of motion in the
overdamped limit,

m~ai =
∑

j

~F (rij)− b~vi, (2)

where m and ~ai are the particle mass and acceleration,
~F (rij) = −dV (rij)/drij r̂ij , r̂ij is the unit vector connect-

ing the centers of particles i and j, and b̃ = bσs/
√
mǫ

is the damping coefficient, until the total potential en-
ergy per particle falls below a specified (extremely low)
tolerance V/ǫN < Vtol = 10−16. We continue compres-
sion steps followed by relaxation until the systems jam
at a configuration dependent φJ . The ensemble-averaged
values for jamming onset in 2D are φJ ≈ 0.84 [6] and
0.89 [20] in the overdamped and large-system limits for
bidisperse and monodisperse particle size distributions,
respectively. We verified that our results for the struc-
tural and mechanical properties near φP are indepen-
dent of the particle size distribution, compression step

for ∆φ ≤ 5× 10−3, and damping coefficient for b̃ ≥ 1.

III. RESULTS

In Fig. 2, we characterize the contact percolation tran-
sition by plotting the probability P (φ) that the system
forms a system-spanning network of interparticle con-
tacts in either the x- or y-direction, where contact is
determined by rij ≤ σij , at each φ immediately follow-
ing a compression step. We note that the shape of P (φ)
does not depend on whether the particle size distribu-
tion is monodisperse or bidisperse. We find that the con-
tact percolation transition at φP = 0.549 < φJ becomes
sharper with system size and obeys finite-size scaling, but
with a correlation length exponent ν ≈ 1.68 [16] that is
significantly larger than that for random continuum [17]
and rigidity percolation [18], but smaller than that found
for contact percolation in athermal particulate systems
with short-range attractions [21]. (Note that percola-
tion onset occurs at a similar value φP = 0.558 ± 0.008
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Percolation type ν τ D

Repulsive contact 1.68 ± 0.08 2.01± 0.04 1.89± 0.03

Attractive contact 1.92 ± 0.03 2.04± 0.04 1.88± 0.04

Continuum 1.34 ± 0.02 2.02± 0.03 1.91± 0.04

TABLE I: Critical exponents for contact percolation in ather-
mal systems with purely repulsive interactions and short-
range attractive interactions [21], as well as random contin-
uum percolation [17] in 2D.
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FIG. 2: Percolation probability P (φ) that the system pos-
sesses a system-spanning cluster (in either the x- or y-
direction) immediately following a compression step ∆φ =
10−3 versus packing fraction φ for N = 100, 200, 400,
800, 1600, 3200, and 6400 particles (from bottom left to
right) averaged over 400 configurations for bidisperse (lines)
and monodisperse (squares) particle size distributions. In-
set: Same as the main figure for the bidisperse systems ex-
cept the horizontal axis is scaled by (φ − φP )N

1/2ν , where
φP = 0.549 ± 0.001 and ν = 1.68± 0.08.

for athermal systems with short-range attractions.) In
contrast, the exponent τ ≈ 2.01 that characterizes the
power-law scaling of the cluster size distribution and the
fractal dimension D ≈ 1.89 are similar to that for ran-
dom continuum percolation and contact percolation for
athermal systems with short-range attractions, and obey
hyperscaling D(τ − 1) = 2. (See Table I.)

We have shown that immediately following a compres-
sion step, a system-spanning cluster of interparticle con-
tacts forms at t = 0 for φ ≥ φP , much below φJ . To de-
termine if this geometrical transition influences the me-
chanical properties of the system, we measured 1) the
eigenvalues of the dynamical matrix following relaxation
and 2) the overlap of the adjacency matrix of configura-
tions at φ and φJ . As static packings are compressed,
they progressively become less floppy, i.e. fewer sin-
gle and collective particle motions cost zero energy. We
quantify the increase in rigidity by measuring the fraction
of non-floppy or ‘blocked’ eigenmodes F (φ)—the ratio of
the number Nnf of non-zero eigenvalues of the dynamical
matrix to the total number of nontrivial modes 2N ′ − 2

(where N ′ = N − Nr and Nr is the number of rattler
particles at jamming [1])—following relaxation after each
compression step over a range of packing fractions. With
this definition, F (φJ ) = 1. In Fig. 3 (a), we show that the
fraction of non-floppy modes F (φ) grows linearly with φ
for small φ. However, F (φ) begins to deviate from lin-
ear behavior near φP (i.e. F ′(φ) = F (φ) − Aφ > 0 for
φ & φP ), which signals an acceleration in the number of
blocked directions in configuration space near φP . This
result does not depend sensitively on ∆φ, N , and the
particle size distribution as shown in Fig. 3 (a).

The adjacency matrix with elements Aij = 1 if par-
ticles i and j are in contact and 0 otherwise character-
izes the contact network of static packings. By calcu-
lating the overlap of the adjacency matrices at φ and
φJ , O(φ) = N−1

c

∑
i>j Aij(φ)Aij(φJ ), where Nc is the

number of distinct contacts in the configuration at φJ

and O(φJ ) = 1, we can determine at what φ the sys-
tem forms a network of contacts that is similar to the
one at jamming. In Fig. 3 (b), we show that O(φ)
(calculated immediately following a compression step)
grows linearly at small φ, but as with F (φ), O(φ) be-
gins to deviate from from linear behavior near φP (i.e.
O′(φ) = O(φ) − Bφ > 0 for φ & φP ). Thus, the par-
ticular network of particle contacts that is responsible
for mechanical stability at φJ begins to form near φP .
Again, the results for O(φ) are insensitive to ∆φ, N , and
the particle size distribution, especially near φP .

In addition, we have identified a signature in the par-
ticle displacements that signals the onset nontrivial re-
sponse to isotropic compression near φP . We measure
the accumulated distance traveled in configuration space
(normalized by ∆φ)

L = (∆φ)−1

∫
∞

0

dt

√√√√
N∑

i=1

~v2i (t) (3)

from t = 0 after each compression to the end of the en-
ergy relaxation. In Fig. 3 (c), we show that L grows
roughly exponentially for small φ, but begins to devi-
ate from the low-φ behavior near (slightly below) φP

(i.e. log10 L − Cφ > 0 for φ & φP ). As found for F (φ)
and O(φ), the accumulated distance is insensitive to ∆φ,
N , and the particle size distribution. For φ . φP , the
particles move mainly affinely in response to isotropic
compression. In contrast, for φ & φP particles become
blocked by their neighbors and must move cooperatively
and in more circuitous routes to relax the applied stress.
The blocked directions in configuration space correspond
to the nonfloppy modes of the dynamical matrix. Thus,
the contact percolation transition signals the onset of col-
lective particle motion in athermal particulate systems
subjected to isotropic compression.
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FIG. 3: (a) The fraction F (φ) of non-floppy eigenmodes of
the dynamical matrix in the system measured following relax-
ation over a range of packing fractions for ∆φ = 5×10−3 and
N = 200 (triangles), ∆φ = 5× 10−3 and N = 1000 (squares),
and ∆φ = 10−3 and N = 200 (circles). The inset shows
F ′(φ) = F (φ)−Aφ with A ≈ 0.85. (b) The overlap O(φ) be-
tween the adjacency matrices at φ and φJ immediately after
a compression step for ∆φ = 10−2 and N = 200 (triangles),
∆φ = 10−2 and N = 800 (squares), and ∆φ = 10−3 and
N = 200 (circles). The inset shows O′(φ) = O(φ)−Bφ, where
B ≈ 0.7. (c) The logarithm (base 10) of the accumulated dis-
tance L between successive compressions normalized by ∆φ

as a function of packing fraction for φ > 0.1, ∆φ = 10−2 and
N = 400 (triangles), ∆φ = 10−2 and N = 1600 (squares),
and ∆φ = 2 × 10−3 and N = 400 (circles). The inset shows
log

10
L′(φ) = log

10
L(φ)−Cφ, where C ≈ 2. In all panels, the

solid line is a fit to the low-φ behavior and the dot-dashed ver-
tical line indicates the percolation transition at φP = 0.549.
The symbols indicate results for bidisperse particle size dis-
tributions. Results for monodisperse disks with ∆φ = 10−2

and N = 200 are indicated with dashed lines.

IV. CONCLUSION

A decade of work has emphasized the importance of
the jamming transition that signals the onset of nonzero
pressure, energy, and shear stress following relaxation at
long times in systems of frictionless spherical particles [6].
This has caused a possible misconception in the literature
that the onset of cooperative and spatially complex re-
sponse to applied stress in athermal particulate media oc-
curs at the jamming transition in the large-system limit,
not below. Further, a number of studies have focused
on the critical behavior of the shear stress, pressure, and
other physical quantities in athermal systems of friction-
less particles near jamming [12–15, 22], but there have
been very few studies of these properties well below jam-
ming.

In this manuscript, we described extensive computa-
tional studies of the geometrical and mechanical proper-
ties of unjammed, athermal systems of frictionless parti-
cles undergoing quasistatic isotropic compression below
φJ . The importance of this work is that it reports that
the onset of nontrivial mechanical response of these sys-
tems to applied stress occurs at a new critical point—the
contact percolation transition—well below the jamming
transition. We believe that both experimental and com-
putational studies of athermal particulate media, such
as granular materials, compressed emulsions, and foams,
well below jamming [23] (similar to those presented here)
are important for understanding the protocol dependence
of the probabilities with which static packings occur [19],
irreversibility of particle motion under shear reversal [24],
and frequency-dependent elastic moduli [25]. In future
computational studies, we will investigate the similarities
in the contact networks and other structural properties
between unjammed frictionless packings above the per-
colation transition with φP < φ < φJ and mechanically
stable frictional packings in the same range of packing
fraction.
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