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We study the impact of an intruder on a dense granular material. The process of impact and interaction
between the intruder and the granular particles is modeled using discrete element simulations in two spatial
dimensions. In the first part of the paper, we discuss how the intruder’s dynamics depends on 1) the intruder’s
properties, including its size, shape and composition, 2) the properties of the grains, including friction, polydis-
persity, structural order, and elasticity, and 3) the properties of the system, including its size and gravitational
field. It is found that polydispersity and related structural order, and frictional properties of the granular par-
ticles, play a crucial role in determining impact dynamics. In the second part of the paper we consider the
response of the granular system itself. We discuss the force networks that develop, including their topological
evolution. The influence of friction and structural order on force propagation, including the transition from
hyperbolic-like to elastic-like behavior is discussed, as well as the affine and non-affine components of the grain
dynamics. Several broad observations include the following: tangential forces between granular particles are
found to play a crucial role in determining impact dynamics; both force networks and particle dynamics are
correlated with the dynamics of the intruder itself.

PACS numbers:

I. INTRODUCTION

The problem of impact on a dense granular material has
been explored extensively due to its relevance to processes
that vary from asteroid impact, numerous technological ap-
plications, defense from high speed projectile impact, or to
simply walking on a sandy beach. While a large amount of
research has been done over hundreds of years, only during
last few decades has significant progress been reached in for-
mulating relatively simple but realistic effective models which
characterize the basic features of the interaction between an
intruder and a granular material itself.

These effective models have allowed for much better un-
derstanding of the dependence of the forces due to impact on
various parameters. A simple model due to Poncelet and dat-
ing from the 19th century is based on the concept that the force
experienced by an intruder may be separated into independent
speed- and depth-dependent parts [1]. The speed-dependent
part is hydrodynamic-like, while the depth-dependent part is
considered to be due to forces of either hydrostatic or fric-
tional origin. While careful experiments [2–9] and simu-
lations [3, 10–13] have improved our understanding of the
physics of impact considerably, they have also opened a new
set of questions. Some of these questions include scaling of
the penetration depth with the impact speed and intruder size,
for which a variety of sometimes contradictory results exist,
see e.g., [7, 8] and discussions therein. The dependence of the
granular force on the intruder speed is not always clear [8],
and the role of various effects which determine the depth-
dependent part of the force is also a subject of discussion,
with models that suggest either frictional [10] or hydrostatic-
like [13] forces. The picture which has evolved as a result of
recent work is that there are multiple regimes where different
aspects of the interaction between an intruder and granular
particles may be relevant, and it has become obvious that it

is necessary to look into the granular system itself in order
to understand the basic physical mechanisms responsible for
determining large scale dynamics of an intruder.

Therefore, in this work we take a different approach by
correlating the results for the dynamics of an intruder with
the evolution of the microstructure of the granular material it-
self. In particular, we concentrate on the influence of frictional
properties of the granular particles, and on their polydispersity
and structural ordering. We show that these quantities may
strongly influence the response of the granular material, the
interaction between the granular particles and intruder, and,
consequently, the dynamics of the intruder itself.

The structure of this paper is as follows. After discussing
the simulation techniques in Sec. II, we present, in Sec. III,
results for the intruder dynamics for various parameters char-
acterizing the intruder and the granular system. We compare
our results with existing simulations and experiments, with a
significant part of this comparison in the Appendix. In the
present work, we limit ourselves to the regime where the final
penetration depth is smaller then or comparable to the intruder
size; larger depths will be considered elsewhere. In Sec. IV,
we then consider the granular material itself. In Sec. IV A, we
explore properties of the force field, the influence of structural
order, polydispersity, and friction on force propagation, and
topological quantities describing structure of the force field.
In Sec. IV B, we discuss affine and non-affine components of
the dynamics of the granular particles. We conclude by dis-
cussing the question of energy expenditure, and further elab-
orate on the role of friction and structural order or granular
packing.
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II. TECHNIQUES

We consider a rectangular domain in two dimensions with
gravity. The particles are polydisperse discs, with their di-
ameters varying randomly in a range ±r about the mean. The
particle-particle and particle-wall interactions are modeled us-
ing the soft-sphere approach that includes friction and rota-
tional degrees of freedom. We solve the following equations
of motion for each particle:

mi
d2ri

dt2 = Fn
i, j + Ft

i, j + mig,

Ii
dωi

dt
= −

1
2

din × Ft
i, j. (1)

The normal force is given by

Fn
i, j =
[
knx − γnm̄vi, j

]
n,

where ri, j = |ri, j|, ri, j = ri − r j, and the normal direction is
defined by n = ri, j/ri, j. The compression is defined by x =

dave− ri, j, where dave = (di + d j)/2, di and d j are the diameters
of the particles i and j; vn

i, j is the relative normal velocity.
The nondimensional force constant kn is related to the di-

mensional one, k, by k = knmg/d, where m is the average par-
ticle mass, d is the average particle diameter, and g is Earth’s
gravity. All quantities are expressed using d as the length
scale, the binary collision time

τc = π

√
d

2gkn
,

as the time scale, and m as the mass scale. Then, m̄ is the
reduced mass, and γn is the damping coefficient related to
the coefficient of restitution, en, by γn = −2 ln en/τc , see,
e.g., [14]. We take en constant and ignore its possible ve-
locity dependence [15]. For definitiveness, we typically use
the physical parameters that are appropriate for photoelastic
disks [16], in particular d = 4 mm, kn = 4 · 103, en = 0.5,
although we also consider different values of kn and en. The
parameters entering the force model can be connected to the
physical properties of the material (Young modulus, Poisson
ratio) using the method described e.g. in [14].

Before proceeding with the discussion of the tangential
forces, it is appropriate to comment on the presence of two
time scales in the problem: one is the fast time-scale, τc, de-
fined above, which is relevant for the processes involving par-
ticle collisions, and the other slow penetration time scale is
ts =

√
Di/g, where Di is the intruder’s diameter. Here, ts is

proportional to the time for an intruder to travel a distance
equal to its own diameter, starting from rest in a gravitational
field. In this work, we will concentrate chiefly on the granular
dynamics, and therefore τc is the most appropriate time scale,
and d/τc is the most appropriate (fast) velocity scale. The two
time scales are related by τc/ts = π/

√
2Dikn � 1.

The tangential force is specified by two different models,
which can be conveniently described within the same frame-
work. The basic approach is based on a Cundall-Strack type

of model [17], where a tangential spring of zero length is in-
troduced when a new contact between two particles forms at
t = t0. Due to relative motion of the particles, the spring
length, ξ, evolves as

ξ =

∫ t

t0
vt

i, j (t′) dt′,

where vt
i, j = vi, j − vn

i, j. For long lasting contacts, ξ may not
remain parallel to the current tangential direction defined by
t = vt

i,j/|v
t
i,j| (see, e.g,. [18, 19]); we therefore define a cor-

rected ξ′ = ξ − n(n · ξ) and introduce the test force

Ft∗ = −ktξ
′ − γtvt

i, j,

where γt is the coefficient of viscous damping in the tangential
direction (we use γt = γn/2). To keep the magnitudes of tan-
gential forces smaller than the Coulomb threshold, specified
by µFt, where µ is the coefficient of static friction, we define
the tangential force by

Ft = min(µ|Fn|, |Ft∗|)
Ft∗

|Ft∗|
. (2)

In addition, ξ′ is reduced to the length corresponding to the
value of |Ft | as needed. This is a commonly used model for
static friction, for non-zero kt. To be able to isolate the ef-
fect of static friction, we also consider a commonly used ki-
netic friction model based on viscous damping, which is ob-
tained simply by putting kt = 0. Therefore, depending on
whether static friction effects are considered or not, we use
either model 1: kt = 0.8kn (the value suggested in [20]), or
model 2: kt = 0.0 (kinetic friction only). The exact value of
kt does not seem to be of relevance in the present context as
long as kt , 0. The particles making up the walls are made
very inelastic and frictional, with µ = 0.9 and en = 0.1.

Figure 1 shows the system setup. Here, W and L are the
width (depth) and the length of the granular bed, respec-
tively. Periodic boundary conditions are implemented on the
left and right boundaries. From below and above, the domain
is bounded by rigid horizontal walls made up from monodis-
perse particles, with the properties as specified above. The
role of the top wall is essentially to contain those few parti-
cles which would be ejected during particularly violent im-
pacts. However, the upper boundary is positioned sufficiently
high that collisions with this wall are very rare.

We consider both circular and elliptical intruders. An ellip-
tical form is one way to represent an ogival shape. The initial
height of the intruder is fixed so that the lowest part of the in-
truder is 5d above the granular surface; we then vary the initial
intruder’s velocity. The implementation of a circular intruder
is straightforward. It is still considered to be a single large
particle, with is own set of parameters, e.g., stiffness, and fric-
tion. We model elliptical/ogival intruders as a cluster of 360
granular particles with a mass appropriate to the intruder. This
cluster forms a rigid shell on the surface of an ellipse; i.e., the
particles in the cluster are rigidly attached to each other. In
the simulations, the total force on the cluster is computed, and
then the positions of all cluster particles are updated by apply-
ing Eqs. (1) to the cluster as a whole. We have confirmed that
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FIG. 1: (Color online) System setup. For illustration we show imple-
mentations of both circular and elliptic intruders. In the simulations,
one of these shapes is incident on the middle of the upper surface
of the granular system. Particles are colored according to the total
normal force experienced (here only due to gravity) with dark color
showing large force. The intruders’ color is for illustration only.

implementing a circular intruder as either a single particle or
as a cluster does not influence the results, as discussed below.
Although we position the cluster particles on the surface only,
we typically consider solid intruders, by choosing the cluster
moment of inertia appropriately. More precisely, the moment
of inertia is given by I = mi(a2 + b2)/4, where a and b are the
semi-axes of an ogival intruder, and mi is its mass.

The speed of sound, c, in the system will be needed be-
low in order to put the results in perspective. We estimate
this property by the time needed for information to propagate
across the domain. Specifically, we apply a point force at the
top of the granular bed and measure the time needed for the
force information to reach the bottom. When using the kinetic
friction model, we find (in dimensionless units) c ≈ 2, while
for the static friction model, we find slightly larger c ≈ 2.4. In
our simulations, we concentrate on the subsonic regime, and
consider intruder speeds up to 1 in our dimensionless units.

In order to examine the effect of the granular microstructure
on the impact, we model two types of packings. One is an ex-
act hexagonal lattice with particles of identical size, and the
other is a randomly packed system with r = 0.0, 0.1, 0.2, 0.3
and 0.4. The hexagonal lattice is prepared by simply position-
ing the particles so that they initially touch each other, and
letting them equilibrate under gravity. The random systems
are prepared by positioning the particles on a square lattice,
giving them random initial velocities, letting them settle un-
der gravity until the total kinetic energy decays below a given
threshold (10−10mgdave), and then smoothing the irregular top
surface roughness, if there is any. To consider reproducibility
and the influence of a particular configuration on the results,
we modify the initial random velocities assigned to the parti-

cles, and repeat the simulation.
The simulations are typically carried out using 6000 parti-

cles, with the size of the domain, in units of the mean particle
diameter, given by L = 100 in the horizontal direction, and
the initial height of the granular bed, given by W = 60, see
Fig. 1. After settling, the particles form a system of height
∼ 56 for random polydisperse systems. This system size is
at least moderately large. However, to test for system size de-
pendence, we have also carried out simulations in much larger
domains containing up to 90, 000 particles. The influence of
system size on the results is discussed in Sec. III B.

The volume fraction, ρ, occupied by the grains is difficult
to compute precisely due to the presence of a rough (on the
grain scale) upper surface. Furthermore, some variations of ρ
may also result due to different initial configurations. These
variations are less than about 0.01, with typical ρ’s being in
the range 0.85 − 0.86 for the random polydisperse systems.
The influence of the change of simulation parameters, such as
polydispersity, force constant, or gravity, leads to modifica-
tions of ρ on the same scale as different initial conditions. As
we will discuss in the next section, the influence of different
initial conditions on large-scale features of the results, such as
the final penetration depth, is minor, and therefore we may ex-
pect that the influence of slight variations of ρ reported above
is not significant. The only case where there is a appreciable
difference is the hexagonally ordered system; here ρ ≈ 0.91,
as expected for a lattice compressed under its own weight.

No additional compaction of the granular bed is used; we
have experimented with shaking of the bed to increase ρ, how-
ever only very minor additional compaction was achieved, and
we were not able to quantify its influence on the result that fol-
low. It will be of interest to consider the effect of additional
compaction on the intruder’s dynamics, perhaps by applying
an external load. Another issue which is left for future work
is considering the influence of interstitial air on the impact
dynamics - in the present work we do not consider this effect.

III. RESULTS FOR THE PENETRATION DEPTH

In this Section, we discuss results for the penetration depth,
and its dependence on parameters characterizing the granular
system and of the intruder. We also briefly compare our results
to the existing data, with more detailed comparison given in
the Appendix. In Sec. IV, we discuss the properties of the
force field in the system, its dynamics, and its influence on the
penetration depth, D(t), defined as the distance between the
position of the bottom part of the intruder and the initial upper
boundary of the granular bed at the point of impact. For the
penetration depth measurements, we also calculate the ‘final’
penetration depth, D, by averaging D(t) at long times. Fluc-
tuations in D(t) are typically much smaller than the average
particle size.

We start by considering a randomly packed system with
particles characterized by polydispersity r = 0.2, Coulomb
friction µ = 0.5, coefficient of restitution en = 0.5, and with
kinetic friction only, kt = 0.0. The intruder is a disk, with
diameter of Di = 10 in units of the average particle diameter,
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FIG. 2: (Color online) Penetration depth of Di = 10 intruder impact-
ing with different speed. Here we use r = 0.2, kn = 4 · 103, kt = 0.0,
en = 0.5, µ = 0.5. Material properties of the intruder are the same as
of the granular particles. The arrow shows the direction of increasing
impact speed.

and otherwise possessing the same material properties as the
granular particles. Figure 2 shows the time evolution of the
penetration depths of an intruder impacting the granular bed
with one of seven different speeds, ranging from 0.05 to 1.

The main properties of the results presented in Fig. 2 are as
follows. As expected, slower intruders create shallow craters;
specifically, the penetration depth is less than the intruder’s
own diameter. By contrast, intruders of higher speeds are en-
tirely submerged in the granular bed. For the larger impact
velocities, we find an overshoot in the penetration depth, i.e.,
the intruder rebounds towards the surface of granular layer, as
also observed experimentally [8, 21]. The ‘stopping time’ at
which the intruder essentially stops is somewhat ambiguous
for smaller impact velocities, for which there is no overshoot,
and this time might be considered to be either approximately
constant, as in [3], or a decreasing function of the impact ve-
locity, as in [7].

The origin of the small oscillations seen in plots of the in-
truder depth versus time for longer times in Fig. 2 will be dis-
cussed later. Here, we proceed to analyze the influence of the
properties of the intruder and of the granular system itself on
the penetration depth.

A. Intruder properties

Effect of Shape: Realistic intruders are often not circular,
and therefore it is relevant to explore the influence of the in-
truder shape on the interaction with granular matter. This
issue was considered experimentally [22], and it was found
that as expected, more pointed objects penetrated deeper, al-
though only in the case of shallow penetration. To be spe-
cific, we consider here a particular shape, an elliptic ogive (an
ellipse in 2D), and examine how the aspect ratio affects the
penetration depth. To avoid complications with ogival intrud-
ers ‘falling’ sideways as may happen particularly for impacts
with low speeds, we prevent them from rotating simply by

switching off the rotations of the intruder throughout the sim-
ulation. This is done for ogival intruders only and we have
verified that for high speed impact (where the intruders do not
fall sideways with or without rotations), there is no influence
of exclusion of rotations on the final penetration depth.

As explained in Sec. II, we simulate elliptic intruders by
preparing a ‘composite’ intruder made up from rigidly at-
tached particles. To isolate the effect of the intruder’s shape,
we fix the intruder masses to that of a disk with Di = 2a by
changing the intruders’ density. Figure 3 show the final (long
time) penetration depth of the intruders characterized by dif-
ferent a’s, b’s, and impact velocities. We find that for the in-
truder sizes and aspect ratios considered here, the final pene-
tration depth increases approximately linearly with the aspect
ratio, b.

FIG. 3: (Color online) Total (long time) penetration depth, D̄, for in-
truders characterized by different elliptical ogives and different sizes;
we show the results for (i) a = 5 and v = 0.1 (red squares), v = 0.4
(green triangles), v = 0.7 (blue diamonds), and for (ii) a = 10,
v = 0.7 (red circles). The domain size was increased in (ii) to
H = 100, W = 100. The other parameters are as in Fig. 2.

Effect of Composition and Stiffness: The equations of mo-
tion determining the intruder’s dynamics are also influenced
by the moment of inertia. To consider the influence of this
quantity, we consider hollow intruders, consisting of only a
shell of thickness d. In order to ensure that the ‘compos-
ite’ intruders behave identically to a single-particle, we model
solid intruders using both approaches. All three configura-
tions (single-particle solid, composite solid, and composite
hollow) yield essentially identical results, showing that (i)
modeling of an intruder either as a composite or as a single
particle produces indistinguishable results, and (ii) the influ-
ence of moment of inertia of an intruder, at least with the
present choice of parameters, and for an intruder which is
forced to remain straight as discussed before, is minimal. We
have also considered briefly the influence of the projectile’s
stiffness on penetration, and simulated infinitely stiff intrud-
ers (limit of infinite spring constant kn in our force model)
interacting with soft granular particles. We find that the pen-
etration depth for these stiff intruders is only slightly smaller
compared to the finite-kn ones. This result suggests that direct
interaction of an intruder with granular particles plays only
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a minor role in determining final presentation depth, while
particle-particle interactions are more relevant. This interac-
tion is discussed next.

B. System properties

Effect of Particle Stiffness and the Coefficient of Restitution:
Particle stiffness, modeled by the spring constant, kn, defines
the collisional time scale in the problem, τc ∝ 1/

√
kn. Con-

ceivably, one might expect that as kn varies at constant (nondi-
mensional) impact speed, the results would not change. That
is, dynamics expressed in units of τc might be independent of
dimensional properties such as kn. However, this invariance is
broken by the presence of gravity. While the role of gravity
is explicitly considered later, we can already see its influence
on the dynamics in the results of Figure 4. This figure shows
that as kn (of both granular particles and intruder) increases at
fixed dimensionless impact speed, the impact depth becomes
significantly larger. This result can be understood by realiz-
ing that the energy of impact is much larger in the case of
larger kn, since impact velocity (in physical units) scales as√

kn. Note that larger stiffness is one of the reasons for sig-
nificantly larger penetration depths in recent simulations [13],
where stiffer particles were considered. An additional effect,
the change of volume fraction due to modified interactions be-
tween the particles is weak, as noted in Sec. II. We have also
considered impacts where the impact velocity is kept fixed (in
physical units), and the stiffness changed. In this case, we find
at least for the parameters considered, the influence of particle
(and intruder) stiffness on the penetration depth is minimal.
The only visible influence of stiffness is modification of the
initial overshoot which is less pronounced for stiffer particles.
This effect can be explained by stronger resistance of stiffer
particles during the initial stage of (relatively) high-speed im-
pact. For the impacts characterized by low speed, we do not
see any influence of stiffness.

Figure 5 shows the influence of elasticity of the granular
particles, measured by the coefficient of restitution, en. A
large coefficient of restitution leads to a significantly deeper
penetration, as would be expected, since the energy loss is re-
duced relative to a lower restitution coefficient. Interestingly,
while a decrease of en reduces the depth of penetration, it does
not remove the overshoot of the D(t) curve. We will see below
that a different behavior results when the frictional properties
of granular particles are modified. Later in this section we will
also discuss the influence of en on the long-time oscillations of
the projectile depth, D(t); for the purpose of this later discus-
sion, we use a larger domain size for the simulations shown in
Fig. 5.

Effect of Friction: The influence of friction between the
granular particles on the penetration depth in particular, and
on the response of the granular material to an intruder in gen-
eral is not immediately obvious. For example, in considering
the response of a system to a point force, it has been found that
friction plays a role in determining how forces and stresses
propagate through the system [20]. Of course, a response to
an intruder is expected to be more complicated since it leads

FIG. 4: (Color online) Penetration depth of an intruder in systems
with varying stiffness (both intruder’s and granular particles’ stiff-
ness is modified consistently). Here, the force constant is given the
following values: kn = 4.0 · 105 (red dash-dot), kn = 4.0 · 104 (blue
dash), kn = 4.0 · 103 (black solid). The impact speed is v = 0.7.
The fixed value of τc used for nondimensionalization of all results is
obtained using kn = 4.0 · 103. The other parameters are as in Fig. 2.

FIG. 5: (Color online) Penetration depth of an intruder in systems
with varying coefficient of restitution, en = 0.9, 0.5, 0.1 shown by
red (solid), dashed (green) and blue (dash-dot) lines, respectively.
Here, v = 0.7, the system size is W = 200, L = 200; the other
parameters are as in Fig. 2.

to a large scale rearrangement of granular particles, which is
not expected in a response to a localized (small) point force.
Indeed, it has been suggested that friction is not necessarily
crucial in understanding this response [13]. Here, we illus-
trate the influence of friction on the penetration depth for a
particular system. We discuss more generally the manner in
which friction influences the dynamics of an intruder in the
Appendix, and the corresponding behavior of the granular ma-
terial of different frictional properties in Sec. IV.

To illustrate the influence of friction, we consider two ef-
fects: first, the effect of the friction model, and second of
Coulomb threshold. Figure 6 shows the corresponding re-
sults. We find that having a model with static friction leads
to a significantly smaller penetration depth (blue dash-dotted



6

curve in Fig. 6) than a model without static friction, particu-
larly for a large Coulomb threshold. For a smaller Coulomb
threshold, the influence of static friction is weaker, and the
response of the system in that case turns out to be similar to
the one obtained using kinetic friction only (compare green
dotted and pink dash-dot-dot curves in Fig. 6). Furthermore,
an ‘overshoot’ in the intruder depth may be removed in the
case of (strong) static friction. This is one significant dif-
ference between the influence of friction and inelasticity on
the intruder’s dynamics: in the case of increased inelasticity
(smaller coefficient of restitution), we still find an ‘overshoot’,
see Fig. 5.

FIG. 6: (Color online) Penetration depth for different friction models
and Coulomb thresholds; here we show the results as follows (top
to bottom): µ = 0 (red dashed); µ = 0.1, kt = 0.0 (green dotted);
µ = 0.1, kt = 0.8 (pink dash-dot-dot), µ = 0.5, kt = 0.0 (black
solid); µ = 0.5, kt = 0.8 (blue dash-dot). Here v = 0.7, the other
parameters are as in Fig. 2.

Effect of Polydispersity: One of the focal points of this work
is the influence of granular microstructure on impact. Mi-
crostructure is strongly influenced by the polydispersity and
related structural ordering of granular particles. To analyze
the influence of these parameters, we have carried out sim-
ulations where we have varied the parameter r determining
polydispersity between 0.0 and 0.4. We have also carried out
simulations using a perfect hexagonal lattice of particles as
the initial configuration. We typically find that the results for
a system with r = 0.0, prepared as described in Sec. II, are
similar to the ones obtained using a hexagonal lattice. This
is not surprising, since monodisperse particles tend to crys-
tallize, as confirmed by considering the pair correlation func-
tion, which shows only small differences between monodis-
perse ‘random’ and hexagonal lattices. (These results are not
shown here for brevity.) Therefore, we show the results ob-
tained using a hexagonal lattice in place of an r = 0.0 system
prepared using our usual protocol.

Figure 7 shows the intruder depth as a function of time for
an impact on a hexagonal lattice. We immediately note very
different properties of the D(t) curves compared to an impact
on a polydisperse system, see Fig. 2. For the impact velocities
considered here, the intruder very quickly reaches a depth at
which its velocity reverses, and then the intruder actually re-

bounds outside of the granular layer, falls again under gravity,
and then settles at the final depth. This final depth does not
depend in any obvious manner on the impact velocity, pre-
sumably because the impact is not strong enough to initially
penetrate through the lattice structure of the material, and by
the time of the secondary impact (after rebound), the informa-
tion about the initial velocity has been lost. The initial velocity
essentially influences only the initial depth which the intruder
reaches (before rebound), and the length of the interval af-
ter impact which the intruder spends outside of the granular
layer (this interval being longer for larger impact velocities).
Finally, by comparing the final penetration depth between an
impact on a hexagonal lattice, shown in Fig. 7, and on a dis-
ordered granular system, such as the one shown in Fig. 2, we
note that the final penetration depth in the former case is much
smaller. We will discuss the reasons for this difference later in
Sec. IV.

FIG. 7: (Color online) Penetration depth for an impact on a hexago-
nal lattice; here r = 0.0 and the other parameters and line patterns are
as in Fig. 2. Note the different range on the vertical axis compared to
the one typically used.

Figure 8 shows in more detail how the final penetration
depth depends on the polydispersity. To help interpretation
of the results we show both the final depth as a function of r
for fixed v’s (part a)) and the final depth as a function of v for
fixed r’s, (part b). Clearly, the penetration is deeper in poly-
disperse systems compared to the hexagonal one, for all con-
sidered impact velocities. However, we find that the degree
of polydispersity has no significant effect on the penetration
depth as long as the system is not monodisperse and ordered.

Figure 8b) shows that the penetration depth depends ap-
proximately linearly on the impact speed of the intruder for
larger velocities and deeper penetration. This observation
agrees with results reported earlier [3, 4, 8], where it was
found that the penetration depth increases linearly with the
impact speed for a range of impact depths that are comparable
or larger than the intruder size. For smaller impact velocities,
we find deviations from the linear scaling, again consistent
with the literature [2, 5, 6]. We discuss this scaling in some
more detail in the Appendix.

Effect of Gravity: We discuss here in more detail the influ-
ence of the acceleration of gravity on the penetration depth.
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(a)penetration depth as a function of
r for different v’s.

(b)penetration depth as a function of
v for different r’s.

FIG. 8: (Color online) Final (long time) penetration depth for the
systems characterized by different polydispersities, r; the other pa-
rameters are as in Fig. 2.

As mentioned earlier, the value of the gravitational accelera-
tion is expected to play a role, since it influences the mobility
of the particles following impact. Gravitational compaction
itself is found to play just a minor role, as discussed in Sec.
II. For brevity, we consider the effect of gravity only for the
system characterized by r = 0.2, kt = 0. Here, as the ini-
tial configuration we consider a system prepared under Earth’s
gravity and then left to relax until the total kinetic energy of
the particles falls below a specified threshold (10−10mgdave).
Figure 9 compares the results for Earth’s gravity with data
for several other planets/satellites, specifically, Pluto, Moon,
Mars, Jupiter. We find significantly deeper penetration for
smaller gravitational accelerations. At least for the parame-
ters considered, we do not find robust scaling of D̄ with g. An
expanded discussion of possible scaling with g in other param-
eter regimes can be found in [7, 8, 10, 13] and the references
therein. Figure 9 also shows that the maximum penetration
depth is reached at much later times as gravity is decreased, as
expected from the discussion in [8, 13] and in the Appendix.

Figure 10 shows the response to impact of granular particles
under different gravity. Here, the particles are colored accord-
ing to the average normal force experienced (recall that the
force is given in nondimensional units defined using Earth’s
gravity). We see significantly increased mobility of the parti-
cles after impact for smaller g’s, confirming the intuitive ar-
gument presented above. Note that we modify only the grav-
itational force on the particles, and not their stiffness, which
remains the same. We also note that the change of impact
speed due to modified gravity is minor, only a fraction of a
percent.

Effect of System Size and Initial Configuration: System size
has been recognized in previous work as one of the factors
which may influence the results [7, 12, 13, 23–25]. To explore
this effect, we have carried out additional simulations where
the system size was varied. Since modifying the system size
also requires changing the configurations of the particles, we
also consider the issue of reproducibility here, that is, we con-
sider the variations between realizations for the same macro-
scopic parameters. Changing the initial particle configuration
may lead to different dynamics, and the different realizations
give us a measure of statistical fluctuations on macroscopic

FIG. 9: (Color online) Influence of gravitational acceleration on im-
pact; here, v = 1.0 and the other parameters are as in Fig. 2. We
chose g’s (given in cm/s2), appropriate to various objects in the Solar
system: Pluto, Moon, Mars, Earth, Jupiter.

FIG. 10: (Color online) Snapshots of a granular system after impact
under the four larger gravities considered here (g = 160, 369, 980,
and 2479 cm/s2) from Fig. 9 at t ≈ 300. Gravity is monotonously
increasing from a) to d).

results such as the penetration depth.
Figure 11 shows results for six different system sizes, cor-

responding to different initial widths of the granular layer, W,
and, the domain size in the horizontal direction, L. First we
note that despite different visual appearances of the detailed
trajectories, the final penetration depth (the value reached for
long times) varies only very little (less than a particle diam-
eter) between systems of different sizes. This variation is
smaller than that due to different initial conditions, and there-
fore we conclude that for the systems considered here, the
system size is sufficiently large that there is no significant in-
fluence on the final penetration depth. This observation agrees
with the experiment results found in [24] and [26]. We note
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in passing that the presence of the overshoot in D(t) is not
influenced by the system size, as also found in a recent exper-
imental work [8].

(a)W = 200, L = 50. (b)W = 200, L = 100.

(c)W = 200, L = 200. (d)W = 100, L = 100.

(e)W = 300, L = 100. (f)W = 300, L = 300.

FIG. 11: (Color online) Influence of the initial system width, W,
and length, L, on the penetration depth as a function of time. The
solid/dashed lines show three realizations of impacts with the speed
v = 1.0/0.1, respectively. The other parameters are as in Fig. 2.

Next, we comment on the oscillations of the penetration
depth that are clearly visible in Fig. 11. Perhaps contrary to
an intuitive expectation, these oscillations do not decrease for
the largest systems considered here; on the contrary, they in-
crease in amplitude. Below, we first discuss the origin of these
oscillations, and then their dependence on the system size.

Recall that the penetration depth is defined with respect to
the position of the top surface of the granular system at initial
time, t = 0. During an impact, the kinetic energy of the in-
truder is mostly transferred into elastic energy that propagates
through the system in the form of (damped) elastic waves, see,
e.g., [27]. (Note that some of the energy goes into friction;
this issue is discussed briefly in the Conclusions.) These elas-
tic waves interact with the system boundaries, and in the case
of the bottom boundary they partially reflect and lead to an ex-

pansion of the whole granular bed. We have confirmed this by
comparing the period of oscillations visible in Fig. 11 with the
time it takes for the elastic waves to cross the system twice.
For example, note that for shallower systems, the period of
the oscillations is shorter, as expected based on the above ar-
gument. It is important to note that for the present choice of
parameters these elastic waves do not influence in any signifi-
cant manner the motion of the intruder relative to the granular
particles surrounding it: they essentially lead to global oscilla-
tions of the system. To confirm this statement, Fig. 12 shows
the depth of the intruder with respect to the time − dependent
position of the interface, calculated at the same time as the
intruder’s position. The long-time oscillation are not visible
anymore. A different regime, with intruders comparable in
size to the granular particles, and therefore more susceptible
to the pressure due to the propagating elastic waves, has been
discussed recently [12].

The next question is the influence of the system size in
the horizontal direction, L, on the oscillations. Again, for
the sizes considered, there is no influence on the final pene-
tration depth. More narrow systems (with smaller L), how-
ever, lead to increased amplitude of the oscillations. This is a
consequence of our periodic boundary conditions imposed at
the right and left boundaries: the waves propagating right/left
from the impact point ‘re-appear’ from the other side of the
domain and increase the oscillatory behavior. In the case of
large systems, these waves lead to non-sinusoidal oscillations,
as can be seen in Fig. 11f).

FIG. 12: (Color online) Penetration depth for a system characterized
by L = 100 and W = 200; the impact speed is v = 0.7; the other
parameters are as in Fig. 2.

The final question is why the oscillations do not dimin-
ish with the system depth, W. The answer to this question
has to do with the properties of the elastic waves propagating
through the system. It is known that propagation is enhanced
in systems characterized by stronger compression, or, corre-
spondingly to some degree, larger volume fractions, as dis-
cussed recently [27]. In larger systems, there is stronger grav-
itational compaction in the deeper layers, leading to stronger
wave propagation and rebound, and correspondingly, to more
visible oscillations. This conjecture is supported by the results
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for different gravity (Fig. 9), where we observe that in the sys-
tems under smaller gravity, the oscillations are weaker as well.
We note that for significantly larger systems compared to the
ones considered here, one expects that damping and/or friction
would be strong enough to reduce or eliminate the influence
of elastic waves. As one might expect, stronger damping sig-
nificantly reduces the amplitude of the oscillations, as shown
for the systems considered here in Fig. 5.

We note that to our knowledge these oscillations have not
been yet observed experimentally. Their eventual observation
may provide a new insight regarding response of a granular
system to an impact, and improve our understanding of the
influence of impact and resulting acoustic waves on granular
dynamics.

IV. MICROSTRUCTURE EVOLUTION, FORCE
NETWORKS, AND GRANULAR DYNAMICS DURING

IMPACT

In this Section we discuss the internal response of the gran-
ular system to impact, and the role which microstructure plays
in determining the macroscopic results, such as penetration
depth. We concentrate in particular on the role of polydis-
persity, ordering, and friction in determining the granular re-
sponse. We consider two separate sets of measures to quan-
tify the response: (i) the geometric and topological proper-
ties of the force field evolving in a granular system during
impact, and (ii) the dynamics of the granular particles quan-
tified by measuring affine (conforming) and non-affine (non-
conforming) components of granular motion.

A. Properties of the force field

Figures 13 - 16 show snapshots of the normal and tangen-
tial forces which granular particles experience due to impact
on a polydisperse system at four different times. Animations
of the impact are available as Supplementary Materials [28].
Before the impact itself (part a) we see the force chains due
to gravitational compaction, already discussed earlier. Dur-
ing the impact, we observe approximate isotropic expansion
of the area in which particles experience large normal force.
Properties of this large-force area are discussed next.

One issue of interest is the influence of inter-granular fric-
tion on the force field. By comparing Figs. 13 and 15, we
find no significant differences, suggesting that the friction
model is not crucial in determining the properties of the nor-
mal force field between the granular particles. On the other
hand, Figs. 14 and 16 suggest that tangential forces depend
strongly on the friction model. Recalling now that the pen-
etration depth is much smaller for the particles modeled by
static friction and large Coulomb threshold, see Fig. 6, we
conclude that at least for the systems considered, tangential
forces are the ones which play a significant role in determin-
ing the dynamics and final penetration depth of an intruder.
The influence of friction on the force networks is even more

obvious in the impact on a hexagonally ordered system, which
we discuss next.

Figures 17 to 20 show the structure of the normal and tan-
gential force field during impact on an ordered, hexagonal sys-
tem. We find that the forces propagate in a very different way,
compared to what we find for an impact on a random, polydis-
perse system: in the case of the ordered packing, we see pre-
dominant propagation in the lattice directions, combined with
a (weaker) uniform, isotropic front. Therefore, we conclude
that geometric microstructure plays a significant role in deter-
mining the force field in a granular system. We note that any
degree of polydispersity and related disorder leads to a transi-
tion from ray-like propagation, shown in Figs. 17 and 19, to
isotropic propagation, seen in Figs. 13 and 15. We have con-
firmed this by carrying out corresponding simulations with
smaller r’s (not shown here for brevity). Since we observe
larger magnitudes of the forces in the ordered system, we
expect that these larger forces manifest themselves as larger
forces on the intruder itself, and therefore lead to more shal-
low penetration, see Fig. 8. These findings regarding the influ-
ence of polydispersity are consistent with other recent work,
where the response of three dimensional frictionless systems
to a localized perturbation was considered [29, 30].

FIG. 13: (Color online) Normal force experienced by the granular
particles at four different times. Here, v = 0.7, and the other parame-
ters are as in Fig. 2 (kinetic friction). Animations are available [28].

Next we discuss the influence of friction on force propaga-
tion in an ordered system. Regarding normal forces, by com-
paring Figs. 17 and Fig. 19, we again see no significant differ-
ences on the temporal and spatial scales considered. However,
one can still observe the effect of friction on some features of
force propagation, which have been discussed recently from
the point of view of elastic versus hyperbolic force propaga-
tion [20, 31]. Static friction is expected to lead to a more
elastic-like response, that is, the force (or pressure) on gran-
ular particles is expected to reach a maximum value directly
below the source, while kinetic or no friction, is expected to
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FIG. 14: (Color online) Tangential force experienced by the granular
particles at four different times for the same parameters as in Fig. 13
(kinetic friction). Note different range of the force magnitudes shown
compared to Fig. 13. Animations are available [28].

FIG. 15: (Color online) Normal force experienced by the granular
particles at four different times for kt = 0.8; the other parameters are
as in Fig. 13 (static friction). Animations are available [28].

lead to a more a hyperbolic-like response, with a pressure dip
below the source. By comparing the results in Figs. 17 and 19
at t = 24, one can observe a variation of this effect, with the
significantly more pronounced force dip below the source for
kinetic friction case. We note that having an ordered structure
is important to observe this effect; polydispersity and associ-
ated disorder have masked it in Figs. 13 and 15, which show
the normal force for a polydisperse system.

As for the disordered system discussed above, the influ-

FIG. 16: (Color online) Tangential force experienced by the granular
particles at four different times for the same parameters as in Fig. 15
(static friction). Animations are available [28].

ence of friction model is much more significant for tangen-
tial forces than for normal forces. Figures 18 and 20 illustrate
this effect. In addition to observing significantly larger tan-
gential forces when static friction is included, we again find
more hyperbolic-like force propagation in the case of kinetic
friction, and a more uniform, elastic-like response when static
friction is present.

FIG. 17: (Color online) Normal force experienced by the granular
particles at four different times during impact on a hexagonally or-
dered system. Here, r = 0.0, and the other parameters are as in
Fig. 13 (kinetic friction). Animations are available [28].

Figure 21 shows F, the total force on the intruder in the
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FIG. 18: (Color online) Tangential force experienced by the granular
particles at four different times for the same system as in Fig. 17
(kinetic friction). Animations are available [28].

FIG. 19: (Color online) Normal force experienced by the granular
particles at four different times for kt = 0.8; the other parameters are
as in Fig. 17 (static friction). Animations are available [28].

y direction, for different friction models and polydispersi-
ties/ordering. We see that this force is very large immediately
after impact, and then decreases significantly on a very short
time scale. The second, much smaller peak in the force visi-
ble in some of the results is due to reflected elastic waves as
discussed before. The influence of these waves on the intruder
dynamics is minor. While we note larger force for impact on
polydisperse particles with a static friction model (blue dash-
dot line in the part a)), perhaps the most important observation
regarding the results shown in this figure is how similar they

FIG. 20: (Color online) Tangential force experienced by the granular
particles at four different times for the same system as in Fig. 19
(static friction). Animations are available [28].

are for the different systems considered here, suggesting that
it may be difficult to extract the main features about the in-
truder’s dynamics based on this information alone. Recall that
the penetration depths differ significantly between the differ-
ent friction models and different polydispersities.

(a)polydisperse, r = 0.2. (b)hexagonal, r = 0.0.

FIG. 21: (Color online) The total force on the intruder as a function
of time for the following systems (depth versus time for the systems
in part (a) is available in Fig. 6): µ = 0 (red dashed); µ = 0.1, kt = 0.0
(green dotted); µ = 0.1, kt = 0.8 (pink dash-dot-dot), µ = 0.5, kt =

0.0 (solid black); µ = 0.5, kt = 0.8 (blue dash-dot). Here v = 0.7;
the other parameters are as in Fig. 2.

1. Topological properties of the force field

The force fields, in particular in disordered systems, may
have very complicated structures. Therefore, it is difficult to
extract their generic properties, and to reach, for example, an
answer to the question of global changes of the force field
due to an impact. For this reason, we consider topological
properties of the force network, by computing its connectivity.
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One measure of the connectivity can be formulated in terms of
Betti numbers, which are global topological measures speci-
fying the properties of a network [32]. In particular, the zeroth
Betti number, B0, measures the number of connected compo-
nents, and the first Betti number, B1, measures the number of
holes inside a network. Clearly, these quantities depend on
the force threshold chosen. For example, if one chooses zero
threshold (considering all the particles), B0 will provide an
information about the packing of the material. As the force
threshold is increased, the number of particles experiencing
a force larger than a given threshold decreases, and conse-
quently, the topology of the network changes. The compu-
tations are carried out using the publicly available software
package CHomP [33]. These computations involve thresh-
olding a particular force level and producing a binary image
(black less than or equal to the threshold and white above the
threshold), and then computing Betti numbers, hence, mea-
suring the connectivity of the resulting images. Here, we will
concentrate only on B0, with the main goal of quantifying
the differences between the force networks developing during
impact for different friction models, and for different poly-
dispersities. We note that here we explore connectivity on
the particle scale; an alternative approach where connectivity
is considered on the level of individual contacts is possible
as well [34]. Future work should address the differences, if
any, resulting from these two different approaches to comput-
ing connectivity. For brevity, here we concentrate only on the
force fields in polydisperse systems.

FIG. 22: (Color online) Zeroth Betti number, B0, for the normal
force during impacts on polydisperse, r = 0.2, systems with v = 0.7
and (a) kinetic friction; (b) static friction; the other parameters are as
in Fig. 2. In this and the following figure, B0’s are normalized by
the number of particles, and the forces by the average (normal) force
on all particles. Note that the peaks in the B0’s for Fn/ < Fn > ≈ 2
(perhaps more visible in the following figure) are due to the elastic
waves propagating through the system.

Figure 22 shows B0’s for the impact on a polydisperse sys-

FIG. 23: (Color online) Zeroth Betti number, B0, for the tangential
force during impacts on the systems as in Fig. 22.

tem with (a) kinetic and (b) static friction. The snapshots of
the corresponding force field for part a) can be seen in Fig. 13.
We see that for very small and for very large forces, the B0’s
are very small, since for very small forces all particles are
found to form a cluster (due to being in contact with each
other), while the number of particles experiencing very large
forces is small, so that there are no components/clusters to be
seen. The main difference between the the two parts of the
figures is larger number of components/clusters for the sys-
tem where static friction is included. Recalling more shallow
penetration for the system where static friction is included, we
conjecture that there is a correlation between larger number of
components/clusters and corresponding resistance to an im-
pact. To our knowledge, this influence of static friction on the
structure of force network has not been discussed previously
in the literature.

Figure 23 shows the tangential forces for the same system
as in Fig. 22. The information which can be obtained from
this figure is consistent with the insight which we reached
by considering the normal forces: larger number of compo-
nents/clusters for the systems where static friction is present.

We conclude by summarizing our current results regarding
properties of the force field during an impact. For disordered,
polydisperse system, we find the following:

• The main influence of static friction on the force field is
a significant increase of tangential forces;

• Both normal and tangential forces show increased ram-
ification (in the sense of increased number of compo-
nents/clusters) in the presence of static friction.

For monodisperse, ordered systems, we find:

• As for polydisperse systems, there is only a minor in-
fluence of friction on the normal forces, while tangen-
tial forces are increased strongly when static friction is
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included. In addition, the total force on an intruder is
similar for monodisperse ordered and polydisperse dis-
ordered systems, suggesting that it may be difficult to
extract information about the intruder’s dynamics based
on the information about the total force on the intruder
alone.

• The normal force field is highly uniform; however, the
tangential force field is much more structured, suggest-
ing that a significant amount of disorder of the tangen-
tial interactions between the particles is introduced dur-
ing an impact.

We note that the current results concentrate only on the global,
large scale features. More work is needed to analyze the de-
tailed, local, properties of the force fields, including their tem-
poral evolution.

B. Properties of the displacement field

Next, we consider dynamics of the granular particles due to
impact. For this purpose, we compute the displacement field
using the approach from [35], outlined briefly in what follows.
The displacement field shows how granular particles respond
to an impact, and will allow us to correlate granular response
and dynamics of the impactor. The approach of Falk and
Langer [35] allows one to compute both affine/conforming
and non-affine/non conforming parts of the displacement field.
The affine part, providing information about the dominant
component of granular dynamics, is of particular interest for
the present problem since the basic locally coarse-grained so-
lution is not known. The non-affine part can be associated
with plastic deformation of granular system due to impact,
leading to irreversible changes of the granular structure

The affine and non-affine components are computed as fol-
lows. For each particle, a circle of radius R centered at the
particle is defined, and all the particles in this circle are con-
sidered to be its neighbors. We choose the size of this circle
to be R = 2.5 d. Let us denote by r0(t) the position of this
central particle and by rm(t),m = 1, ..., n the positions of its
neighboring particles, respectively. Then, the displacement of
one neighboring particle relative to the central one is given
by rn(t) − r0(t) at time t. Assuming only conforming/affine
deformations are present, we denote them by

r(t + δt) = A(t) · r(t),

where A(t) is a 2×2 matrix. Under the affine deformation, the
displacement of the neighboring particle relative to the central
one becomes

A(t) · rn(t) − A(t) · r0(t). (3)

To measure the difference between an actual deformation and
the affine part, we define the quantity D2 as the mean-square
difference between the actual displacement rn(t) − r0(t) and
the one defined by Eq. (3), i.e.

D2 =

m∑
n=1

‖rn(t+δt)−r0(t+δt)−[A(t) · (rn(t) − r0(t))] ‖2. (4)

Then, we find the minimum, D2
min, of D2, by minimizing D2

with respect to the four elements of A(t), i.e.,

A(t) =

[
A11(t) A12(t)
A21(t) A22(t)

]
.

We obtain the expression for A(t) and the corresponding
non-affine componentD2

min. The magnitude ofD2
min indicates

the local non-affine component of displacement in the vicinity
of each particle. In addition, we can retrieve the affine com-
ponent from A(t).

Figure 24 shows snapshots of the affine deformation for
the polydisperse systems characterized by different friction
models. We show the x and y components of the vector
A f = A · (r(t)−r(t−δt)). These figures reveal outward motion
of the granular particles away from the point of impact (parts
a) and b)), downward motion in the area below the impact,
combined with the upward motion at the surface of the granu-
lar bed just next to the impact point. While the results for the
two systems are fairly similar, we see increased mobility for
the particles experiencing kinetic friction only, in particular
for the y-component of affine deformation.

(a)A f · i, kt = 0.0. (b)A f · i, kt = 0.8.

(c)A f · j, kt = 0.0. (d)A f · j, kt = 0.8.

FIG. 24: (Color online) Affine deformation at t = 24 for impact on
polydisperse systems modeled by different friction models: kinetic
(parts a) and c)) and static (parts b) and d)). Here i and j are the unit
vectors in the x and y directions, and v = 0.7. The other parameters
are as in Fig. 2.

Figure 25 shows D2
min, measuring the strength of the non-

affine component. This component of motion is more promi-
nent for the case where only kinematic friction is present;
however, the differences between the two cases are only mod-
erate.

Precise information about affine and non-affine components
of granular dynamics for hexagonally ordered systems is also
of interest. Figures 26 and 27 show corresponding results,
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(a)kt = 0.0. (b)kt = 0.8.

FIG. 25: (Color online) D2
min distribution at t = 24 for impact on

polydisperse systems modeled by different friction models: kinetic
(part a)) and static (part b)). The other parameters are as in Fig. 24.

again for the systems characterized by kinematic and static
friction, for the hexagonally ordered systems. Here, we also
include the L2 norm of the affine deformation since it pro-
vides useful additional insight. Figure 26 shows stronger
affine deformation for the kinetic friction case, particularly
visible when considering the norms, parts e) and f) of the
figure. Granular particles interacting only by kinetic friction
clearly respond stronger to an impact. Consistently, Fig. 27
then shows that non-affine component is also much more pro-
nounced for the kinetic friction case, suggesting that static
friction also reduces non-affinity of particle motion.

V. CONCLUSIONS

In this work, we analyze the response of a granular system
to an impact, with particular emphasis on understanding the
influence of granular microstructure on intruder dynamics. In
particular, we present a precise descriptions of the force and
displacement fields, which have not been discussed previously
with this level of detail. The results show that the grain-scale
properties play a crucial role in determining the dynamics of
an intruder. The main findings are as follows:
• Force propagation in a granular system is strongly influ-
enced by structural ordering. The total penetration depth is
significantly smaller for impacts on ordered granular material.
• Frictional interactions and the resulting tangential forces be-
tween the particles play a major role in determining the final
penetration depth, at least for the considered parameters. Both
the type of frictional model used (static versus kinetic friction)
and the Coulomb threshold are relevant. In addition, frictional
effects may lead to a change from overshoot to a monotonous
increase of penetration depth with time, suggesting that fric-
tion plays an important role in determining the forces that an
intruder experiences during impact.
• The analysis of the force field in the granular material con-
firms a strong influence of tangential forces. In addition, our
results are consistent with a transition from a hyperbolic to an
elastic type of force propagation through the granular matter.
For example, a more pronounced pressure dip may be seen
below the point of impact for a kinetic friction type of inter-
action between the granular particles, compared to the static

(a)A f · i, kt = 0.0. (b)A f · i, kt = 0.8.

(c)A f · j, kt = 0.0. (d)A f · j, kt = 0.8.

(e)||A f ||, kt = 0.0. (f)||A f ||, kt = 0.8.

FIG. 26: (Color online) Affine deformation at t = 24 for impact
on monodisperse hexagonal systems modeled by different friction
models: kinetic (parts a), c), and e)), and static (parts b), d) and e)).
Here v = 0.7 and the other parameters are as in Fig. 2.

friction.
• The analysis of the displacement field shows stronger affine
and non-affine deformation for systems of particles interact-
ing via the kinetic friction model, suggesting that increased
mobility of the particles when static friction is not included is
responsible for larger penetration depths.

To further illustrate the influence of friction and of elastic
damping on the dynamics, we discuss briefly the evolution of
the energy in the system consisting of the intruder and gran-
ular particles. Figure 28 shows the total, kinetic, potential,
and elastic energies as a function of time for combined in-
truder/granular particles system. For brevity, only the results
obtained for polydisperse systems are shown, since the results
for monodisperse ones are similar. The total energy, which
is the sum of the kinetic, potential, and elastic energies for
the complete system (granular particles and intruder) shows a
monotonous decrease and illustrates faster loss of energy for
the systems with friction (kinetic or static). Part b) shows that
kinetic energy is lost very quickly, again faster in the case of
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(a)kt = 0.0. (b)kt = 0.8.

FIG. 27: (Color online) D2
min distribution at t = 24 for impact on

polydisperse systems modeled by different friction models: kinetic
(part a)) and static (part b)). The other parameters are as in Fig. 26.

frictional systems. Parts c) and d) show that the exchange of
energy between potential and elastic components persists for
much longer times, although both the intruder and the gran-
ular particles are essentially at rest, as can be seen from the
kinetic energy plot, Fig. 28b).

We conclude that the energy evolution is similar for the
three types of systems considered here, with the differences
between static and kinetic friction models being surprisingly
minor. Therefore, energy balance on its own does not pro-
vide a complete picture, since, as can be seen clearly in, e.g.,
Fig. 6, static friction leads to a significant decrease in the pen-
etration depth. It is necessary to go beyond energy balance
and explore the structure of the force field and dynamical re-
sponse of granular media to gain a better understanding of the
interaction of an intruder with a granular system, and its con-
sequences on the final penetration depth.

In this work we have concentrated only on relatively shal-
low impacts, where the final penetration depth is comparable
to or smaller than the intruder’s size. Future work will analyze
deeper penetration, as well as directly compare computational
results with two dimensional experiments. In addition, it is of
importance to extend the simulations to three dimensions to
be able to compare with the much wider range of experimen-
tal results, and quantify the influence of dimensionality on the
results. This work is currently ongoing.
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Appendix: Comparison to effective models and experimental
results

A simple model for the force describing interactions be-
tween an intruder and granular material can be outlined as
follows (see, e.g., [7, 8, 10]). The total force on the intruder
includes gravity, and the force due to interaction with the gran-
ular material. The interaction force may be considered as a
separable function of two variables, (y(t), u(t)), where y(t) is
the time dependent position of the intruder, and u(t) is its time-

(a)Total energy. (b)Kinetic energy.

(c)Potential energy. (d)Elastic energy.

FIG. 28: (Color online) Combined energy of the intruder and granu-
lar particles during impact for three systems characterized by differ-
ent frictional properties; penetration depth versus time is shown in
Fig. 6. Here we show the results for: µ = 0 (red dashed); µ = 0.5,
kt = 0.0 (black solid), and µ = 0.5, kt = 0.8 (blue dash-dot). The
parameters are as in Fig. 6.

dependent velocity∑
F = Mg + Fd(y) + Fv(u). (A.1)

Here M is the mass of the intruder and the positive y direc-
tions points in the direction of gravity (for simplicity, we also
use y to refer to the time dependent depth of the intruder). It
should be noted here that there is a strong assumption that this
separation can actually be done, which is not clear a priori.
However, assuming that this separated model is appropriate,
one can proceed to discuss the origin of the force terms. The
depth-dependent force, Fd(y), may be taken to be a result of
resistance by the granular material to impact, which is present
even for vanishing velocity. This force is commonly consid-
ered to be due to friction, although it was recently observed
to be present even if frictional effects were absent [13]. As
reported in the literature [7, 8, 10, 13], by exploring an anal-
ogy with hydrostatic forces which govern propagation though
a Newtonian fluid, Fd(y) is expected to vary linearly with y,
Fd ∝ y for large y, with more complicated behavior expected
for smaller y’s [10]. The velocity dependent force, Fv(u), is
the inertial drag force, required to push away the particles in
front of the intruder. For an intruder of diameter Di and having
velocity u, a simple argument [10], suggests that this compo-
nent of the force scales as Fv ∝ u2, although one can also find
evidence for linear scaling F ∝ u [3, 8].

To examine the depth dependent force Fd(y), we consider
a number of different impact velocities, v, and we find the in-
truder’s acceleration as a function of y, at fixed u. For brevity,
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(a)µ = 0. (b)µ = 0.

(c)µ = 0.5, kt = 0. (d)µ = 0.5, kt = 0.

(e)µ = 0.5, kt = 0.8. (f)µ = 0.5, kt = 0.8.

FIG. 29: (Color online) Intruder’s acceleration versus its time-
dependent depth, y(t), and time-dependent velocity, u(t). The impact
velocities are v = 0.05, v = 0.1, v = 0.2, v = 0.3, v = 0.4, v = 0.7,
and v = 1.0. The parameters that are not varied are as in Fig. 2.

here we discuss only impacts on polydisperse, disordered sys-
tems. Figure 29a), c) and e) shows the results obtained for
three systems: Coulomb threshold µ = 0 (frictionless), and
µ = 0.5 with kinetic, kt = 0, and static, kt = 0.8, fric-
tion. For the frictionless case, shown in Fig. 29a), we find
monotonously increasing a(h), with a dependence which can
be described reasonably well by a linear fit, consistent with
several previous studies [8, 13]. Friction, however, leads to
modifications not only of the linearity, but also of monotonic-
ity of the a(y) dependence, as illustrated by parts c) and e) of
Fig. 29, where kinetic and static friction were considered, re-
spectively. The deviation from monotonicity is particularly
obvious for small y’s, as expected based on the arguments
given in [10]. Therefore, we find that the dependence of
intruder’s acceleration on time-dependent penetration depth,
y(t), is strongly influenced by the frictional properties of the
granular material.

Let us now consider the dependence of the intruder’s accel-
eration on its time-dependent velocity, u. To do so, we again
consider different initial velocities, v, and find a(u) for fixed y.

Figure 29, parts b), d), and e) show the results for the three dif-
ferent friction cases. We extract a(u) for relatively small y’s,
where the acceleration is relatively large, in order to decrease
the scatter of the results. Note that for the static friction case,
we could extract accelerations only for y’s between 1 and 3,
since the final penetration depth is small here.

First, we note that Fig. 29, parts b), d) and e) do not show
any obvious y-dependence. That is, for fixed u, a does not
appear to depend on y. By comparison of the results, we see
however that there is a strong influence of friction. Only the
frictionless and kinetic friction lead to approximate power-law
scaling, a ∝ uk, at least for the parameters considered here.
As seen in Figs 29b) and d), the fitting exponent, k, is smaller
than the proposed value k = 2 [7, 10, 13]; for the friction-
less case, we find a best fit with k ≈ 1.4, and for the kinetic
friction case we find k ≈ 1 [3]. From the frictionless results
shown in Fig. 29b) it does appear, however, that the slope in-
creases with the depth, y, suggesting that different scaling may
be found at different depths. We conjecture that the parame-
ters and penetration depths considered here belong to the ‘in-
termediate range’ where there is no precisely defined scaling
regime [8].

Clearly, more work is needed to understand precisely the
nature of the forces determining impact dynamics, and their
dependence on the quantities such as the velocity of intruder
or its depth. In any case, at least from the point of view of a
comparison with physical experiments carried out, necessar-
ily, with frictional particles, the most relevant conclusion is
that the speed dependence of the force on the intruder may
be influenced strongly by the friction model for inter-granular
forces. As pointed out [10], this aspect of the problem is com-
plicated by the fact that most particle interaction laws include
velocity-dependent frictional damping, which may prevent us
from reaching generic answers regarding the speed depen-
dence of the force on an intruder.

Finally, we briefly compare our simulations with the avail-
able experimental results for the dependence of penetration on
the falling distance. In the experiments of Durian et al. [7], it
was found that the final penetration depth dependence can be
well fitted by D̄ ∝ H1/3, where H = h + y, and h is the falling
distance before impact. Other investigators have found some-
what different results, suggesting D̄ ∝ v [4, 8]. We have al-
ready briefly mentioned scaling of D̄ with v, see Fig. 8, where
we saw that approximately, D̄ ∝ v.

Figure 30 shows D̄ for a polydisperse, disordered system
(part a)), and for a monodisperse, ordered system, part b). We
find that for an impact on a polydisperse system, D̄ can be fit-
ted reasonably well by a power-law using an exponent which
is close (although typically a bit smaller) than 1/3. The main
deviation occurs for very small values of H, for which the pen-
etration depth is also very small. However, the quality of the
fit is not sufficient to distinguish between D̄ ∝ H1/3 scaling
shown here, or D̄ ∝ v, suggested by Fig. 8. We do not find a
significant influence of friction model here, aside from signif-
icantly smaller penetration depths for the frictional cases.

For impacts on a monodisperse, ordered system, we find
that the results are significantly different, in particular for the
frictional cases. There is no obvious scaling of the penetration
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(a)r = 0.2. (b)r = 0.0.

FIG. 30: (Color online) (Color online) Intruder’s final penetration
depth, D̄, versus H = h + y, where h is the falling distance. Here,
we show µ = 0.0 (red circles), µ = 0.5, kt = 0 (black squares), and
µ = 0.5, kt = 0.8 (blue diamonds). The parameters that are not varied
are as in Fig. 2.

depth with the total falling distance H. This result underscores
the fact that an ordered granular microstructure can have a sig-
nificant influence on the penetration process. Future research
should show the generality of this conclusion.
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