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We study a thermal engine model for which Newton’s cooling law is obeyed during heat transfer
processes. The thermal efficiency and its bounds at maximum output power are derived and dis-
cussed. This model, though quite simple, can be applied not only to Carnot engines but also to four
other types of engines. For the long thermal contact time limit, new bounds, tighter than what were
known before, are obtained. In this case,this model can simulate Otto, Joule Brayton, Diesel, and
Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle,
the same efficiency bounds as Esposito et al’s (see Phys. Rev. Lett. 105, 150603) are derived. In
both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working
medium during heating and cooling stages increases. This might provide instructions for designing
real engines.
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INTRODUCTION

It is well known that real thermal engines can not
achieve a perfect Carnot cycle. In a perfect Carnot cy-
cle,the two reversible isothermal stages must be infinitely
long and hence the Carnot engine has zero power output.
Although the Carnot thermal machine is impractical, it
gives an upper limit on the efficiency of all thermal en-
gines. Real thermal engines work at finite cycle times and
lose a finite amount of energy due to irreversible cycles
and other mechanisms such as mechanical friction, heat
leak and dissipative processes, etc. Searching for real
thermal engines which operate with optimal cycles has
caught a lot of attention. Here ”optimal” refers to differ-
ent optimizations of the heat engine, such as maximum
efficiency, maximum power, maximum entropy produc-
tion [1] and maximum work[2], etc. Of all these opti-
mizations, the efficiency of thermal engines at maximum
output power is a very practical problem and has been ex-
tensively studied in the literature [3–6]. The efficiency of
a quantum thermal engine operating at maximum power
has also recently been studied [7].

One of the most important results addressing the effi-
ciency of a thermal engine at maximum power was given
by Curzon and Ahlborn in 1975[4]. Here we briefly review
their result first. They made the assumption that dur-
ing the time that the working medium is in contact with
the hot(cold) reservoir, the amount of heat exchanged is
proportional to the temperature difference between the
working medium and the reservoirs, and also to the time
duration of the processes. During the heating process,
which lasts time t1, the amount of heat W1 absorbed by

the system is

W1 = k1t1(T1 − T1w), (1)

where T1 is the temperature of the heat source, T1w the
temperature of the working medium and k1 the heat
transfer coefficient of the heating process. Similarly,
for the cooling process which lasts time t2, the working
medium releases heat W2

W2 = k2t2(T2w − T2). (2)

Here T2 is the temperature of the cold source, T2w the
temperature of the working substance and k2 the heat
transfer coefficient of the cooling process. The reversibil-
ity of the adiabatic stages requires

W1

T1w
=

W2

T2w
. (3)

This leads to a relationship between t1 and t2. By maxi-
mizing the power output of the system, they derived the
famous Curzon-Ahlborn (CA) formula for the efficiency
of the thermal engines at maximum power as:

ηCA = 1−

√

Tc

Th

. (4)

The CA formula describes the thermal engines of power
plants very well [3, 4] and all the parameters here have
clear physical meanings. However, as pointed out by Ref.
[3], the CA formula is neither exact nor universal, and it
gives neither an upper bound nor a lower bound.
In Ref. [3], the authors considered a Carnot thermal

engine performing finite-time cycles. They assume that
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the amount of heat absorbed by the system per cycle
from the hot(cold) reservoir is given by

Qh = Th(∆S −
Σh

τh
+ ...), (5)

and

Qc = Tc(−∆S −
Σc

τc
+ ...), (6)

where Th,c is the temperature of the hot(cold) reservoir
and τh,c the time during which the thermal machine is in
contact with the hot(cold) reservoir. The second terms of
Eqs.(5) and (6) give the extra entropy production per cy-
cle when the system deviates from the reversible regime.
By maximizing the power, the efficiency of the engine
can be derived. The upper and lower bounds of the ther-
mal efficiency at maximum power are derived when the
ratio Σh/Σc approaches 0 and ∞ respectively. Esposito
et al’s result agrees well with the observed efficiencies of
thermal plants[3, 8]. However, why the working medium
releases less heat for longer contact times with the cold
reservoir as indicated by Eq.(6) was not explained. Also,
in both Ref.[3] and [4], only Carnot engines were studied.

In this paper,we study a more general and realistic
thermal engine model and derive its efficiency bounds at
maximum power. In both Ref.[3] and [4], the tempera-
ture of the working medium does not change during heat
transferring processes which is not true for either a re-
alistic system, such as thermal plants, or for other heat
engine models, such as the Otto, Joule-Brayton,Diesel,
and Akinson engines[9]. Instead, we simply assume that
heat transfer by a thermal engine is described by New-
ton’s law of cooling, thus it does not have to be isothermal
anymore. Furthermore, we also take into account the fact
that the thermal capacities of the working medium in re-
alistic systems usually could be quite different at high
and low temperatures[10]. This is also be motivated by
heat engines, such as the Diesel and Akinson type, for
which the thermal capacities are different at the two dif-
ferent thermal stages[9].

With these two modifications, we argue that our model
is not only more realistic, but also more general. Since
the efficiency and its bounds are derived by considering
heat exchange processes during which the temperature of
the working medium could be close to or far away from
isothermal, our model could simulate heat transferring
not only in Carnot engines, as in Ref.[3] and [4], but also
some other engines such as Otto, Joule-Brayton, Diesel,
and Akinson as described in Ref.[9].

The organization of the paper is as follows, we will
first describe Newton’s law of cooling and derive the cor-
responding entropy and heat formulas, and then study
the thermal efficiency at maximum power for two limit-
ing cases.

HEAT TRANSFER AND ENTROPY

PRODUCTION BASED ON NEWTON’S LAW OF

COOLING

We assume heat transferred by thermal engines in con-
tact with a heat source is described by Newton’s law of
cooling:

dQ

dt
= cm

dT

dt
= hA(Ts − T ), (7)

where c is the heat capacity, m medium mass, T medium
temperature, Ts heat source temperature, h heat trans-
fer coefficient, and A contact area. For convenience, we
denote hA by k. Though Newton’s law of cooling is quite
simple, many other heat transfer laws can be simplified
to it if the temperatures of the objects are high while
the temperature difference between them is small. Based
on this assumption, we consider a thermal engine work-
ing between hot and cold reservoirs at temperatures Th

and Tc respectively, and the initial temperature of the
working medium is Th0(Tc0) at the beginning of the heat-
ing(cooling) stage. The solution to Eq.(7) gives the tem-
perature of the working medium at time t:

T (t) = Th+(Th0−Th)e
−

kht

chm = Th+(Th0−Th)e
−

t
Σh , (8)

where Σh = chm/kh. Assuming that the time during
which the working medium is in contact with the high
temperature source is τh, the entropy produced during
the heating process can be evaluated straightforwardly
as:

∆Sh = −

∫ τh

0

dQ

T (t)
= chm ln

Th − xe
−

τh
Σh

Th0
, (9)

where x = Th − Th0. The heat exchanged between
the working medium and the high temperature source
is given by

Qh =

∫ τh

0

kh(Th−Th0)e
−

t
Σh dt = chmx(1−e

−

τh
Σh ). (10)

Here and from now on we take the convention that Q > 0
means absorbing and Q < 0 releasing heat. Similarly, the
entropy production and heat exchange of the working
medium during the cooling process are given by

∆Sc = ccm ln
Tc + ye−

τc
Σc

Tc0
, (11)

Qc = −ccmy(1− e−
τc
Σc ), (12)

where y = Tc0−Tc and Σc = ccm/kc. After a thermody-
namic cycle, the system returns to its initial state, and
the total entropy change of the working medium should
be zero ∆Sh +∆Sc = 0 [4], which leads to

ln [(
Tc + ye−

τc
Σc

Tc0
)cc(

Th − xe
−

τh
Σh

Th0
)ch ] = 0. (13)
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By noting that Th0 = Th−x, Tc0 = Tc+y and by defining
γ ≡ ch/cc, Eq.(13) is reduced to

(
Tc + ye−

τc
Σc

Tc + y
)(
Th − xe

−

τh
Σh

Th − x
)γ = 1. (14)

The power output and the efficiency of the thermal engine
are given by

P =
Qh +Qc

τh + τc
, (15)

η = 1 +
Qc

Qh

. (16)

Generally, the efficiency ηm at maximum power output
can be derived using the constraint of Eq.(14). However,
Eq.(14) is a transcendental equation which can not be
solved analytically. In what follows we will focus our
discussions on two special cases.

EFFICIENCY AND ITS BOUNDS IN TWO

SPECIAL CASES

Case I: Long contact time limit: τ/Σ → ∞
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Figure 1: (Color online) A comparison of upper and lower
bounds for the long contact time limit between this work and
[3] . The black dot-dashed line denotes the CA efficiency.
The red dashed lines denote the upper and lower bounds of
the thermal efficiency derived in Ref. [3]. The orange solid
lines denote the bounds derived in this paper.

In this case, the contact time is long enough that the
working medium can exchange heat sufficiently with the
reservoirs. Therefore the final temperature of the work-
ing medium is close to the heat reservoir and quite dif-
ferent from its initial temperature. Numerically, when
τ/Σ ∼ 5, we have |T − Th0|/|Th − Th0| ∼ 0.007 and
|T − Tc0|/|Tc − Tc0| ∼ 0.007. Thus, when τ/Σ is suffi-
ciently large, which is supposed to be the case studied in

Ref.[3], exp (−τ/Σ) can be safely ignored, and Eq.(14) is
reduced to

(
Tc

Tc + y
)(

Th

Th − x
)γ = 1. (17)

By plugging Eq.(17) into Eq.(10) and (12), using Eq.(15)
then the output power is given by

P = m
chx− ccTc[(

Th

Th−x
)γ − 1]

τh + τc
. (18)

Let ∂P/∂x = 0, P is maximized when

x = Th[1− (
Tc

Th

)
1

1+γ ]. (19)

Therefore, the efficiency at maximum power is given by

ηm = 1−
1

γ
[

1− Tc

Th

1− ( Tc

Th
)

1
1+γ

−1] = 1−
1

γ
[

ηc

1− (1− ηc)
1

1+γ

−1].

(20)
From the above expression we see that ηm decreases as γ
increases. For the symmetric dissipation in which γ = 1,
ηm becomes

ηm = 1−

√

Tc

Th

. (21)

Interestingly, the CA efficiency is recovered though the
situation is quite different. Expanding ηm in series of ηc,
we have

ηm =
ηc
2

+
1

12
(1 +

1

1 + γ
)η2c +O(η3c ). (22)

The coefficient of the second order term lies between 1/12
and 1/6, while in Ref.[3] this term is between 0 and 1/4
which indicates a tighter bound here . The lower and
upper bounds of ηm in this case are given by

1 +
ηc

ln (1− ηc)
≤ ηm ≤ 1 +

(1− ηc) ln (1− ηc)

ηc
. (23)

A comparison of the upper and lower bounds for the long
contact time limit between this work and results derived
in Ref.[3] is shown as FIG.1. We see that the limits de-
rived here give much tighter bounds than those derived
in Ref.[3].
We emphasize again that our model does not only ap-

ply to Carnot engines. Since the final temperature of the
working medium after heat exchange can be quite differ-
ent from its initial temperature, it is not necessarily an
isothermal process and thus the engine does not need to
be a Carnot type engine. It can also simulate the en-
gines described in Ref.[9], if we take ch = cc = cv, it is
the Otto engine, ch = cc = cp, the Joule-Brayton engine,
ch = cp, cc = cv, the diesel engine and ch = cv, cc = cp,
the Akinson engine. We can recover all the thermal ef-
ficiencies at maximum power derived in Ref.[9]. Cor-
respondingly, the bounds derived in this section should
apply to those four types of engines mentioned above in
practical conditions.
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Case II: Short contact time limit: τ/Σ → 0

In this case, the heating and cooling processes are both
short. Therefore the final temperature of the working
medium after transferring heat is very close to its initial
temperature. This is approximately what was studied in
Ref.[4] where temperature of the working medium does
not change during heat transfers. Numerically, one can
estimate that if τ/Σ ∼ 0.1, then |T−Th0|/|Th−Th0| ∼ 0.9
and |T − Tc0|/|Tc − Tc0| ∼ 0.9. We solve Eq.(14) by
expanding it as series of the infinitesimal variable (τ/Σ)
and matching both sides of the equation order by order
(We always keep the same order of τh/Σh and τc/Σc).
As τ/Σ → 0, to the zeroth order of τ/Σ, Eq.(14) simply
gives 1 = 1 which is trivial. To the first order of τ/Σ,
Eq.(14) gives

γx τh
Σh

Th − x
=

y τc
Σc

Tc + y
. (24)

Now the amounts of heat exchanged by the system during
the heating and cooling processes are given by

Qh = chmx
τh
Σh

, (25)

Qc = −ccmy
τc
Σc

. (26)

The above equations agree with the fundamental equa-
tions listed at the beginning of Ref. [4]. Thus if we con-
tinue our straightforward calculation, we simply recover
the same results in Ref. [4], including the CA efficiency.
Now, we continue to expand Eq.(14) to the second order
of τ/Σ, we obtain another simple relation

y

x
= γ

Tc

Th

(27)

Combining this with Eq.(24), we get

τc
Σc

=
Th + γx

Th − x

τh
Σh

(28)

To obatian the expression for the power output P , plug
Eqs.(27) and (28) into Eq.(15), and expand the expres-
sions of Qh and Qc to the first order of τ/Σ again, we

have

P =
chmx(1 − Tc(Th+γx)

Th(Th−x) )

Σh + (Th+γx)Σc

Th−x

. (29)

P is maximized by letting ∂P/∂x = 0. Note 0 < x < Th

and x < γTc, the unique allowed solution of x is given by

x =
[
√

(TcΣh+ThΣc)(1+γ)
(Th+γTc)(Σh+Σc)

− 1]Th

γΣc−Σh

Σh+Σc

. (30)

Therefore the thermal efficiency at maximum power is
given by

ηm = 1−
Tc

Th

γΣc−Σh

Σh+Σc
− γ + γ

√

(TcΣh+ThΣc)(1+γ)
(Th+γTc)(Σh+Σc)

γΣc−Σh

Σh+Σc
+ 1−

√

(TcΣh+ThΣc)(1+γ)
(Th+γTc)(Σh+Σc)

. (31)

By defining β = kh/kc, and using the relation ηc =
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Figure 2: (Color online) A comparison of Eq.(34) (red solid
line) with CA efficiency (black dot-dashed line).

1− Tc/Th, ηm can be expressed as

ηm = 1− γ(1− ηc)

√

[β + γ(1− ηc)](β + γ)−
√

[1 + γ(1− ηc)](1 + γ)

β
√

[1 + γ(1− ηc)](1 + γ)−
√

[β + γ(1− ηc)](β + γ)
. (32)

Moreover, ηm can be expanded in a series of ηc as

ηm =
1

2
ηc +

1

8
(

1

1 + γ/β
+

1

1 + γ
)η2c +O(η3c ). (33)

The coefficient of the first order term of ηm is 1/2, and
the coefficient of the second order term lies in the range
between 0 and 1/4. In the symmetric case where β = 1
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and γ = 1, we have

ηm =
ηc(2 − ηc)

4− 3ηc
. (34)

When expanding as a series in ηc, the coefficient of the
second order term is 1/8. Those results agree with the
expansion of CA efficiency [3]. To the third order of
ηc, the difference of ηm from ηCA is η3c/32 + O(η4c ). A
comparison between ηm and the CA efficiency and our
result for the symmetric case is shown in FIG.2.
Now, we estimate the bounds of ηm. In the limits

γ = 0 or γ = ∞ while β is finite, we recover the lower
and upper limits of ηm given in Ref. [3].

ηc
2

≤ ηm ≤
ηc

2− ηc
. (35)

Interestingly our bounds on ηm are obtained in the short
contact time limit (τ → 0) while the same results were
obtained in the long contact time limit (τ → ∞) in Ref.
[3]. It is easy to verify that ηm decreases as γ increases,
but increases as β increases. This means the larger the
ratio between heat capacities of the working medium at
the hot and cold reservoirs, the lower the efficiency at
maximum output power.

CONCLUSIONS

In summary, we presented an analysis of thermal ef-
ficiency and its bounds at maximum power for thermal
engines for which the heat transferring processes are de-
scribed by Newton’s law of cooling. In the long contact
time limit, CA efficiency is recovered for symmetric ther-
mal capacity and two tighter bounds on the thermal effi-
ciency are derived. The model can simulate Otto, Joule
Brayton, Diesel and Atkinson engines in the long contact
time limit. In the short contact time limit, we recover
the famous CA efficiency in the first order calculation.

When we proceed to the second order calculation, we
derived a different efficiency formula and recovered the
efficiency bounds at maximum power given by Espositi,
et al. In both limits, the thermal efficiency is found to
decrease as γ = ch/cc increases.This might be helpful for
choosing a suitable working medium and working tem-
peratures when designing a thermal engine whose heat
transfer can be approximated by Newton’s law of cooling.
Other cases such as those associated with intermediate
thermal contact time and different heat transfer laws are
being investigated further.
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