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Abstract. Computer simulation of reactive transport in hetero-

geneous systems remains a challenge, due to the multi-scale na-

ture of reactive dynamics and the non-Fickian behavior of trans-

port. This study develops a fully Lagrangian approach via particle

tracking to describe the reactive transport controlled by the tem-

pered super- or sub-diffusion. In the particle-tracking algorithm,

the local-scale reaction is affected by the interaction radius be-

tween adjacent reactants, whose motion can be simulated by the

Langevin equations corresponding to the tempered stable mod-

els. Lagrangian simulation results show that the transient super-

diffusion enhances reaction by enhancing the degree of mixing of

reactants. The proposed particle-tracking scheme can also be ex-

tended conveniently to multi-scaling super-diffusion. For the case

of transient sub-diffusion, the trapping of solutes in the immobile

phase can either decrease or accelerate the reaction rate, depending

on the initial condition of reactant particles. Further practical ap-

plications show that the new solver efficiently captures bimolecular

reactions observed in laboratories.

1. Introduction

Efficient simulation of diffusion-controlled chemical reactions in nat-

ural systems (such as heterogeneous geological media) remains a chal-

lenge, as reviewed recently by Dentz et al. [1]. Firstly, reactive trans-

port is a multi-scale process, including the pore-scale process of reac-

tions and the concurrent transport process that evolves with the scale

of media [2]. The multi-scale process of reactive transport challenges
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the application of standard Eulerian solvers that are typically valid at

the macroscopic or Darcy scale, since they cannot capture the incom-

plete mixing of reactants at the microscopic scale [3, 4, 5], unless the

reaction rate can be upscaled appropriately [6].

The second difficulty in modeling reactive transport is due to the

non-Fickian behavior of transport in real systems. Transport pro-

cesses in heterogeneous or even some “homogeneous” media are usually

anomalous, whose behavior cannot be simulated efficiently by classical

transport models assuming Fickian diffusion [7, 8]. Indeed, dispersion

of aqueous tracers in natural systems including heterogeneous soils,

aquifers, and rivers, is typically found to be non-Fickian [9, 10, 11].

Non-Fickian transport may be characterized by non-Gaussian leading

or trailing edges of a plume emanating from a point source, or nonliear

growth of the centered second moment. If the growth rate is faster

than linear, the transport is anomalous super-diffusion; slower than

linear growth rate is sub-diffusion. Super-diffusion is well-known to

be described efficiently by the space fractional-order partial differen-

tial equation (PDE) [7], and sub-diffusion can be captured by the time

fractional PDE [12].

This study develops numerical algorithms to simulate reactive trans-

port through heterogeneous systems, where the anomalous transport is

described by the generalized, space or time fractional PDE. Lagrangian

numerical solvers are selected because they show promising advantages

in simulating the interaction between reaction and transport [13, 14],

due to the discrete nature of particles in the typical Lagrangian solver

[15, 16]. The Lagrangian approach is a downscaling technique that can

characterize both reactions and transport at the same scale, and it is

expected to overcome the above two computational difficulties. For

description simplicity, we focus only on reactive transport in porous

media. The resultant numerical method can be extended to similar

physical processes in other media (such as reactions in the gas phase).

The rest of the paper covers methodology development, numerical

result analysis and validation, and real-world applications. In Sec. 2,

the irreversible and reversible bimolecular chemical reaction combined
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with the transient super-diffusion is modeled by a Lagrangian frame-

work. Numerical results are compared to and validated by known kinet-

ics of reactions. The numerical method can be extended conveniently

to multi-dimensional transport processes. In Sec. 3, additional steps

of particle-tracking algorithms are added to capture chemical reactions

combined with the transient sub-diffusion, where particles experience

multiple status (i.e., mobile versus immobile status). In Sec. 4, the

applicability of the resultant particle-tracking schemes is checked sys-

tematically against laboratory measurements of bimolecular reactions.

Future extension of the Lagrangian solver is then discussed briefly in

Sec. 5. Conclusions are drawn in Sec. 6. The computer generation of

tempered stable random variables, which is critical to the Lagrangian

solver developed in this study, is discussed in Appendix A. In addi-

tion, to cross-verify the Lagrangian simulation of conservative tracer

transport (representing the difference between the two reactants), the

implicit Eulerian finite difference approximation for the space and time

tempered fractional PDE is developed in Appendix B. Two important

extensions of the computational approach are also discussed, including

the Lagrangian scheme with a nonlinear forward reaction probability

in Appendix C and the particle-tracking simulation of the coupled re-

action and subdiffusion in Appendix D.

It is also noteworthy that our investigation of reactive transport may

be of interest in chemistry, since reaction is one of the fundamental con-

cepts in chemistry. The major focus of this work, however, is the devel-

opment of Lagrangian description of the dynamic process built upon

the Langevin equation and the time-subordination analysis, which be-

long to the areas of computational and statistical physics. The result

of this work may be used not only by chemists, but also by other com-

munities such as hydrologists and engineers. For the convenience of

readers without chemical background, in the following we explain the

basic chemical terms used in the analysis.

2. Lagrangian simulation of bimolecular reaction

controlled by the tempered super-diffusion

Chemical reactions combined with super-diffusive transport are con-

sidered first. To illustrate the physical process, we build the continuum
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model. The space fractional-order PDE [7, 17, 18] can efficiently cap-

ture super-diffusive transport of nonreactive tracers observed in com-

plex, natural geological formations, as reviewed and demonstrated fur-

ther by Zhang et al. [12]. The space tempered stable model [19, 20, 21]

is the logic extension of the standard fractional-order PDE to capture

the convergent spatial moments and the natural cutoff of power-law

distributions present in real physical systems. The model describes the

transition from super-diffusion to asymptotic, normal diffusion limits

over time. The standard fractional-order PDE and the classical dif-

fusion equation are two end-members of the space tempered stable

model. The following fractional-order, advection-dispersion-reaction

(ADR) equation may describe the elementary, bimolecular second-

order reversible reaction A + B ⇋ C undergoing tempered super-

diffusive transport:

∂[A]

∂t
= −vA

∂[A]

∂x
+DA

∂α, λ[A]

∂xα, λ
−K∗

f [A][B] +K∗
r [C] ,(1a)

∂[B]

∂t
= −vB

∂[B]

∂x
+DB

∂α, λ[B]

∂xα, λ
−K∗

f [A][B] +K∗
r [C] ,(1b)

∂[C]

∂t
= −vC

∂[C]

∂x
+DC

∂α, λ[C]

∂xα, λ
+K∗

f [A][B]−K∗
r [C] ,(1c)

where vi [LT
−1] is the mean flow velocity, Di [L

αT−1] is the macro-

scopic dispersion coefficient (i = A, B, C denotes reactant A, reactant

B, and product C, respectively), K∗
f [M−1L3T−1] and K∗

r [T−1] are

the upscaled, forward and backward kinetic coefficient of reaction, re-

spectively, and [A], [B] and [C] [ML−3] denote the concentration of

A, B, and C, respectively. The operator ∂α, λ

∂xα, λ denotes the tempered

fractional derivative [19, 20]. For example:

(2)
∂α, λ[A]

∂xα, λ
= e−λx∂

α
(

eλx[A]
)

∂xα
− αλα−1∂[A]

∂x
− λα[A] ,

where α [dimensionless] is the order of the space fractional derivative,

and λ [L−1] is the truncation parameter in space. The parameters α

and λ can be species dependent. When λ → 0 (i.e., no tempering), the

ADR model (1) reduces to the one considered by Bolster et al. [22].

Here the bimolecular reaction means the elementary reaction where two
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molecules (A and B) collide and react with each other. The second-

order reaction means that the sum of the power in the concentration

term in the rate equation is equal to 2.

Note that the continuum, averaged concentration model (1) merges

the mixing at local scale (where reactions occur) and the spreading at

the Darcy scale [2]. In other words, the macroscopic chemical behavior

is described by means of a kinetic reaction rate [6]. Therefore, the rate

coefficients K∗
f and K∗

r must be obtained by upscaling Kf (the mi-

croscopic forward rate coefficient) and Kr (the microscopic backward

rate coefficient), respectively. How to efficiently upscale the rate co-

efficients remains a challenge, if not impossible. The fact, however, is

that Kf (or Kr) can be measured conveniently in the laboratory. This

discrepancy motivated us to develop alternative, efficient Lagrangian

solvers by downscaling the transport, so that there is no need to up-

scale chemical reactions and the laboratory measurement of Kf can

be used directly. Similar downscaling approaches have been proposed

recently, by focusing on the Fickian diffusion [3, 23, 24] or the time

nonlocal transport process [13, 14]. The Lagrangian simulation of re-

active transport with the tempered super-diffusion or the sub-diffusion

with mobile/immobile phases discussed below remains unknown.

In the following we consider two common systems - the closed system

and the open system, where the Lagrangian simulation of chemical

reactions can differ slightly. The closed system represents a bounded

domain with a constant volume. It is filled with reactants. Analytical

solutions for reactive dynamics had been derived for the assumption

of perfect mixing of reactants (or instantaneous equilibrium where the

reaction reaches a state of balance instantaneously when one reactant

particle A meets any reactant particle B), providing background to

compare with the Lagrangian solutions of reaction rate.

In the open system considered in this study, there is no overlap

between different reactants at the beginning and the volume of mixed

reactants can increase with time. In laboratory experiments of bimolec-

ular reactions [4, 5, 25], the two reactants A and B typically have a

sharp contact initially. One reactant was usually introduced separately

into the saturated porous medium (i.e., sand column) filled with an-

other reactant. This common case is an open system filled with initially
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non-overlapping reactants. The open system is practically important

since it provides the experimental data to check the applicability of the

Lagrangian simulator.

2.1. Particle tracking algorithm development. To efficiently

characterize the dynamics of chemicals undergoing super-diffusive, re-

active transport, there are four main steps of the Lagrangian solver

discussed in the following four subsections. The backward reaction,

the displacement of each species, and the forward reaction, are simu-

lated separately. The similar separation was also proposed by Zhang

[24] for reactive transport with Fickian diffusion.

2.1.1. Step 1: Probability-based approximation of the backward reaction

C → A+B. The backward reaction probability Pb is [24]

(3) Pb =
|∆[C(t)]|
[C(t)]

= Kr ∆t ,

where ∆t (0 < ∆t < 1/Kr) is the time step, and ∆[C(t)] denotes the

change in concentration of product C during the small time step ∆t.

If ∆t is small enough, the backward probability (3) results in the rate

equation for backward reaction:

(4)

∣

∣

∣

∣

∂[C(t)]

∂t

∣

∣

∣

∣

≈ Kr [C(t)] .

In the particle tracking scheme, a uniform [0 1] random number

W [dimensionless] is generated and compared with Pb. If W > Pb,

then no backward reaction can occur; if W ≤ Pb, the product particle

transforms to reactants.

2.1.2. Step 2: The Langevin equation based simulation of the tempered

super-diffusive transport for each species. We then apply the following

Langevin equation to describe the random, tempered super-diffusive

movement of reactants (and the mobile product) during the i-th time

step [26]:

(5) dXi = v ∆ti +D αλα−1 ∆ti + dξi ,

where dξi [L] is a tempered α-order stable random variable repre-

senting the random dispersion noise. dξi can be generated using

the method discussed in Appendix A. The corresponding governing
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equation for solute displacement is a spatially tempered, fractional

advection-dispersion equation (FADE) [26]:

(6)
∂P (x, t)

∂t
= −v

∂P (x, t)

∂x
+D

{

e−λx∂
α[eλxP (x, t)]

∂xα
− αλα−1∂P (x, t)

∂x
− λα P (x, t)

}

.

It is noteworthy that the Langevin equation (5) describes a micro-

scopic, random-walk process [7], while the continuum model (6) is the

scaling limit of the random walks [26, 27].

2.1.3. Step 3: Simulation of the forward reaction A + B → C con-

trolled by interaction radius R. There are different ways to simulate

the forward reaction, where the most efficient one is to use the follow-

ing probability P ⋆
f for each pair of reactants [24]:

(7) P ⋆
f (t) = 1− |yA,i(t)− yB,j(t)|

R
,

where yA,i(t) and yB,j(t) [L] denote the position of the i-th A particle

(1 ≤ i ≤ NA(t)) and the j-th B particle (1 ≤ j ≤ NB(t)), respec-

tively; NA(t) and NB(t) [dimensionless] are the remaining number of A

and B particles at time t, respectively; and R [L] denotes the interac-

tion radius which defines the maximum distance where two reactants

may collide and then react. In this manuscript we will check whether

the simple linear form (7) can generate the correct reaction rate, and

whether it is applicable in real-world applications. Other forms of P ⋆
f (t)

are certainly possible and will be discussed in Appendix C. Interested

readers may select the form they prefer.

Similar to Step 1, here another uniform [0 1] random number W ⋆ is

generated. If W ⋆ > P ⋆
f , then no forward reaction can occur; otherwise

A and B particles combine to produce a C particle. Therefore, if the

distance between A and B particles is larger than the interaction radius

R, P ⋆
f < 0 and hence no forward reaction can occur. When the two

different species are closer than R, the forward reaction will occur if

W ⋆ ≤ P ⋆
f . The resultant average forward probability P̄f(t) for all

reactants, as derived by Zhang [24], is

(8) P̄f (t) ≈
R

L/NA(t)
,
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where L is the length of the system (for the one-dimensional or 1-d

medium).

For the case of the closed system with well-mixed reactants, the

interaction radius should be the same as the one for Fickian transport

[24], since the rate equation for bimolecular reactions in a closed system

is not altered by the super-diffusive displacement of particles. Zhang

[24] found that the interaction radius (denoted as RC , where the suffix

“C” represents the closed system) can be predicted by

(9) RC =
Kf [A0] L∆t

N0
A

,

where [A0] is the initial concentration of A, andN0
A is the initial number

of A particles at time t = 0.

To see how the forward reaction probability P̄f (t) (8) relates to the

interaction radius RC , we can define this probability as the relative

variation of particle numbers or concentration for reactant A:

(10) P̄f(t) =
∆NA

NA(t)
=

∆[A(t)]

[A(t)]
,

where ∆[A(t)] is the change in concentration of A. The relative change

of concentration, as expressed by ∆[A(t)]/[A(t)] in (10), can also be

related to the volume occupied by reactant particles [28, 29]

(11)
∆[A(t)]

[A(t)]
=

Vi

V
=

RC NA(t)

L
,

where V is the total spatial volume (which equals to the closed domain

size L in the 1-d case), Vi is the proportion of volume in V where A

interacts with B, and the interaction radius R accounts for the reaction

volume assigned to each reactant particle. Leading (11) into (10), we

obtain the forward reaction probability (8).

To see how the interaction radius RC takes the form of (9), we il-

lustrates the forward reaction with equivalent initial concentrations

between A and B (i.e., [A0] = [B0]). The well-known rate equation for

this case is

(12)
∂[A(t)]

∂t
= −Kf [A(t)]

2 .
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Substituting (12) into (11) results in

(13) RC =
∆[A(t)]

[A(t)]

L

NA(t)
≈ Kf [A(t)] L∆t

NA(t)
.

Because [A(t)]/NA(t) = [A0]/N
0
A (since each particle contains the same

amount of mass), the interaction radius defined by (13) is the same as

(9).

2.1.4. Step 4: Iteration. There are two loops in the above Lagrangian

scheme. The outer loop iterates time, and the inner loop calculates

the reactive transport for each particle by iterating on the above three

steps. In the following we test and apply the 4-step Lagrangian scheme.

2.2. Validation and numerical examples. We first check exten-

sively the above Lagrangian solver by evaluating the concentration dif-

ference between A and B, denoted as [u(x, t)] = [A(x, t)] − [B(x, t)].

The governing equation for [u(x, t)] is the difference between Eq. (1a)

and (1b). Therefore, [u(x, t)] can be regarded as the concentration of

a conservative tracer (if vA = vB and DA = DB), where the transport

is governed by the tempered stable model (6). For cross-verification,

we also develop the Eulerian solver (Appendix B) to approximate the

model (6) and its extension. This provides an indirect way to check the

Lagrangian solver proposed above. Numerical examples shown in Fig.

1 reveal that the Lagrangian solution generally matches the Eulerian

solution, although the former contains more noise due to the discrete

nature of particle-based approaches.

We then apply the above Lagrangian framework to evaluate the

chemical kinetics. One example is shown in Fig. 2. The decline of

mass for reactant A is affected by the scale index α (Fig. 2a) and the

truncation parameter λ (Fig. 2b). For the case of Fickian diffusion

(corresponding to α → 2 or α = 1.99 in Fig. 2), the normalized con-

centration [A(t)]/[A0] grows as t
−1/4 at later time. With the decrease

of α, reactant particles have a higher probability to experience large

jumps, resulting in an enhanced mixing between reactants. Or in other

words, particles of different species have a higher chance to collide (or

“meet”) and then react. The decline of [A(t)]/[A0] therefore acceler-

ates at later time, as shown by Fig. 2a. Similar behavior is observed
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Figure 1. (Color online) Snapshots for irreversible re-
action A+B → C. The displacement of particles follows
the space FADE (6). (a) Lagrangian solution of the snap-
shot for reactants [A] and [B], and product [C]. Model
parameters are: α = 1.5, λ = 1× 10−7, and t = 100. (b)
Snapshots of [A] − [B] at time t = 100 and t = 1000,
respectively. (c) The influence of scale index α on the
snapshot of [A] − [B]. (d) Influence of the truncation
parameter λ on the snapshot of [A] − [B]. In (b)∼(d),
symbols are the Lagrangian solutions, and lines are the
implicit Eulerian finite difference solutions.

when the truncation parameter λ decreases (Fig. 2b), since a small λ

represents relatively larger displacements for particles.

Numerical examples also show that the simulated reaction rate in-

creases with the increase of particle numbers (denoted as np) and/or

the dispersion coefficient (D). This behavior is consistent with the con-

clusion drawn by Benson and Meerschaert [3]. As shown in Fig. 2, the

Lagrangian solution of [A(t)] with a large np and/or D can be close

to the analytical solution for perfect mixing. Therefore, the chemical

reaction with Fickian diffusion and the chemical reaction with perfect
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(a) Well-mixing, various index α

α      D     np     λ
2.0    0.01   5K      0

1.99  0.01   5K    10-7

1.5    0.01   5K    10-7

1.2    0.01   5K    10-7

1.5    0.05   15K  10-7

α      D     np     λ
2.0    0.01   7K      0

1.6    0.01   7K    5×10-1

1.6    0.01   7K    1×10-6

1.6    0.15   20K  1×10-3

Figure 2. (Color online) Mass evolution for the bi-
molecular irreversible reaction A + B → C in a closed
system, where the transport of chemicals is described by
the spatially tempered, fractional advection-dispersion
equation (6). Symbols are the Lagrangian solutions, and
the solid line is the analytical solution assuming per-
fect mixing. (a) shows the influence of scale index α
on the mass decline of reactant A. Other model pa-
rameters are: Kf = 50, and [A0] = 0.005. Note that
the solution of α = 1.99 is almost identical to the case
of the standard 2nd-order advection-dispersion equation
(ADE) (i.e., α = 2 and λ = 0 in (6)). (b) shows the
influence of truncation parameter λ on the mass decline
of reactant A. Other model parameters are: Kf = 50
and [A0] = 0.005. Note that the solution of λ = 0.5 is
almost identical to the case of ADE.

mixing are the two bounds of chemical reactions with the tempered

super-diffusion.

Fig. 3 shows the case of a reversible reaction. The Lagrangian so-

lution tends to converge to the analytical solution assuming perfect

mixing. The concentration of reactant A becomes constant at later
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(b) Space fADE
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Figure 3. Mass evolution of reactant A for the re-

versible reaction A + B ⇋ C in a closed system, where
the transport model is ADE (a) or the space tempered
FADE (6) (b). The two lines are the analytical solutions
by assuming perfect mixing, where the grey line denotes
the reaction with the forward rateKf = 20 and the back-
ward rate Kr = 0.01, and the black line with Kf = 50
and Kr = 0.0001. The symbols are the Lagrangian solu-
tions, where “np” denotes the number of particles. The
other model parameters are: D = 0.1 and [A0] = 0.005.
In the space tempered FADE model (b), α = 1.8 and
λ = 1× 10−7.

time when the reversible reaction reaches dynamic equilibrium. In

the Lagrangian simulation developed above, the state of equilibrium

is characterized by similar number of particles undergoing backward

reaction (Step 1 in Subsec. 2.1.1) and forward reaction (Step 3 in Sub-

sec. 2.1.3) in the same time step, where the net reaction rate is close

to zero. Fig. 3 also shows that the tempered super-diffusion enhances

the reaction.

2.3. Extension to the open system. For the open system with

sharp-interface between reactants, the interaction radius (denoted as

RO, where the suffix “O” represents the open system) differs from (9)

or (13). It is because only the reactants around the sharp interface can

react, while the definition (9) or (13) assumes that all reactants in the

system can react (and hence every reactant particle can be assigned an

interaction radius).

Edery et al. [13, 14] treated the interaction radius as a constant that

can be fitted by measurements. This method can be adopted easily
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in the above Lagrangian scheme. One numerical example is shown in

Fig. 4b. Compared to Fickian diffusion (Fig. 4a), the leading edge of

the product C due to super-diffusion is apparent. The heavy leading

edge of the invading reactant A increases the reaction between A and

the displaced (background) reactant B. Hence, for the open system,

the tempered super-diffusive transport enhances reaction rate, similar

to that observed in the closed system.

The second method is to extend the following empirical formula for

interaction radius proposed by Zhang [24] for normal diffusion:

(14) RO(t) ≈
Kf [A0] L∆t

N0
A

L√
2Dt

Re ,

where RO(t) changes with time, and Re denotes the Reynolds number.

The term L/
√
2Dt accounts for the variation of the mixing volume

of reactants, and the Reynolds number captures the influence of flow

velocity on the interaction radius. For simplicity, we consider here

only the irreversible reaction. The spreading rate of plume for super-

diffusion differs significantly from normal diffusion. This motivates us

to update (14) to:

(15) RO(t) ≈
Kf [A0] L∆t

N0
A

L
√

Dα(α− 1)λα−2 t
Re ,

where
√

Dα(α− 1)λα−2 t is the variance of displacement for particles

governed by the space tempered PDE (6). When α = 2, (15) reduces

to (14).

The empirical formula (15) is used in the numerical example shown in

Fig. 4c. The solid line in Fig. 4c is the mixing zone between reactants

A and B, when there is no reaction. Fig. 4d shows that the peak

concentration of the mixing zone is half of the initial concentration for

reactants, similar to the case of Fickian diffusion (see [4]). The product

concentration is below this mixing zone, just as expected (because not

all reactants in this zone can react).

In real applications, RO can be used as either a constant or a time-

dependent variable (15). The former is more convenient, while the

latter contains variables with solid physical meanings. In the following

real applications (Sec. 4), we will test first the applicability of (15),

followed by a fitting parameter for RO if (15) fails.
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Figure 4. (Color online) Open system: the simulated
snapshot (symbols) for A, B and C, where the diffusion
is governed by the ADE (a) or the tempered space FADE
(6) ((b)∼(d)). In all cases, the common parameters are:
L = 60, Kf = 1, v = 0.6, D = 0.05, [A0] = [B0] = 0.02,
[C0] = 0, T = 50, time step dt = 1, and the particle
number is np = 400, 000. The dashed line in (a) and (b)
denotes the analytical solution by assuming perfect mix-
ing for the ADE model. In (c), the solid line denotes the
concentration of A and B in the mixing zone (without
reaction). In the tempered space FADE ((b)∼(d)), addi-
tional parameters are: α = 1.8 and λ = 0.0001. (a) and
(b) assumes the constant interaction radius R = 0.00007,
while (c) uses the empirical, time-dependent RO (15).

2.4. Extension to multi-dimensional super-diffusion. Real-

world transport processes can be multi-dimensional. The following

model describes the multi-scaling, tempered FADE [30]

(16)
∂

∂t
P (~x, t) = −v ∇P (~x, t) +D · ∇H

−1,~λ
M [P (~x, t)] ,

where D is the dispersion tensor, H−1 is the inverse of the scaling

matrix defining the order and direction of the space fractional deriva-

tives, M = M(θ) is the mixing measure specifying the probability of
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particle jumps in each direction θ, and ~λ defines the truncation pa-

rameter along each eigenvector of H. The operator ∇H−1,~λ
M denotes the

tempered multiscaling fractional derivative with the Fourier transform

F [∇H−1,~λ
M ] =

∫

(e−i~k·~x − 1 + i~k · ~x)e−~λ·
−−−−→
|S−1~x|φ(d~x) ,

where
−→|x| = (|x1|, |x2|, . . . , |xd|), φ(dy) is the Lévy measure with

φ(d~x) = r−2drM(dθ), ~x = rH θ and H = S Ho S−1 (where S and

Ho are eigenvector and eigenvalue matrices).

The vector Langevin approach developed by Zhang et al. [31] can

be used to approximate the vector model (16), where the relationship

between the weights of M(θ) and the eigenvectors of H describes the

dependence structure of the solute plume. This vector Langevin ap-

proach replaces Step 2 proposed in Subsec. 2.1.2, while the other steps

need not to be changed in the Lagrangian solver.

Fig. 5 shows one example of such extension. No other solution is

available for chemical reactions with vector fractional diffusion. Hence

the example shown in Fig. 5 can not be cross verified.

3. Lagrangian simulation of bimolecular reaction

controlled by the tempered sub-diffusion

The following time tempered fractional advection-dispersion equa-

tion proposed by Meerschaert et al. [21] captures the transient anoma-

lous diffusion:

∂CT

∂t
+ β e−st ∂γ

∂tγ
(est CT )− βsγCT = LxCT +m0 β g(t) δ(x) ,(17a)

∂CM

∂t
+ β e−st ∂γ

∂tγ
(est CM)− βsγCM = LxCM ,(17b)

where CT and CM denote tracer concentration in the total (mobile +

immobile) and mobile phases, respectively, γ (0 < γ < 1) [dimension-

less] is the scale index, Lx is the advection-dispersion operator, β [T γ−1]

is the capacity coefficient, δ(x) is the Dirac delta function, m0 [ML−3]

is the initial mass, g(t) [T−γ] denotes the memory function, and s [T−1]

denotes the truncation parameter in time. When s → 0 (i.e., no tem-

pering), model (17) reduces to the standard, fractal mobile/immobile
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Figure 5. (Color online) 2-d tempered super-diffusion
with reaction A + B → C: (a) The mixing measure for
reactant A and B, respectively. (b) The simulated parti-
cle clouds (i.e., the plume snapshot) at time t = 10. The
velocity is vx = 1, vy = 0. The dispersion coefficient is
D1 = D2 = 7 (where “1” and “2” denotes the jump di-
rection shown in (a)) for reactant A, and D1 = D2 = 7.5
for reactant B. The initial point source location for A
and B is (0, 0) and (30, 0), respectively. The truncation
parameter λ along the two directions (“1” and “2”) is
0.006 and 0.01, respectively. The interaction radius (of
a circle) is 2.
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model [12]

∂CT

∂t
+ β

∂γCT

∂tγ
= LxCT +m0 β g(t) δ(x) ,(18a)

∂CM

∂t
+ β

∂γCM

∂tγ
= LxCM ,(18b)

where the memory function g(t) = t−γ/Γ(1 − γ), Γ(·) is the Gamma

function, and ∂γ/∂tγ denotes the Riemann-Liouville fractional deriva-

tive of order γ. Hence the time tempered FADE model (17) contains

the standard model (18) as a special case.

In the following, we develop the Lagrangian solution for reactive

transport where the transport component is described by model (17).

The resultant Lagrangian solver may also be extended for other types

of time-fractional PDE, including model (18) or the classical time-

fractional derivative model [7]

(19)
∂γP (x, t)

∂tγ
= −v

∂P (x, t)

∂x
+D

∂2P (x, t)

∂x2
.

Also note that, strictly speaking, the time-fractional derivative models

do not produce pure sub-diffusion if the advection component domi-

nates [32]. However, model (17) describes the trapping of solute par-

ticles in immobile domains, representing a delayed transport. Hence,

for description simplicity, we name the resultant transport as a sub-

diffusive process, to keep consistent to the terminology used before

[12].

3.1. The closed system. For simplicity, this Subsec. considers a pure

diffusive process (which is also a sub-diffusive process) in a closed sys-

tem. Particles representing reactants stay in either mobile or immobile

phases, where the total time and the rate equation are the same as

those for normal diffusion. Therefore, the interaction radius follows

the same analytic solution (9).

A Lagrangian scheme is developed by extending the time-

subordination approach proposed by Magdziarz and Weron [33], as

shown in Fig. 6. It contains the following six major steps.

Step 1: Convert the operational time spent by each particle during

the j-th jump to the clock time via the following Langevin equation
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Figure 6. (Color online) Schematic process of the time-
subordination approach. The right-side of the vertical
axis shows the relationship between clock time t and
motion time m. The shaded and the blank areas rep-
resent mobile and immobile phases, respectively. tend
is the whole modeling time. The discretization of the
clock time t(m) can have a uniform interval dt (shown
by the vertical dotted lines), while the motion time m(t)
has a non-uniform interval dmk (shown by the horizon-
tal dotted lines). The left-side of the vertical axis shows
the particle trajectory corresponding to each motion time
ml (where l = 0, 1, · · · , L). The time-subordination ap-
proach shows that Y (ti) = X(ml).

[21]:

(20) dTj = dτj + dζj ,

where dTj denotes the clock (also called the physical or real) time,

dτj is the predefined operational time step (which can be a constant),

and dζj is a tempered γ-order stable random variable representing the

random amount of time a solute particle is trapped in the immobile

phase. The time-domain Langevin approach developed by Zhang et al.

[32] also leads to (20). The computer generation of dζj is similar to the

random number dξi used in the displacement (5) (see Appendix A for

details).

Step 2: Discretize the clock time dTj into a finer resolution with

a smaller real time step dt (see the horizontal axis in Fig. 6). Find
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the corresponding motion time ml for each real time point ti (see the

vertical axis in Fig. 6). The real time ti can be in a regular or irregular

mesh, corresponding to the output time.

Step 3: Simulate the displacement X(ml) during the operational time

ml for each solute particle A, B and C. Particle tracking schemes have

already been developed for Fickian diffusion [15] and super-Fickian

diffusion [31].

Step 4: Use the time subordination theory to obtain the particle

position at clock time ti [33, 32]:

(21) Y (ti) = X(ml) = X(Σk=l
k=1dmk) .

Step 5: At this clock time ti, simulate the reaction A + B → C,

using the same methodology developed for super-diffusive reactions

(see Subsec. 2.1.3).

Step 6: Repeat Steps 1 ∼ 5 till reaching the end tend.

Note that when dτj = 0 in the time-Langevin equation (20), the

above Lagrangian method simulates the forward reaction with trans-

port governed by the classical time-fractional model (19). A zero op-

erational time dτj implies instantaneous jumps [10], or mobile status

all the time [32]. Also note that the backward reaction can be added

before Step 1, to simulate the reversible reaction.

Examples of the above Lagrangian scheme are shown in Fig. 7. The

difference between concentration of A and B, as expressed by u(x, t) =

[A(x, t)]− [B(x, t)], represents a conservative tracer whose dynamics is

governed by the model (17). We first apply the Lagrangian scheme to

approximate the concentration of two reactants A and B. The resultant

solution [A(x, t)] − [B(x, t)] is then compared to the implicit Eulerian

solution for model (17) (see Appendix B). The two quite different

methods generate similar results, for various capacity coefficients β

(Fig. 7a,b), indices γ, and truncation parameters s (Fig. 7c,d).

We then evaluate the simulated reaction rate using the Lagrangian

solver. Fig. 8a shows the influence of γ on the decline of mass for reac-

tant A. For a smaller γ, there is a higher probability for long-waiting

times, decreasing the mobility of reactant particles. The mixing (or col-

lision) of reactants decreases accordingly, resulting in a smaller overall

reaction rate. When γ → 1 (i.e., γ = 0.99), the simulated reactive
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Figure 7. (Color online) Lagrangian solutions (sym-
bols) versus Eulerian finite difference solutions (lines)
for u(x, t) = [A(x, t)] − [B(x, t)], where the transport
of chemicals is described by the time tempered FADE
(17) with well-mixed reactants. Model parameters (that
are the same for all cases) are: space index α = 1.9,
v = 0.25, D = 0.1, [A0] = 0.00005, [B0] = 0.000025, at
time t = 200. (a) shows various capacity coefficients β.
Other model parameters are: time index γ = 0.25, and
time truncation parameter s = 0.01. (b) is the linear-
linear plot of (a). (c) shows two cases with different time
indices γ and time truncation parameters s. Other model
parameter is: β = 0.01. (d) is the linear-linear plot of (c),
to show the peak. Note that in (c), although γ = 0.25
is smaller (than γ = 0.5), this curve moves forward rela-
tively faster, due to the relatively larger time truncation
parameter (s = 0.1) than the other case (s = 0.01).

kinetics is similar to that described by the classical, 2nd-order ADE

(Fig. 8a). Note that in the numerical examples shown in Fig. 8a,

both the capacity coefficient (β = 0.1) and the truncation parameter

(s = 1 × 10−6) are relatively small. In the time tempered FADE (17),
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the time drift term ∂C/∂t dominates, especially for a small capacity

coefficient and truncation parameter. That is why the simulated reac-

tion rate with different γ can be similar at the short-time region (since

the impact of γ on particle waiting time has not significantly affected

particle dynamics yet).

Fig. 8b shows that the increase of the capacity coefficient β decel-

erates the mass decline rate of reactant A. This is because a large β

causes long waiting times, decreasing the mixing of reactants. In ad-

dition, Fig. 8c shows the influence of the truncation parameter s on

the mass decline of reactant A. As s increases, the long waiting times

decrease and the transition from the time tempered FADE (17) to as-

ymptotic diffusion is faster. That is why the reaction rate for a large

truncation parameter is similar to the 2nd-order ADE.

3.2. The open system. For the open system with a sharp interface

between reactants, the volume of the mixing zone is affected by non-

Fickian transport. There are two empirical methods to approximate

the interaction radius RO. First, the formula (14) can be used. The

second method is numerical, where we simulate solute particle motion

first, and then use the calculated spreading of plumes to modify the

mixing zone volume in (14).

Examples of the first method are shown in Fig. 9. The trailing edge

of the displaced reactant, B, and the product C, is apparent. The

trailing edge of reactant B causes the delay of B particles behind the

mean displacement, while the invading reactant A has higher oppor-

tunities to meet and react with the delaying B particles. Therefore,

the tempered sub-diffusion in the open system can enhance chemical

reactions, which is opposite to that in the closed system.

The above particle schemes can be refined conveniently to describe

more complex reactions. For example, we can assume that only mobile

particles can react. A similar assumption was used by Sanchez-Vila

et al. [6], who showed that the immobile particles cannot be accessed

by mobile particles. The simulation result is shown in Fig. 10. When

only mobile reactants can react (in other words, a smaller number of

particles can react), the overall reaction rate can decrease (as shown

by the peak of product C in Fig. 10a and 10b), while the peak of

product snapshot moves faster downstream. In addition, the hold-up
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Figure 8. (Color online) Solutions of the bimolecular
reaction, where the transport of chemicals is described
by the time tempered FADE (17), for the case of well-
mixed reactants. The solid line is the analytical solution
by assuming a perfect mixing at all times. (a) shows the
influence of scale index γ on the evolution of reactant
mass decline. The other model parameters are: β = 0.1
and s = 0.000001. (b) shows the influence of capac-
ity coefficient β on [A(t)]. The other model parameters
are: γ = 0.5 and s = 0.000001. (c) shows the influence
of truncation parameter s on [A(t)]. The other model
parameters are: γ = 0.3 and β = 2.0. In all cases,
the following parameters are used: [A0] = [B0] = 0.005,
[C0] = 0, v = 0, and D = 0.01.
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Figure 9. (Color online) Open system: the simulated
snapshot (symbols) for A, B and C, where the diffusion
is governed by the tempered time FADE (17). Model
parameters are: L = 60, γ = 0.5, β = 0.02, s = 0.00001
(truncation parameter in time), Kf = 0.5, v = 0.6, D =
0.05, [A0] = [B0] = 0.02, [C0] = 0, T = 50, time step
dt = 1, and the particle number is np = 400, 000. The
dashed line denotes the analytical solution by assuming
perfect mixing for the ADE model. The solid (green) line
denotes the concentration of A and B in the mixing zone
(without reaction). (b) is the linear-linear plot of (a).

of immobile mass near the injection point (i.e., x = 0) for reactant B

becomes obvious, since the immobile B particles cannot move or react

(Fig. 10b). Also note that, if reactions occur only between mobile

particles, the clock time defined by the rate equation is the mobile

time too. Therefore, the interaction radius should be increased by a

factor 1/(1 + β) (which is the average time that the particle spends in

motion in a unit clock/total time), although this increase is relatively

small for the case shown in Fig. 10 (where β = 0.1).
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Figure 10. (Color online) Open system: snapshots of
concentration for each chemical in each phase for the
tempered time FADE controlled bimolecular reactions.
In (a), particles in all phase can react; while in (b), only
particles in mobile phase can react. Model parameters
in both (a) and (b) are: γ = 0.5, β = 0.1, s = 0.00001,
v = 0.6, D = 0.05, T = 50, nstep=50 (the total number
of time steps), Kf = 50, [A0] = [B0] = 0.02, and the
number of particle B is 40000. The dashed line denotes
the initial concentration of reactants.

4. Applications: Lagrangian modeling of the bimolecular

reactive transport observed in the laboratory

We test the applicability of the above Lagrangian frameworks by

simulating bimolecular reactions observed in the laboratory by different

researchers. As mentioned above, the setup of laboratory experiments

of bimolecular reactions typically represents open systems, where one

reactant is injected into a sample column filled originally with another
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reactant. In this case, the interaction radius can be a fitting parameter,

or preferably, be determined using the empirical approach developed

above.

The first application is shown in Fig. 11. Raje and Kapoor [5]

injected 0.5 mM 1,2-naphthoquinone-4-sulfonic acid (NQS) solution

into a 18cm-long glass column packed with uniform glass beads repre-

senting a 1-d porous medium. The column was originally filled with

0.5 mM aniline (AN) solution. The second-order, irreversible reaction

between NQS and AN produces 1,2-naphthoquinone-4-aminobenzene

(NQAB). The measured reaction rate constant is Kf = 438 M−1s−1.

The seepage velocity V = 0.096 cm/s, the best-fit dispersion coefficient

is D = 0.03168 cm2/s, and the Reynolds number Re = 1.43. Raje and

Kapoor [5] fitted the measured breakthrough curve (BTC) for prod-

uct (see symbols in Fig. 11) by assuming instantaneous and complete

mixing (see the dashed line shown in Fig. 11). They found that the

best-fit result overestimates the measured reaction rate, since the ac-

tual reactants are not perfectly mixed in the porous media. Here we

first fit the measured BTC by assuming incomplete mixing controlled

by Fickian diffusion. The best-fit BTC matches well the measured

peak concentration (Fig. 11a), confirming Raje and Kapoor’s [5] con-

clusion that the actual mixing should be incomplete. The assumption

of normal diffusion, however, underestimates the heavy early arrival

(Fig. 11b). This failure motivates us to test the reaction with the tem-

pered super-diffusion developed in this study. The best-fit parameters

are: the scale index α = 1.92, the truncation parameter λ = 1 × 10−5

m−1, and the particle number N0
A = 12, 000. The best-fit index α is

close to 2, which we believe to be reasonable. A smaller α represents a

stronger heterogeneity of the media. Here the porous medium is made

of regular glass beads (with the same radius 1.5 mm), and therefore the

“heterogeneity” should not be as strong as in natural media. The other

parameters in (15), including Kf , [A0], L, D, and Re, are measured in

the laboratory. Results show that the Lagrangian solver for reactive,

tempered super-diffusive transport captures efficiently the early time

tail of the BTC for product (Fig. 11).

Fig. 12 shows the second application, using the measurements by

Gramling et al. [4]. A sodium EDTA solution (with concentration 0.02
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Figure 11. (Color online) Application Case 1: the mea-
sured product concentration (symbols) from Raje and
Kapoor [5] versus the model simulated concentrations
(lines). (b) is the log-log plot of (a). The dashed line is
the best-fit result assuming instantaneous and complete
(perfect) mixing between reactants A and B (see [5] for
details). “Normal diffusion” denotes the best-fit result
assuming Fickian diffusion [24]. “Superdiffusion” is the
best-fit result using the Lagrangian scheme built in Sec.
2, where the transport of reactants is the tempered super-
diffusion.

M) was displaced by a copper sulfate solute (with concentration 0.02

M) filled in a thin chamber, producing copper EDTA (CuEDTA2−) at

the interface. This is a second-order, bimolecular reaction. The snap-

shot of CuEDTA2− (shown by the red dots in Fig. 12) was observed.

Similar to the first application, here we find that the assumption of

complete mixing (shown by the dashed line in Fig. 12) over-predicts

the actual reaction rate. The best-fit incomplete mixing controlled by

Fickian diffusion matches well the peak concentration, but underesti-

mates both the leading and trailing tails. The leading edge of product

snapshot can be explained by the effect of tempered super-diffusion,

while the trailing edge may be described by the tempered sub-diffusion.
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Figure 12. (Color online) Application Case 2: the mea-
sured product concentration (red dots) from Gramling et

al. [4] versus the model simulated concentrations. (b) is
the semi-log plot of (a), to show the tailing. The dashed
line is the best-fit result assuming perfect mixing between
reactants A and B. The triangles denote the best-fit re-
sult using the Lagrangian approach where the transport
of reactants and product is assumed to be Fickian. The
solid line denotes the best-fit result using the Lagrangian
scheme built in this study, where the transport is the
tempered sub/super-diffusion.

This motivates us to simulate the reaction by assuming a combination

of super- and sub-diffusion, by combining the tempered super-diffusion

(see Step 2 in Subsec. 2.1.2) and the tempered sub-diffusion process

discussed above. Note that these two processes are independent, driven

by different hydraulic properties. The mixed super- and sub-diffusion

is not uncommon for transport through real media [12]. The simulation

result generally captures the two tails of the observed product snapshot

(Fig. 12b).
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The second reactive transport exhibits more anomalous behavior

than the first one. It might be due to the properties of the medium. In

the second laboratory experiment, the chamber is longer (L = 30 cm),

and it was filled with sand-sized (1.19-1.41 mm) grains of cryolite [4].

Compared to the glass beads used in the first experiment, the cryolite

sands have irregular shapes and a relatively wider size distribution,

tending to form relatively immobile domains (such as stagnant regions

that are separate from the main flow paths) [6] that can delay the

transport and reaction of reactants. This may explain the additional

trailing edge observed in the second experiment.

It is also noteworthy that the distinction between super-diffusion and

sub-diffusion is necessary. As implied by the above applications and

many others [12], the two anomalous diffusions can be independent and

driven by different mechanisms. Such distinction can also be useful in

real applications. For example, the super-diffusion model can describe

direction-dependent scaling rates (along for example fractures) (Fig.

5), while the sub-diffusion can characterize different solute behavior

in different phases (mobile or immobile). To our best knowledge, no

other reactive-transport code or numerical methodology has the same

capability as the one developed above.

5. Discussion

5.1. Future extension of the Lagrangian solver. The computa-

tional method developed in this study can be extended to capture

sophisticated transport affecting chemical reactions, such as the spa-

tial variation of velocity v and dispersion coefficient D. For example,

for nonreactive transport governed by the classical second-order ADE

with discrete v and D, efficient Lagrangian schemes were developed

by LaBolle et al. [15, 16]. The Lagrangian scheme developed in this

study can be combined with LaBolle’s code “RWHet” [34]. One pre-

liminary example is shown in Fig. 13, where the transport is governed

by the time tempered FADE model (17) and the interaction radius

is constant. Further extensions are needed to incorporate the space

tempered FADE (1) with variable parameters. In addition, the above

Lagrangian scheme can be extended to capture chemical heterogeneity,
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Figure 13. Reactive transport through a 2-d hetero-
geneous porous medium with space-dependent velocity
and dispersion coefficient. The transport is governed by
the time tempered FADE (17), while the displacement
of particles crossing discrete interfaces of transport pa-
rameters is treated by the code “RWHet” [34]. (a) The
hydrofacies model with 4 facies. The lines denote the
simulated hydraulic head. (b) The spatial distribution
of particles for bimolecular reaction A + B → C. The
thick, horizontal lines show the initial location of reac-
tant A and B, respectively.

where the interaction radius can vary in space and/or time. We leave

this and the above topic for a future study.

5.2. Governing equation of the dynamic process. The govern-

ing equation (1) follows the classical mass balance law [12]. Although

there is no rigorous derivation of (1) for describing reactive transport

combined with anomalous diffusion in porous media, similar governing

equations were proposed and applied by various researchers [22, 35].

The choice of this type of model is also motivated by the work of hydrol-

ogists [36, 37, 38], who developed a similar temporally nonlocal model

in the multi-rate mass transfer formulation. The same philosophy was
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also applied widely by other researchers focusing on either the Brown-

ian motion [23] or Lévy motion [13, 14] in porous media, by assuming

that the stochastic process is the combination of random displacement

(whose scaling limit is well known) and linear reactions. However, it is

noteworthy that other forms of fractional diffusion-reaction models are

also possible. For example, Henry and his colleagues [39, 40] derived

rigorously the fractional reaction-diffusion equations by leading the re-

active component (i.e., walkers) into the master equation, where the

resultant reaction term can have a memory effect in time (i.e., loading

history). The similar time-nonlocal expression for reaction was also

used by Sokolov et al. [41] and Harman et al. [42] to account for

the source/sink term in a time-fractional derivative model. Extensions

of the above Lagrangian approach may solve the reaction-subdiffusion

model with different coupling behavior, as discussed in Appendix D. In

addition, the scaling limit for mixing-limited reactions may be differ-

ent from that for thermodynamic rate-limited reactions [3], where the

former may be developed by the technique of subordination (personnel

communication, Mark M. Meerschaert, 2011). Therefore, more practi-

cal applications are needed to check the feasibility of the Lagrangian

solver developed by this study. In particular, rigorous derivation of

the governing equation of the scaling limit of the continuous time ran-

dom walk process with well-mixed or mixing-limited reactions is still

needed. We leave this open question for a future study.

6. Conclusions

This study develops computational methods to simulate the 2nd-

order, bimolecular chemical reactions controlled by anomalous diffusion

in heterogeneous media. The Lagrangian approach is used, where the

downscaling of the transport process makes it possible to characterize

both reactions and transport at the same scale. The particle-based La-

grangian approach can also efficiently simulate the incomplete mixing

of reactants, which is superior to the standard Eulerian solvers that

have to assume complete mixing.

A four-step Lagrangian scheme is proposed to simulate the bimolecu-

lar reaction combined with the tempered super-diffusion. In particular,
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the forward reaction is controlled by the interaction radius between re-

actants, and the concurrent tempered super-diffusion is modeled by the

Langevin equation approach. The interaction radius R can be derived

for the closed system with well-mixed reactants initially, while empiri-

cal formula or fitting value for R must be used for the open system with

sharp contact between reactants. This Lagrangian scheme can be ex-

tended to multi-scaling super-diffusive transport in multi-dimensional

media, providing the only viable solution method for the reactive, vec-

tor fractional diffusion equation.

A time-subordination based Lagrangian scheme is then developed

to simulate the bimolecular reaction combined with the tempered sub-

diffusion. Chemical particles can stay in mobile or immobile phases,

where the chemical reaction can occur for all particles, or for mobile

particles only. In addition, chemical particles can be mobile all the

time, representing the process of the standard time fractional diffusion

model. The Lagrangian scheme can be applied for all cases.

Numerical results are compared to specific Eulerian solutions if avail-

able, or the known kinetics of chemical reactions. Numerical tests also

show that the tempered super-diffusion enhances reaction rate by im-

proving the mixing of reactants. The tempered sub-diffusion also helps

chemical reactions by increasing the collision opportunity for reactant

particles in the open system, due to the trapping of reactant particles

in the immobile phase. However, in the closed system, the tempered

sub-diffusion can decelerate apparently the actual reaction rate, since

the actual diffusion of particles is decreased.

Applications show that the Lagrangian solver can capture efficiently

the observed bimolecular reactions in sand columns. The observed

breakthrough curve or snapshot for the product exhibits heavy leading

or trailing tails, a typical behavior of anomalous transport that cannot

be captured efficiently by normal-diffusion based models. These appli-

cations reveal the importance of considering the anomalous diffusion

for reactive transport in heterogeneous systems.

Finally, it is noteworthy that this study uses a simple form of the

forward reaction probability that decreases linearly with the increase

of the distance between a pair of reactants. This linear reaction prob-

ability can generate the correct reaction rate, where the corresponding
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interaction radius has a physical meaning [3, 28]. It is applicable to re-

active transport processes observed in saturated soils. Nonlinear forms

of the forward reaction probability should certainly be tested and ap-

plied, as discussed in Appendix C. In some cases, a nonlinear reaction

probability may be more realistic than its linear simplification, for ex-

ample, because of the influence of temperature, pressure and/or salinity

on the local variation of reactions. The Lagrangian scheme developed

in this study allows the forward reaction probability to be an input

parameter, where the corresponding interaction radius can be fitted or

even predicted.
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Appendix A. Computer generation of the tempered

stable random variables

The numerical generation of tempered stable random variables sig-

nificantly affects the computational efficiency of the Lagrangian solver

developed in this study. Here we first select the modified CMS [43]

method (see also [44], pages 49 ∼ 50) to generate the independent

stable random variables with the scale index α in (0, 1) and (1, 2):

(22) Y = A
sin[α(U +B)]

[cos(U)]1/α

∣

∣

∣

∣

cos[U − α(U +B)]

E

∣

∣

∣

∣

(1−α)/α

,

where U is a random variable distributed uniformly on (−π/2, π/2),

E is an exponential random variable with mean 1, A =

(cos (arctan(β∗tan(πα/2))))−1/α, B = arctan(β∗tan(πα/2))/(1 − |1 −
α|), and β∗ is the skewness (−1 ≤ β∗ ≤ 1). We comment here that 1)

the absolute value of the last term on the right-hand side of (22) must

be taken; and 2) the parameter A can be ignored since the final stable

random variable is Y × (cos (arctan(β∗tan(πα/2))))1/α = Y/A.

The stable random variables with the maximally positive skewness

were generated for the wide range of index α (Fig. 14). We found the

general match to true densities. We also checked the modified CMS

results against Nolan’s program STABLE [45], which uses the corrected

CMS approach. The convergence rate and the CPU time are almost

identical (Fig. 15a,b).

We then compare the CMS method to the Pareto approach proposed

by Zhang et al. [31]:

(23) r =

{

U∗φ1+α + φ− φ1+α + φ/α , if U∗ < 1− φ−α/α

((1− U∗)α)−1/α , if U∗ ≥ 1− φ−α/α

where U is a uniform (0, 1) random number, and the parameter φ (with

an empirical value 2.0) is the cutoff of the Pareto densities and it affects

significantly the rate of convergence to the true α-stable. The α-stable

random variable Y then can be obtained by shifting and re-scaling r:

(24)

Y =
[

r − φ−1−α(φ2 − q2)/2− φ−α+1/(α− 1)
]

/ [Γ(1− α)cos(πα/2)/α]1/α .

The Pareto approach requires the generation of one uniform ran-

dom variable at each step, while the other approaches discussed in this
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Figure 14. (Color online) The simulated stable den-
sity with the maximally positive skewness (β = +1) and
varying index α by using the CMS method (symbols)
versus the true densities (lines). 106 Lévy stable random
variables are generated for each α. (a) α = 0.1 ∼ 0.9;
(b) the semi-log plot of (a); (c) α = 1.1 ∼ 1.9; (d) the
semi-log plot of (c).

appendix need to generate two independent uniform or exponential

random variables (experiments show that the Pareto approach takes

∼ 50% less CPU time than the other approaches). The Pareto ap-

proach can also be extended easily to generate dependent α-stable ran-

dom variables, as demonstrated by Zhang et al. [31]. However, the

random number r generated by (23) actually distributes as a Pareto

with density

f(r) =

{

φ−1−α , if φ− φ1+α + φ/α ≤ r ≤ φ

r−1−α , if φ ≤ r < +∞

which has the similar shape as the simulated density with “nt = 1”

in Fig. 15c. Only the sums of Y will be in the domain of attraction
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Figure 15. (Color online) (a) Convergence of the nu-
merical density (symbols) generated by the modified
CMS approach (22), Nolan’s [45] STABLE program,
and the Pareto approach (23) to the true density (line).
α = 1.3. (b) is the semi-log version of (a). (c) shows
the simulated density using the Pareto approach with 4
different number of sums (indicated by the legend “nt”).
(d) is the semi-log version of (c). (e) shows the CPU
time (with a unit second) used by different approaches.

of an α-stable random variable Sα(1,+1, 0). Fig. 15(c) and (d) show

that only the sums of Pareto random variables can converge to the true

α-stable. Therefore, to get the same quality of convergence, the Pareto
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approach (requiring the sums of multiple random variables) actually

takes much more CPU time than the CMS approach (see Fig. 15(e)).

In addition, Fulger et al. ([46], Eq. (20)) also used the one-parameter

Mittag-Leffler function to produce α-stable random variables:

(25) Y = −γt ln(U1)

[

sin(απ)

tan(απU2)
− cos(απ)

]1/α

,

where U1 and U2 are independent uniform (0, 1) random numbers,

and γt is the scale parameter. This scheme is faster than the modified

CMS method since the formula (25) takes less computation than (22)

(it takes ∼ 15% less CPU time in our experiments). Both Fulger et

al.’s [46] examples and our tests (not shown here) revealed that (25)

works well for 0 < α < 1. However, whether (25) works for 1 < α < 2

remains to be shown. Additionally, as pointed out by Fulger et al.

[46], a Mittag-Leffler random variable (Y in (25)) is not stable, but a

geometric stable, which needs to be re-scaled and shifted.

Numerical experiments and comparisons conducted above help us to

choose the modified CMS method (22) in this study.

The next step is to generate the tempered stable random variable

using the exponential rejection method of Baeumer and Meerschaert

[47]. For example, to generate the α-order tempered stable random

variable dξi in (5), we first draw a random variable Z = D1/α Y , and

an exponentially distributed random variable W with mean λ−1. If

W < Z, reject and draw again; otherwise set dξi = Z + D ∆t α λα−1

(where ∆t is the time step used in the Lagrangian solver).

To generate the γ-order tempered stable random variable dζj in (20),

we draw and compare S = β1/γY andW ∗, whereW ∗ is an exponentially

distributed random variable with mean s−1. IfW ∗ < S, reject and draw

S and W ∗ again; otherwise set dζj = S + β dτj γ sγ−1 (where dτj is the

operational time used in (20)).

The simulated tempered stable densities are compared with the true

densities. One example for α = 1.1 with various truncation parameters

is shown in Fig. 16.
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Figure 16. (Color online) The simulated tempered sta-
ble densities with variable truncation parameter (sym-
bols) versus the true densities (lines). α = 1.1. (b) is the
semi-log plot of (a), to show the tailing.

Appendix B. Implicit Eulerian finite-difference solution

of the spatiotemporal tempered stable

model

To cross-verify the Lagrangian description of particle motions, we de-

velop the implicit Eulerian method to approximate the tempered stable

model. Note, however, the chemical reaction term cannot be compared

directly between Eulerian and Lagrangian methods, since they need not

describe the same process. It is well known that if the microscopic-scale

chemical reaction term is added directly into the macroscopic-scale

transport model, the resultant continuum model solved by Eulerian

methods overestimates significantly the reaction rate observed in the

laboratory [4, 5] or approximated by Lagrangian methods [3]. Chemi-

cal reactions must be upscaled before added into the continuum model,

as demonstrated recently by Sànchez-Vila et al. [6]. How to upscale
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chemical reactions controlled by non-Fickian transport is beyond the

scope of this study, and it remains an open question.

The continuum model studied here is for the conservative tracer

[A(x, t)] − [B(x, t] (see Subsec. 2.2). This study considers the trun-

cation of α-stable density in either space or time. Hence this appendix

solves the following spatiotemporal tempered stable model

∂C(x, t)

∂t
+ βe−st ∂

γ

∂tγ
[

estC(x, t)
]

− βsγC(x, t)

= −V
∂C(x, t)

∂x
+D

{

e−λx ∂α

∂xα

[

eλxC(x, t)
]

− λαC(x, t)− αλα−1∂C(x, t)

∂x

}

+ m0 β
e−st t−γ

Γ(1− γ)
δ(x) .

(26)

Here C denotes the concentration for conservative tracers at the total

(mobile + immobile) phase, and the space and time fractional deriva-

tives are the Riemann-Liouville type. The Riemann-Liouville fractional

derivative is used here, so that the shifted Grünwald approximation can

be applied [47].

The model (26) can be discretized using an implicit finite difference

scheme

Cn+1
i − Cn

i

∆t
+

βe−stn+1

(∆t)γ

n+1
∑

k=0

[

gk e
−stn−(k−1) C

n−(k−1)
i

]

+ βsγCn+1
i

= −V
Cn+1

i − Cn+1
i−1

h
+D

{

e−λxi
1

hα

i+1
∑

j=0

[

fje
λxi−(j−1) Cn+1

i−(j−1)

]

− λα Cn+1
i − αλα−1C

n+1
i − Cn+1

i−1

h

}

+m0β
e−stn+1 t−γ

n+1

Γ(1− γ)
δ(x) ,

(27)

where gk and fj are Grünwald weights, and ∆t and h denote time and

space discretization sizes, respectively. Here the one-shift Grünwald

approximation [47] is used to approximate both the time (γ-order and

0 < γ < 1) and space (α-order and 1 < α < 2) fractional derivatives.

By discretizing model (26) for each node (i in (27) increases from

1 to K), we obtain a linear system of equations F Cn+1 =

Cn + ∆t Sn+1, where Cn = [Cn
0 , C

n
1 , C

n
2 , ..., C

n
K ]

T and Cn+1 =
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[Cn+1
0 , Cn+1

1 , Cn+1
2 , ..., Cn+1

K ]T . F = [Fi,j] (i, j = 1, ..., K − 1) is the

matrix of coefficients. These coefficients are defined by:

Fi,j =



























0, when j ≥ i+ 2

−∆t
hα D f0 e

λh, when j = i+ 1

1 + β g0
(∆t)γ−1 −∆tβsγ + V ∆t

h
−∆t D

[

f1
hα − λα − αλα−1 1

h

]

, when j = i

−V ∆t
h
−∆t D

[

1
hαf2 e

−λh + α λα−1 1
h

]

, when j = i− 1

−∆t D 1
hαfi−(j−1) e

−λ(i−j)h, when j ≤ i− 2

while F0,0 = 1, F0,j = 0 for j = 1, . . . , K, FK,K = 1, FK,K−1 = −1, and

FK,j = 0 for j = 0, . . . , K − 2.

The stable criterion of the above finite-difference numerical scheme

is analyzed using the Greschgorin theorem [48]. The eigenvalues of the

matrix F are in the disks centered at Fi,i with radius ri =
∑K

k=0,k 6=i Fi,k.

Firstly, we have

(28)

Fi,i−ri = 1+
β g0

(∆t)γ−1
−∆tβsγ+∆tDλα−∆t D

hα

i+1
∑

j=0

[

fi−j+1 e
−λ(i−j)h

]

.

To meet the criterion of Ai,i − ri > 1, the following formula must be

satisfied:

(29)
β g0

(∆t)γ−1
−∆t β sγ +∆t D λα − ∆t D

hα

i+1
∑

j=0

[

fi−j+1 e
−λ(i−j)h

]

> 0 .

which requires

(30) ∆t < β1/γ

[

1

hα
D eλh −Dλα + β sγ

]−1/γ

.

Here the Grünwald weights g0 = 1, f0 = 1, f1 = −α (so −2 < f1 < −1),

f2 = α(α− 1)/2 > 0, and fi > 0 for i > 2.

Secondly, we have

Fi,i + ri = 1 +
β g0

(∆t)γ−1
−∆t β sγ +∆t D λα + 2V

∆t

h
+ 2∆tD αλα−1 1

h

−∆t D
f1
hα

+
∆t

hα
D f0 e

λh +
∆t

hα
D f2 e

−λh +∆t D
1

hα

i−2
∑

j=0

[

fi−j+1 e
−λ(i−j)h

]

.

(31)
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The formula (30) shows that

(32)
β

(∆t)γ−1
−∆t β sγ +∆t D λα > 0 ,

implying that the summation of the 2nd, 3rd, and 4th terms on the

right hand side of (31) is larger than zero. In addition, given the

properties of the Grünwald weights fi, we find that all the remaining

terms on the right hand side of (31) are larger than zero. Therefore,

(33) Fi,i + ri > 1 .

Hence the magnitude of eigenvalues of F are no less than 1 if the

time step ∆t is small enough to meet the criterion of (30). The spectral

radius of the inverse matrix F−1 is no larger than 1 and any error in

Cn+1 is not magnified. Hence the above Eulerian numerical scheme is

conditionally stable.

The above Eulerian scheme has been used to cross verify the La-

grangian solutions developed in Sec. 2 and Sec. 3. A general match

for solutions can be found for the two different numerical solvers (see

Fig. 1, Fig. 7, and the corresponding explanation in the text).

Appendix C. The nonlinear functional form for the

forward reaction probability

The forward reaction probability P ⋆
f defined by (7) decreases linearly

with the increase of distance between each pair of reactants. Can this

simple linear probability generate an appropriate reaction rate? Is it

possible to replace (7) by nonlinear reaction probabilities so that P ⋆
f

looks more realistic? This appendix focuses on these questions.

For illustration purposes, we consider the power-law form for P ⋆
f by

generalizing (7):

(34) P ⋆
f (t) = 1− |yA,i(t)− yB,j(t)|a

(R∗)a
,

where a > 0. This appendix uses R∗ to denote the interaction radius,

to distinguish it from the other interaction radius used in the main text.

Other nonlinear P ⋆
f , such as the exponential or logarithmic function,

can also be used by following the argument below.

As explained in Subsec. 2.1.3, there are two sub-steps before a re-

action can occur. First, the pair of reactants should be closer than
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the interaction radius R∗, a “standard” criterion used by different re-

searchers [3, 28]. The probability of this sub-step (denoted as P1(t)),

which characterizes the number of reactant pairs in R∗, can be approx-

imated by [24]

(35) P1(t) ≈
2R∗

L/NA(t)
,

where we assume uniform initial concentrations for reactants. Here the

term R∗/[L/NA(t)] in (35) approximates the proportion of reactant

A within R∗, and the factor “2” in (35) accounts for the fact that the

reactant B can be located on both sides of a A particle (hence doubling

the reaction probability).

During the 2nd sub-step (see Subsec. 2.1.3), a uniform [0 1] random

number is compared to (34), to determine whether the reaction can

occur. The corresponding average probability is

(36) P2(t) ≈
1

R∗

∫ R∗

0

[

1−
( x

R∗

)a]

dx .

The product of the two sub-probabilities defined by (35) and (36)

(which are independent) leads to the average forward reaction proba-

bility

(37) P̄f (t) ≈
2a

1 + a

R∗

L/NA(t)
.

To generate the correct reaction rate (or rate equation), the radius R∗

should be defined properly.

For the case with equal initial concentrations [A0] = [B0], the rate

equation reads and approximates

(38)
∂[A(t)]

∂t
= −Kf [A(t)]

2 ≈ ∆[A(t)]

∆t
,

with a small time step ∆t. On the other hand, the probability P̄f(t)

(37) can also be regarded as the proportion of reacted particles at time

t:

(39) P̄f(t) =
|∆[A(t)]|
[A(t)]

.
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Combining (37), (38) and (39), we find that when the radius R∗ takes

the form

(40) R∗ =
1 + a

2a

Kf [A(t)] L∆t

NA(t)
,

the power-law function (34) generates the correct reaction rate.

We test systematically the applicability of the power-law function

(34) coupled with the interaction radius R∗ (40). Several examples are

shown in Fig. 17. For comparison purposes, we first use the original

interaction radius RC defined by (9), followed by R∗ defined by (40).

When RC is used, the case of a = 1 (Fig. 17a) successfully estimates the

analytical evolution of reactant and product concentrations, verifying

the applicability of the linear reaction probability used in the main text.

The other two cases either underestimate the reaction rate (a = 0.5,

Fig. 17b) or overestimate it (a = 2.0, Fig. 17c), due to either the

decreased chance for reaction (when a < 1) or the enhanced probability

for reaction (when a > 1) within the range of RC . Only when the

interaction radius is scaled properly, as expressed by (40), will the

simulated reaction rate be correct (Fig. 17d,e).

Based on (13), we can link the interaction radius R∗ (for the power-

law function (34)) and the interaction radius RC (for the linear function

(7)):

(41) R∗ =
1 + a

2a
RC .

Eq. (41) (depicted in Fig. 18a) also implies an efficient way to define

the interaction radius for an arbitrary form of reaction probability. The

cumulative reaction probability, which is equal to the area underlying

the reaction probability curve shown in Fig. 18b, should remain con-

stant. Such area is known as RC/2 for the case of a = 1. This leads to

the conversion between RC and the new interaction radius R∗ for an

arbitrary (i.e., logarithmic or exponential) reaction probability.

When a = 1, R∗ = RC , and the nonlinear reaction probability (34)

reduces to the linear one (7). Hence the linear reaction probability (7)

coupled with the interaction radius RC (9) does generate the correct

reaction rate. Most importantly, the predictable interaction radius RC

has a clear physical meaning, as shown by Pogson et al. [28] and Benson

and Meerschaert [3].
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Figure 17. Numerical verification - evolution of reac-
tant A and product C: analytical solutions (lines) versus
the Lagrangian solutions (symbols). The interaction ra-
dius used in (a), (b) and (c) is RC defined by (9), while
the updated interaction radius R∗ defined by (40) is used
in (d) and (e). Note that (a), (d) and (e) are almost iden-
tical. The legend “a” denotes the exponent “a” in the
power-law form of reaction probability (34).

To draw a conclusion, this appendix shows that the simple linear

reaction probability (7) is applicable. The more realistic, nonlinear

reaction probability can also be used in our Lagrangian solver.

Appendix D. Lagrangian simulation of the fully coupled,

partially coupled, and decoupled reaction

and subdiffusion

This appendix extends one of the Lagrangian algorithms developed

in the main text (Subsec. 3.1) to simulate the reaction-subdiffusion

with different coupling behavior. Sokolov et al. [41] found that, for

the simple monomolecular conversion A → B, the parameters of the
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Figure 18. (a) Scaling of the interaction radius (R∗)
for each power-law exponent a, as expressed by (41). (a)
The forward reaction probability distribution expressed
by f(ε) = 1− (ε/RC)

a.

reaction (i.e., the conversion rate) influence the diffusion term in the

governing equation of reaction-subdiffusion. Henry et al. [39] derived

three mesoscopic models for subdiffusion with linear reaction dynamics,

including Sokolov et al.’s model. In the following we first introduce

briefly each model, and then build and test the Lagrangian solver.

D.1. Model III - The fully coupled reaction and subdiffusion.

Model III in [39] is the same as the coupled reaction-subdiffusion model

proposed by Sokolov et al. [41]:

(42)
∂n

∂t
= D(γ) e±kt D1−γ

(

e∓kt ∂
2n

∂x2

)

± kn ,
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where n is the number density of random walkers, D(γ) is the diffu-

sivity, k is the conversion rate (either negative or positive), and the

operator D1−γ denotes the Riemann-Liouville fractional derivative of

order 1− γ (where 0 < γ < 1).

Henry et al. [39] built model (42) using the Master equation ap-

proach, where available walkers are added or removed at a constant

rate during the time interval between jumps. Their description of par-

ticle dynamics motivates us to revise the six-step time-subordination

approach proposed in Subsec. 3.1. In Step 1, the time Langevin equa-

tion (20) is revised as

(43) dTj = dζj ,

where the operational time is no longer part of the real time (since the

jump now is instantaneous). The 1 : 1 short lines on the right half

of Fig. 6 representing the operational time, therefore, become vertical

lines, since they do not affect the real time t any more. The parti-

cle displacement in the operational time calculated in Step 3 remains

unchanged, with a pre-defined operational time step. In Step 5, we

now calculate the first-order decay with the rate k. The other steps re-

main unchanged. Results show that the Lagrangian solution generally

matches the exact solution (Fig. 19).

It is also noteworthy that both Henry et al. [39] and Sokolov et al.

[41] found that the coupled reaction-subdiffusion (42) can be solved

analytically. Assuming n(x, t) = ekt y(x, t), Henry et al. [39] found

that model (42) converts to the following subdiffusion model

(44)
∂y

∂t
= D D1−γ ∂

2y

∂x2
,

whose analytical solution is well-known [7]. This implies that reaction

and subdiffusion can be calculated independently, or in other words, the

conversion actually does not affect directly the motion of each walker.

After rewriting (44) as
∂γy

∂tγ
= D

∂2y

∂x2
,

and applying the time-Langevin analysis [32], we find that the particle

diffuses in the operational time and decays in the waiting time. This

conclusion supports the above extended time-subordination approach.
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Figure 19. (Color online) Model III: The concentration
snapshot for A particles simulated by the Lagrangian
approach (symbols) versus the true solution (lines) [39],
at various dimensionless times with D = 1, γ = 0.5,
and k = −1 (a) and k = +1 (b), respectively. The
instantaneous point source of reactant A is located at
the origin x = 0.

It is also consistent with Henry et al.’s description of the stochastic

process underlying model (42) [39].

D.2. Model II - The partially coupled reaction and subdiffu-

sion. Model II in [39] takes the form

(45)
∂n

∂t
= D(γ)D1−γ

[

∂2n

∂x2

]

± k

1± k

(

γ

k Γ(1− γ) τγD

)

D1−γn ,
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where τD is the characteristic mesoscopic time scale, and Γ is the

gamma function. We call (45) the “partially coupled” model since

the constant k is no longer located inside of the fractional derivative.

When deriving model (45), Henry et al. [39] added or removed a

constant portion of the available walkers instantaneously at the start

of each jump. Hence we calculate particle conversion in the operational

time, the same time domain where particles make their movement in

space. The above six-step time-subordination approach only needs to

be revised slightly, where the reaction occurs in the operational time in

Step 5. Fig. 20 shows that the Lagrangian solution generally matches

the analytical solution for model (45). The particle mass described

by Model II (45) declines slower to zero than that for Model III (42),

simply due to the relatively short operational time compared to the

waiting time defined in the time subordinated process.

D.3. Model I - The decoupled reaction and subdiffusion. Model

I in [39] is called the decoupled reaction and subdiffusion model by

Sokolov et al. [41]:

(46)
∂n

∂t
= D(γ)D1−γ

[

∂2n

∂x2

]

± kn ,

where the reaction and diffusion look independent.

To derive model (46), Henry et al. [39] added or removed a fraction

of walkers at a constant rate in time, independent of the diffusion

process. We comment that Model I actually contains a time-nonlocal

conversion, since the fractional integral operator can act on the reaction

term in (46), similar to the memory effect of rainfall on hillslope flow

proposed in [42]. To account for the memory effect, we need to add all

the previous contribution of the source/sink term (at each time that

is independent of particle displacement) on the current solution in the

Lagrangian solver. This results in the numerical solution that generally

matches the exact solution (Fig. 21a). The case for Model I considered

by Sokolov et al. [41] (where a numerical approach was used to solve

Model I (46)) is also simulated and shown in Fig. 21b. Compared to

Model III expressed by (42), the decline of particle mass at the origin

is relatively slow for Model I.
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Figure 20. (Color online) Model II: The concentration
snapshot for A particles simulated by the Lagrangian ap-
proach (symbols) versus the true solution (lines) [39], at
various dimensionless times. All the model parameters
are the same as those used in Figure 19. The only differ-
ence is the model itself.

D.4. The dynamically coupled reaction and subdiffusion

model. In hydrological processes, the reaction and anomalous diffu-

sion can be dynamically coupled. For example, the precipitation occur-

ring in a porous medium can change the geometry or pore connectivity

of the medium, resulting in a significant variation of flow properties.

Particle transport behavior is therefore affected. Such process can be

simulated by the Lagrangian algorithm developed in this study, where

the dispersion component (such as the diffusivity and scale index) varies

with reaction. Preliminary extensions of the Lagrangian algorithm are
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  t = 2000
  k = 0.001

  γ = 0.75

  D = 7.76×10-3

Model I
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Figure 21. (Color online) (a) The concentration snap-
shot for A particles simulated by the Lagrangian ap-
proach (symbols) versus the true solution (lines) [39] at
time t = 1 and k = −1, and time t = 0.1 and k = +1,
respectively. The other parameters are the same as those
used in Fig. 19. (b) The concentration distribution for A
and B particles simulated by the Lagrangian approach
(symbols) versus the analytical or numerical solutions
(lines) in Sokolov et al. [41], for Model I and III.

conducted (not shown here), and laboratory experiments are needed to

check and refine the computational method.

To draw a conclusion, the Lagrangian algorithm developed in this

study can be extended to simulate the coupled reaction and subdiffu-

sion.
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