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Abstract

This paper revisits one of the puzzling behaviors in a developable cone (d-cone), the shape obtained by

pushing a thin sheet into a circular container of radius R by a distance η. The mean curvature was reported

to vanish at the rim where the d-cone is supported. We investigate the ratio of the two principal curvatures

versus sheet thickness h over a wider dynamic range than was used previously, holding R and η fixed.

Instead of tending towards 1 as suggested by previous work, the ratio scales as (h/R)1/3. Thus the mean

curvature does not vanish for very thin sheets as previously claimed. Moreover, we find that the normalized

rim profile of radial curvature in a d-cone is identical to that in a “c-cone” which is made by pushing a

regular cone into a circular container. In both c-cones and d-cones, the ratio of the principal curvatures at

the rim scales as (R/h)5/2F/(Y R2), where F is the pushing force and Y is the Young’s modulus. Scaling

arguments and analytical solutions confirm the numerical results.

PACS numbers: 46.70.De, 68.55.-a, 46.32.+x
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I. INTRODUCTION

When a piece of thin sheet like paper crumples, it develops a network of two types of sharp

structures: straight stretching ridges and pointlike vertices. Since thin sheets and membranes are

very common in both natural and man-made structures at almost all length scales, crumpling has

applications in a broad range of systems, such as graphene sheets [1], carbon nanotubes [2, 3],

virus capsids [4], pollen grains [5], polymerized membranes [6], and leaves [7]. The pointlike

vertex singularity has mostly been studied via the simple realization known as the developable

cone or d-cone, shown in Figure 1(a). A d-cone is the shape created by pushing the center of a

thin sheet into a circular container of radius R by a distance η [8]. d-cones, stretching ridges, and

crumpling in general have been studied extensively [8–28]. In certain cases it is possible to set

bounds on the energy of singular structures [29, 30], but to our knowledge such bounds have not

been established for d-cones. Furthermore, while the scaling properties of stretching ridges have

been determined analytically and numerically [10, 11, 18], several phenomena in d-cones are still

beyond our understanding [26]. One mysterious behavior of d-cones is the reported vanishing of

mean curvature at the rim region where a d-cone is supported [31].

The deformation of a d-cone can be characterized by the deflection ε ≡ η/R and its Young’s

modulus is denoted by Y . r and θ are defined as radial and angular components in the material

coordinate system. Crr and Cθθ are the radial and azimuthal curvature respectively. In principle

the shape of a d-cone is governed by the Föppl-von Kármán equations[12, 32], whose analytical

solution is known only in a few special cases [33, 34]. Unfortunately, a d-cone is not one of these

cases. However, it is energetically much cheaper for thin sheets to bend than to stretch, so a d-

cone is asymptotically unstretched, and thence developable, except in the core region where it is

pushed. Assuming that a d-cone is unstretched almost everywhere, Cerda and Mahadevan [14, 24]

described the deformation in terms of the classical Elastica of Euler [35] and obtained the shape of

the d-cone by minimizing the bending energy. Numerical study [23] has confirmed their finding.

Under the assumption that a d-cone is unstretched almost everywhere, the shape of the d-cone

has zero radial curvature Crr except in the core region, but the real shape must have nonzero Crr

at the rim to balance the normal force from the edge of the container[31, 36]. Liang and Witten

[31] reported a striking feature that within numerical accuracy, as the thickness of the sheet went

to zero, the radial curvature Crr and the azimuthal curvature Cθθ were nearly equal and opposite

at the rim, so that the mean curvature, defined as (Crr + Cθθ)/2, nearly vanished there. They
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Figure 1: (Color online) (a) A typical simulated d-cone formed by pushing the center O of a hexagonal

elastic sheet (Equations 1 and 2) against a circular container with concentrated force F . The red solid

line shows the rim of the container. The side length of the sheet � is 1.77 times the container radius R.

The thickness h = R/866, and the displacement of point O is a tenth of R. For clarity, the vertical

scale is expanded by about six times. (b) A variable lattice for simulating d-cones. It shows the material

coordinates of the lattice points used in the simulation. The local lattice point densities at the rim and in

the center are about 4.4 and 3.2 times the overall average point density, respectively. The average distance

between adjacent lattice points is about R/88.

found that the feature was independent of container radius R, thicknesses of the sheet h, and

deflection ε, but the circular symmetry of the container was indispensable. Since nonzero Crr

entails stretching, it should be necessary to consider the stretching in the rim region in order to

understand this vanishing of mean curvature feature [31].

In the limit of thin sheets, the cost of stretching becomes prohibitive and the rim region with

nonzero stretching should shrink to zero. In this limit, it seems plausible to treat the rim region

as a boundary layer sandwiched by regions where the Elastica approach can still be applied. This

type of boundary layer phenomenon appears in a wide variety of systems, such as the Pogorelov

ring ridge [32, 37], the ”minimal ridge” [11], and more recent work [4, 38, 39].

Judging from its characteristics, this vanishing mean curvature phenomenon is nonlocal and

purely geometric; thus, researchers have investigated the connection between this phenomenon

and another nonlocal geometric constraint on surfaces, i.e. the Gauss-Bonnet theorem[36, 40].

This theorem requires that the sum of the integral of Gaussian curvature within a surface and the

integral of geodesic curvature along its boundary remain a constant. For a d-cone, the integral
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of geodesic curvature along the boundary can be assumed a constant, so net Gaussian curvature

in one region needs to be balanced by another region(s) of opposite Gaussian curvature. Since

zero mean curvature at the rim means negative Gaussian curvature, researchers have suspected the

negative Gaussian curvature at the rim is necessary to balance a net positive Gaussian curvatures in

the core region[36]. However, the integral of (negative) Gaussian curvature near the rim is almost

completely compensated by that of two adjacent bands. Thus, the Gauss-Bonnet theorem offers

no obvious explanation of the nonlocality implicit in the vanishing mean curvature phenomenon.

This paper investigates the ratio of the two principal curvatures |Crr/Cθθ| at the rim versus

sheet thickness h over a wider dynamic range than was used previously in Ref. [31], holding the

deflection ε and the container radius R fixed. The numerical models are specified in Sec. II. In Sec.

III, we describe our numerical findings in detail. Instead of tending towards 1 as required by the

vanishing of mean curvature, the ratio |Crr/Cθθ| at the rim goes below 1 and scales as (h/R)1/3.

To better understand this power law, we study d-cone’s close cousin “c-cone” which is made

by pushing a regular cone into a circular container, as seen in Figure 2(a) . C-cones are simpler

structures than d-cones. In a c-cone, deflection ε, pushing force F , and thickness h are independent

degrees of freedom. In both c-cones and d-cones, we find that |Crr/Cθθ| ∝ (R/h)5/2F/(Y R2)

for fixed deflection ε. Moreover, given the same h, R, and ε, the normalized rim profiles of

radial curvature are identical in a c-cone and a d-cone. To put these numerical findings on firmer

grounds, in Sec. IV we give scaling arguments for both c-cones and d-cones. General solutions

for symmetrically loaded conical shells are available [41, 42], and we use the proper boundary

conditions to get the analytical solutions for c-cones. Both the scaling arguments and the analytical

solutions confirm the numerical results. In Sec. V, we discuss the implications of our findings.

II. NUMERICALMETHODS

In principle, one could use standard finite element softwares such as Abaqus [43] to simulate

thin sheets, but we find them difficult to adapt to the ultra-thin asymptotic behavior of d-cones that

we want to study. We use an extended Seung-Nelson model [18, 44] to cope with the singularity

at the center of a d-cone and to better study the interaction between the sheet and the supporting

container. The extended model simulates an elastic sheet by a triangular lattice with variable lattice

spacing, so it has more adaptability than the original Seung-Nelson model [45] which dictates a

uniform lattice. This allows the extended model to concentrate lattice points as needed in regions
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Figure 2: (Color online) (a) A typical simulated c-cone formed by pushing the center of a regular cone into

a circular container with concentrated force F . The opening angle of the cone is 168.58◦, which translates

to a deflection of 0.10. The thickness of the elastic sheet (Equations 1 and 2) h = R/866, and the height

of the cone is about R/6. For clarity, the vertical scale is expanded by about ten times. (b) A schematic

diagram of the local deformation near the rim along a meridian of the cone. The depth of the deformation

is d and width is b. For any point Q, its tangent vector along the meridian is denoted by t̂, and the deviation

of t̂ from the original unperturbed meridian is defined as φ.

of strong gradients. Our deformed lattice is shown in Figure 1(b).

The total elastic energy of the sheet is the sum of stretching and bending energies on each

triangle. On an arbitrary triangle the strain tensor and curvature tensor are assumed constant. The

strain tensor γ is determined from the changes in the edge lengths, as seen in Figure 3, and the

curvature tensor C from the dihedral angles between the given triangle and its three adjoining

triangles as shown in Figure 4. The specific transformation formulas are derived in Appendix A.

Once we know the strain and curvature tensors, we obtain the corresponding energy densities ES

and EB via the conventional equations of elasticity [32, 34]:

ES =
hY

2(1− ν2)
[(Tr(γ))2 + 2(ν − 1)Det(γ)], (1)

EB =
1

2
κ(Tr(C))2 + κGDet(C), (2)

where ν is the Poisson’s ratio, κ = Y h3/(12(1−ν2)) is the bending rigidity, and κG is the Gaussian

bending rigidity. The total elastic energy of the sheet is taken as the sum of the energy density for

each triangle times its undeformed area.

A variable lattice for a d-cone is created in two stages [18, 44]. First a uniform triangular lattice

of spacing a is used to span the desired area. The lattice spacing a is the distance between adjacent

lattice points. Then this lattice is mapped to the desired nonuniform lattice e.g. Figure 1(b). Let
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Figure 3: (Color online) (a) An arbitrary triangle ABC in its initial undeformed state. Its three edges have

length d1, d2, and d3 (b) The triangle ABC is deformed into A′B′C ′. This stretching deformation can be

captured either by the changes in the edge lengths: Δd1, Δd2, and Δd3, or by the strain tensor, which is

assumed constant across the triangle.
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Figure 4: (Color online) An arbitrary triangle ABC and its three adjoining triangles in both the initial

undeformed stated and the deformed state in a local coordinate system. This bending deformation can be

captured either by the three dihedral angles θ1, θ2, and θ3 between ABC and its three neighbors or by the

curvature tensor, which is assumed constant across the four triangles.

the point density of the initial uniform lattice be ρinit. For our purposes we may choose a mapping

with radial symmetry. For a point (r, θ) in the uniform lattice, we transform r so its new position

in the variable lattice is (r̃(r), θ). Then the local point density in the variable lattice is ρinit/(∂r̃∂r
r̃
r
).
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In practice, we choose r̃ to be a function form of r̃ = r +
∑
i

gi(r, ri, wi, si), where

gi(r, ri, wi, si) =
si
wi

[arctan(
r − ri
wi

)− arctan(− ri
wi

)],

∂gi(r, ri, wi, si)

∂r
=

si
(r − ri)2 + w2

i

,

and the index i labels the regions where local point density needs adjustment. In Figure 1(b) there

are four such regions: the center region, the rim region, the region between the center and the rim,

and the outer region. In the center region and the rim region the point densities are increased while

in the two other larger regions the point densities are reduced. The overall average point density

remains close to that of the uniform lattice before the density adjustment. As shown in Figure

5, the graph of ∂gi
∂r

is a simple U-shaped curve centered around ri, and we can control its width

through wi and depth through si.

∂
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Figure 5: (Color online) ∂gi
∂r vs. r when ri = 50, wi = 20, and si = −100.

The resulting nonuniform lattice defines the initial undeformed state of Figure 3 for each tri-

angle in the nonuniform lattice. Thus the lattice positions defined by this map constitute the state

of zero stretching energy. By construction, these positions lie in a plane, so that each triangle also

has zero curvature energy as defined by Figure 4.

Creating the nonuniform lattice for a c-cone requires two additional steps. To simulate a c-cone

with opening angle equal to 2θ0, we make a cut along the radial line θ = 0, and map every lattice

point through the transformation r′ = r̃ and θ′ = sin(θ0)θ. The last step is to join the two free

boundary lines. That is, we identify each point on the free radial boundary line with its counterpart
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on the other free boundary line, so that the two lattice positions are constrained to occupy the same

spatial position in the simulation.

The constraining container rim and the pushing force are simulated in almost the same way

as previously used in Ref. [23, 36]. The rim is in the x − y plane and its shape is determined

by the equation x2 + y2 = R2, where R is the radius of the container. We introduce an external

potential to implement the geometric rim constraint (
√
x2 + y2−R)2+z2 �= 0 for all points in the

sheet. To implement such a constraint for a discrete lattice we must assure that every lattice point

remains a distance of order a from the rim line. For numerical tractability we assure this by adding

an external potential felt by all lattice points that maintain the required separation while having

negligible effect on more distant points. We find empirically that a short range r−8 potential is

adequate. More specifically, we implement the repulsive normal force from the rim by introducing

a potential of the form

Urim =
∑
j

Cp/[(
√

x2
j + y2j − R)2 + z2j ]

4 ,

where Cp is a constant, (xj , yj, zj) is the coordinate of the jth lattice point, and the summation is

over the whole lattice. The value of Cp is chosen so that the shortest distance between the lattice

points and the rim is approximately the local lattice spacing in the radial direction. The potential

due to the central pushing force is

Uforce(x1, y1, z1) = −(z1 + a)G(x1, y1)F .

Here (x1, y1, z1) is the coordinate of the lattice point in the center, F is effectively the magnitude

of the pushing force, and the function G(x1, y1) is given by

G(x1, y1) = [(1 + (x1/ξ)
2)(1 + (y1/ξ)

2)]−1 ,

where ξ is a constant of order 0.1a. This G(x1, y1) is introduced to make sure that when the sheet

is being pushed the lattice point in the center does not stray away from the axis of the cylindrical

container, i.e., (x1, y1) � (0, 0).

The total energy of the system is the sum of the total elastic energy in the sheet and the potential

energies due to the rim and the applied pushing force. The conjugate gradient algorithm[46] is used

to minimize the total energy as a function of the coordinates of all lattice points to get the final

shape of the sheet [23, 36, 47]. To verify that the energy of the final configuration is at a global

minimum, we can move each lattice point away from its equilibrium position by a random amount
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in a random direction and see if the energy minimization process will bring the system back to its

original state; the magnitudes of the random displacements introduced are usually much less than

the local lattice spacing. We can also check how sensitive the final configuration is to the starting

configuration. A high sensitivity generally signals the thickness of the sheet is too small for the

current lattice to simulate and the results are likely unreliable.

This model faithfully represents continuum sheets provided that the radii of curvature are every-

where much larger than the local lattice spacing. This limitation restricts the values of deflection ε

to be less than or equal to 0.15 in our simulations. Ref. [44] reports further details about this simu-

lation technique. The simulation program using the nonuniform lattice has been validated to show

uniform elastic behavior for states of planar stress and for cylinders. It has been validated against

uniform lattices for d-cones of thickness h that can be simulated by both methods. Ref. [44] also

provides further simulated sheets, as well as our relaxation protocol and timing information.

Our computer program is sequential and the bottleneck of the simulation is the CPU speed. A

typical d-cone or c-cone is simulated with 67, 951 lattice points, and it usually takes more than

one month to finish the energy minimization process on a 2.67GHz Intel Core i7 processor. Each

processor usually runs only one instance of the program at a time, but we have up to 40 processors

to run multiple instances with different parameters simultaneously.

Once the final configuration of a d-cone is obtained, the curvature tensor in each triangle can

be determined using the procedure stated earlier. We then solve the characteristic equation of

each curvature tensor to get the principal curvatures Crr and Cθθ. To find the radial profile of

Crr, we pick a circular sector with angle 0.05 and for each triangle within this sector, its Crr is

associated with the radial coordinate of its center. As shown later, Crr reaches its maximum at

the rim where the interaction between the sheet and the container is the strongest. Within each

sector we average the four largest values of Crr near the peak as the rim value of Crr. The four

corresponding Cθθ are averaged to get the rim value of Cθθ. The rim curvatures depend on the

angular separation between the center line of the circular sector and that of the buckled region.

The angular separation is 5π/6 for the rim profiles of Crr and rim values of |Crr/Cθθ| reported in

subsequent sections. The estimated percentage uncertainty of the reported rim values of |Crr/Cθθ|
due to this angular dependence is about 10% for the whole range of thickness considered. A better

approach is to average the rim Crr and Cθθ across multiple sectors, but this will have no noticeable

impact on our results. Our tests also show that different initial configurations will cause |Crr/Cθθ|
at the rim to change by less than 4% for the range of thickness considered here. If we assume these
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two sources of uncertainties are independent, the total percentage uncertainty for the reported rim

values of |Crr/Cθθ| should be about 11%. The results for c-cones are determined in the same way

and have the same level of uncertainties as in the d-cone data.

III. NUMERICAL RESULTS

Figure 6 shows |Crr/Cθθ| at the rim of d-cones versus relative thickness h/R for two different

values of ε. Unless explicitly stated otherwise, R and Young’s modulus Y are assumed to be

constant. For both ε = 0.10 and ε = 0.15, |Crr/Cθθ| goes below 1 as h/R is sufficiently thin,

and it does not show any sign of leveling off as it reaches as low as 0.76 in the thinnest sheets

simulated. More strikingly, for each fixed ε, |Crr/Cθθ| scales as (h/R)1/3. This clearly contradicts

the previous observation of vanishing mean curvature which requires |Crr/Cθθ| to stay at 1 when

the sheet gets very thin. To resolve this contradiction, we need a better understanding of how

|Crr/Cθθ| at the rim responds to changes in h and F . However, in d-cones there is a one-to-

one correspondence between h and F for a fixed ε. To gain more flexibility and to explore the

generality of this feature, we study d-cone’s close relative, the c-cone.
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Figure 6: (Color online) The ratio of the two principal curvatures at the rim of a d-cone as a function of the

relative thickness of the sheet for ε = 0.10 and ε = 0.15. It clearly shows that the ratio is less than one for

very thin sheets and the ratio keeps decreasing as the sheet gets thinner. The slopes of the fitted lines are

0.36 and 0.34 for ε = 0.10 and ε = 0.15 respectively.

In c-cones, for a fixed ε = 0.10, while h and F are changed independently we find that
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|Crr/Cθθ| at the rim scales as (R/h)5/2F/(Y R2), as shown in Figure 7. This scaling law is justi-

fied in Section IV. In d-cones, even though h and F are interdependent, the same scaling law also

holds. Moreover, Figure 8 demonstrates that for the same set of h, F , and ε the radial profile of

normalized Crr near the rim is the same in the d-cone as in the c-cone. These two findings together

suggest very strongly that the behavior of Crr in the rim region of a d-cone is identical to that in a

c-cone, and should be explained by the same mechanism.

0 0.1 0.2 0.3
0

1

2

3

(R/h)5/2F/(YR2)

|C
rr
/C

θθ
|

 

 

c−cone, ε=0.10
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Figure 7: (Color online) |Crr/Cθθ| at the rim as a function of (R/h)5/2F/(Y R2) for both c-cones and

d-cones. h and F are changed independently in the c-cone data. For a specific h, if we denote Fd as the

center force needed in the d-cone to give the ε of the c-cone, namely 0.1, the pushing forces used in the

corresponding c-cone simulations may vary from 0.12Fd to 1.5Fd.

To shed some light on the underlying mechanism, we investigate the detailed deformation of the

sheets near the supporting rim, as sketched in Figure 2(b). Let us denote the maximum deviation

from the straight radial line as d and the width of the deformation as b. Figure 9 shows that d

has a linear response to F and scales as (R/h)3/2F/(Y R). From Figure 10, we can see that b is

independent of F and scales as
√
hR. It’s worth noting that for the same h and within numerical

accuracy b is exactly the same in a d-cone as in a c-cone. It scales in the same way as the width

of a Pogorelov ring ridge formed by pushing a convex thin shell with a large inward concentrated

normal force [32, 37]. Our scaling arguments in the next section will closely follow how the

scaling properties of the Pogorelov ring ridge are derived.
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Figure 8: (Color online) Radial profiles of normalized Crr in both a c-cone and a d-cone. The c-cone and

the d-cone have the same ε, h, R, and F . Each profile is normalized by dividing the vertical scale by its

corresponding peak value. There is no normalization for the horizontal scale. As stated in Section II, for the

d-cone the angular separation between the buckled region and the radial sector used to generate the radial

profile is 5π/6.
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Figure 9: (Color online) The maximum deviation d of the local deformation near the rim as a function of

(R/h)3/2F/(Y R). The constant container radius R is set to be the unit length. In the c-cone data h and F

are changed independently as in Figure 7.
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Figure 10: (Color online) The width b of the local deformation near the rim as a function of
√
hR. More

specifically for the data shown here, width b is the full-width-at-half-maximum of the radial profile of Crr

as shown in Figure 8. The constant container radius R is set to be the unit length. Again, h and F are

changed independently in the c-cone data as in Figure 7. This plot shows that b does not depend on F in

c-cones.

IV. SCALING ARGUMENTS AND ANALYTICAL SOLUTIONS

1. Scaling arguments

Scaling arguments can be constructed to determine the dependence of ratio |Crr/Cθθ|, the max-

imum deviation d, and width b on h, R, and F . Near the rim of a c-cone or a d-cone, the energy

contribution of the local deformation includes both bending and stretching energy. Let us first find

how each of them scales with d and b.

To evaluate the bending energy component, we start with the principal curvatures. We denote

quantities unperturbed by the rim force by an overbar, e.g., C̄θθ. We denote changes induced by

the the rim force by a Δ, e.g., ΔCθθ. Let φ be the deviation of the tangent vector away from the

original direction along a meridian as shown in Figure 2(b). In the deformed region φ ∼ d/b and

Crr = ΔCrr ∼ φ/b ∼ d/b2 . We also have C̄θθ ∼ 1/R, and radius of the azimuthal curvature

R̄θθ = 1/C̄θθ ∼ R. Due to the local deformation, ΔRθθ ∼ −d, so ΔCθθ ∼ d/R̄2
θθ, or d/R2. Since

b � R as argued below, ΔCθθ is much less than ΔCrr and can be safely ignored. Locally there is a

contribution to the κG part of the bending energy of Equation 2. The change in this energy induced

by the rim force is of order κGΔCrrCθθ. However, this κG energy must integrate to zero because
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of the Gauss-Bonnet theorem. Thus the bending energy UB,rim due to the local deformation near

the rim (over an area ∼ bR) is:

UB,rim ∼ κCrr
2bR ∼ κRd2/b3. (3)

For the stretching component, γθθ ∼ d/R and γrr is negligible here [51]. Thus the stretching

energy contribution near the rim is:

US,rim ∼ hY γθθ
2bR ∼ hY bd2/R. (4)

Minimizing UB,rim + US,rim gives b ∼√
hR. Plugging this back into Equations 3 and 4, the

total elastic energy is

UB,rim + US,rim ∼ hY d2
√

h/R. (5)

Taking the derivative of the total elastic energy with respect to d and equating the result to the

pushing force F , we find d ∼ (R/h)3/2F/(Y R). Thus Crr ∼ d/b2 ∼ (R/h)5/2F/(Y R3), and

|Crr/Cθθ| ∼ (R/h)5/2F/(Y R2). All the scaling relations obtained here agree with the numerical

results presented in the previous section.

2. Analytical solutions for c-cones

The deformation of shells of revolution under symmetrical loading is a classical problem [41,

42, 48, 49]. The governing Föppl-von Kármán equations[32] are 4th order nonlinear differential

equations. The analysis is greatly simplified by treating the limiting regime of weak loading, so

that the equations can be linearized in the deformation. From the linearized solution, we may

then verify that for loading forces of interest, the linearized treatment is completely valid for

asymptotically thin sheets.

For a c-cone, assuming that the supporting container’s rim is infinitely hard (i.e. the range of

the normal force from the rim is close to zero), φ satisfies the following differential equations as

shown in Appendix B:

r2
d4φ

dr4
+ 4r

d3φ

dr3
+ A1φ =

⎧⎪⎨
⎪⎩
−A1A2

r
for r < R csc(θ0)

0 for r > R csc(θ0)
, (6)

where θ0 is half of the underlying cone’s opening angle, A1 = 12(1− ν2) cot2(θ0)/h
2, and A2 =

F sec2(θ0)/(2πY h).
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These equations have closed form solutions in terms of Bessel functions. For r > R csc(θ0),

the equation is homogeneous and its general solution is [41, 42]

φ(r) =B1[bei(ζ) +
2

ζ
ber′(ζ)] +B2[ber(ζ)− 2

ζ
bei′(ζ)]

+B3[kei(ζ) +
2

ζ
ker′(ζ)] +B4[ker(ζ)− 2

ζ
kei′(ζ)]

, (7)

where ζ = 2 4
√
12(1− ν2)r2 tan2(θ0)/h2, and a prime is differentiation with respect to ζ . The ber,

bei, ker, and kei functions are known as the Thomson or Kelvin functions [42, 50]. Evidently φ

goes to zero for large r. However, bei and ber diverges there, and are linearly independent. Thus

their coefficients B1 and B2 must vanish. The solution for the r < R csc(θ0) has an extra term:

φ(r) =B5[bei(ζ) +
2

ζ
ber′(ζ)] +B6[ber(ζ)− 2

ζ
bei′(ζ)]

+B7[kei(ζ) +
2

ζ
ker′(ζ)] +B8[ker(ζ)− 2

ζ
kei′(ζ)]

− A2/r

. (8)

Even though kei(ζ) and ker(ζ) are divergent at ζ = 0, the kei and ker terms are needed to balance

the A2/r term that also diverges at the apex. However, kei(ζ) and ker(ζ) decreases almost expo-

nentially as ζ increases, so these two terms are negligible near the rim. For our purpose of getting

the radial profile of Crr near the rim, the term −A2/r can also be ignored because it changes in

length scale ∼ R, which is much larger than the width of the rim region. The contribution of

this term to Crr at the rim is vanishingly small compared with the Crr we got from numerical

simulations and scaling arguments:
[
d

dr
(−A2/r)/Crr

]
r=R csc(θ0)

∼ A2

R2

Y R3

(R/h)5/2F
∼ (

h

R
)3/2. (9)

We conclude from the preceding reasoning that it is sufficient to specify B3, B4, B5, and

B6 for the inner and outer regions. To determine these four coefficients, we may use the four

matching conditions applicable at the forcing point r = R csc(θ0): φ is continuous and equal

to zero , the curvature dφ/dr is also continuous, and there is a jump for d2φ/d2r which equals

−F/(2π sin(θ0)κR). The last condition is due to the assumption that the rim of the supporting

container is infinitely hard. Any localized force on an elastic sheet produces a discontinuity of

curvature derivative of this type [32].

Finally, we can compare the radial profile of Crr from analytical solution with that from nu-

merical simulation. The overall excellent agreement between them, as shown in Figure 11, gives
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convincing evidence that our numerical results are valid. It should be stressed that there is no nor-

malization in either axis. The 15% difference between the peak values are primarily due to three

factors. First, as noted in Section II the percentage uncertainty of the rim curvatures from simu-

lation is about 11%. Second, the analytical solution assumes an infinitely sharp container edge,

but the force range of the normal force used in the simulation is close to 7% of the full-width-

at-half-maximum (FWHM) of the peak for this specific c-cone. Third, the local lattice spacing

in the radial direction is also about 7% of the FWHM. The last two factors cause the simulated

curve to have a rounded peak. The effect of the finite thickness of the sheet is negligible here since

the thickness is less than a tenth of the normal force range. Finite size of the simulation can also

influence the curvature profile.

In addition to the stronger peak, the analytical solution shown in Figure 11 has a 10% stronger

dip on either side. We believe this is due to the local compensation of Gaussian curvature [36],

which requires the integral under the curve to be zero. So if the analytical solution has extra area

under the peak, it must have extra negative area at the dips.

Over the full range of the c-cone sheet thickness covered in our simulation, the peak values

of the Crr at the rim from simulation is lower than that given by the analytical solutions by be-

tween 10% and 15%. We should expect a similar level of discrepancy between the simulation and

analytical solutions for the d-cone. Thus the lowest |Crr/Cθθ| value achieved for d-cones in our

simulations may increase from 0.76 to a value as high as 0.87, which is much closer to 1, but this

level of discrepancy should have no material impact on the scaling relationship between |Crr/Cθθ|,
h, and F , which is the much stronger evidence that |Crr/Cθθ| at the rim will drop below one and

keep decreasing as the thickness of the sheet approaches zero.

V. DISCUSSION AND CONCLUSION

In this paper we have shown numerically that contrary to previous claims, the mean curvature

at the rim in a d-cone does not vanish as the thickness of the sheet goes to zero. This vanishing

requires that |Crr/Cθθ| goes to 1. However, in the range we studied, |Crr/Cθθ| at the rim appears to

vary as (h/R)1/3. More generally, in both c-cones and d-cones, |Crr/Cθθ| ∼ (R/h)5/2F/(Y R2).

These identical scaling laws and the similarity of the radial profiles of Crr in d-cones and c-cones

suggest that the core region of a d-cone has no influence on how the rim region reacts to the normal

rim force pressure. The core region only affects the amplitude of the rim force pressure.
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Figure 11: (Color online) Radial profiles of Crr in a c-cone from both numerical simulations and analytical

solutions. Crr is in units of 1/R. The peak value from simulations is about 15% lower than that from

analytical solutions. The sheet here is the thinnest used in simulations with relative thickness h/R =

0.00029.

This paper does not attempt to determine the right scaling law for the pushing force F in a

d-cone. Simply combining the derived h−5/2F scaling law with the numerically observed h1/3

scaling law for |Crr/Cθθ| will give F ∼ Y h3/R(h/R)−1/6. There is another proposed functional

form for F : F ∼ Y h3/R ln(Rp/Rc), where Rp is radius of the sheet, and Rc ∼ h1/3R2/3 is the

radius of the core region [8, 24]. The first force scaling is asymptotically much stronger than

the second one with the logarithmic term. However, within the dynamic range covered in our

simulations, the fit for these two functional forms are equally good. It should also be mentioned

that some researchers have expressed doubts on the arguments leading to the second functional

form[23, 26]. Our work in progress aims to resolve this issue.
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Appendices

Appendix A: Formulas for strain and curvature tensors

1. Formulas for the strain tensor

This subsection derives the expression for strain tensor γ in terms of the changes of edge lengths

Δd1, Δd2 and Δd3 in an arbitrary triangle ABC as shown in Figure 3(a) and 3(b).

In Figure 3(a), let the coordinates of A, B, and C be (0, 0), (xB, yB), and (xC , 0), respectively.

When triangle ABC is under strain, as shown in Figure 3(b), denote the changes of xB , yB, and xC

as ΔxB , ΔyB, and ΔxC , and the new coordinates of A, B, and C are (0, 0), (xB+ΔxB , yB+ΔyB),

and (xC + ΔxC , 0). For a general point (x, y) in the triangle, let us denote its displacement

as (ux, uy), so its coordinate due to deformation is (x + ux, y + uy). Under the assumption of

infinitesimal constant strain across the triangle, ∂ux

∂x
, ∂ux

∂y
, ∂uy

∂x
, and ∂uy

∂y
should be constants. We

can also expand the displacement of points B and C in terms of these partial derivatives:

ΔxB =
∂ux

∂x
xB +

∂ux

∂y
yB + higher order terms , (A1)

ΔyB =
∂uy

∂x
xB +

∂uy

∂y
yB + higher order terms , (A2)

ΔxC =
∂ux

∂x
xC + higher order terms , (A3)

ΔyC =
∂uy

∂x
xC + higher order terms = 0 . (A4)

Ignoring the higher order terms, we can solve Equations A1, A2,A3,and A4 for ∂ux

∂x
, ∂ux

∂y
, ∂uy

∂x
, and

∂uy

∂y
:

∂ux

∂x
=

ΔxC

xC
, (A5)

∂ux

∂y
=

ΔxB

yB
− xBΔxC

yBxC
, (A6)

∂uy

∂x
= 0 , (A7)

∂uy

∂y
=

ΔyB
yB

. (A8)
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Then we can easily get the strain tensor elements [32]:

γxx =
∂ux

∂x
=

ΔxC

xC

, (A9)

γyy =
∂uy

∂y
=

ΔyB
yB

, (A10)

γxy = γyx =
1

2
(
∂ux

∂y
+

∂uy

∂x
) =

1

2
(
ΔxB

yB
− xBΔxC

yBxC
) , (A11)

or in matrix form: ⎡
⎢⎢⎢⎣
γxx

γyy

γxy

⎤
⎥⎥⎥⎦ = S

⎡
⎢⎢⎢⎣
ΔxB

ΔyB

ΔxC

⎤
⎥⎥⎥⎦ , (A12)

where

S =

⎡
⎢⎢⎢⎣

0 0 1
xC

0 1
yB

0

1
2yB

0 − xB

2yBxC

⎤
⎥⎥⎥⎦ . (A13)

We have determined the elements of γ in terms of ΔxB , ΔyB, and ΔxC , but it is much more

efficient to compute Δd1, Δd2, and Δd3 during simulating, so let us find the expression for ΔxB ,

ΔyB , and ΔxC in terms of Δd1, Δd2, and Δd3, and then express γ in terms of Δd1, Δd2, and

Δd3.

The change of length for edge AB is:

Δd1 =
√
(xB +ΔxB)2 + (yB +ΔyB)2 −

√
x2
B + y2B

=
xB√

x2
B + y2B

ΔxB +
yB√

x2
B + y2B

ΔyB + higher order terms . (A14)

Similarly, we can express Δd2 and Δd3 in terms of ΔxB , ΔyB, and ΔxC :

Δd2 =
xB − xC√

(xB − xC)2 + y2B
(ΔxB −ΔxC) +

yB√
(xB − xC)2 + y2B

ΔyB

+ higher order terms , (A15)

Δd3 = ΔxC . (A16)

Let us ignore the higher order terms and rewrite Equations A14, A15, and A16 in matrix form:
⎡
⎢⎢⎢⎣
Δd1

Δd2

Δd3

⎤
⎥⎥⎥⎦ = G

⎡
⎢⎢⎢⎣
ΔxB

ΔyB

ΔxC

⎤
⎥⎥⎥⎦ , (A17)
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where

G =

⎡
⎢⎢⎢⎢⎣

xB√
x2
B+y2B

yB√
x2
B+y2B

0

xB−xC√
(xB−xC)2+y2B

xC−xB√
(xB−xC)2+y2B

yB√
(xB−xC)2+y2B

0 0 1

⎤
⎥⎥⎥⎥⎦ . (A18)

Combining Equations A12 and A17:
⎡
⎢⎢⎢⎣
γxx

γyy

γxy

⎤
⎥⎥⎥⎦ = SG−1

⎡
⎢⎢⎢⎣
Δd1

Δd2

Δd3

⎤
⎥⎥⎥⎦ , (A19)

where G−1 means the inverse of G. Since both S and G depend only on xB , yB, and xC , the

matrix SG−1 is determined by the initial geometry of the triangle and can be calculated at program

initialization.

2. Formulas for the curvature tensor

To calculate the curvature tensor on an arbitrary triangle, e.g. triangle ABC in Figure 4, we

can fit the coordinates of the six vertices of its three adjoining triangles to the following function

[18, 23]:

zi = a1 + a2xi + a3yi + a4x
2
i + a5xiyi + a6y

2
i , i = A , . . . , F (A20)

where (xi, yi, zi) are coordinates of the vertices in a local coordinate system. In this system, the z

axis is perpendicular to ABC and its origin is at the center of ABC. These choices ensure that a2

and a3 are negligible. Then the curvature tensor elements are determined through [18, 23]

Cxx = 2a4 , Cxy = a5 , Cyy = 2a6 . (A21)

If we ignore the changes in the xi and yi, the coefficient matrix in Equation A20 will stay the

same during the simulation, which means for each triangle we only need to invert the coefficient

matrix once at program initialization. Under the assumption that both bending and stretching are

infinitesimal, this simplification will result in a second order error in the curvature tensor.

In this local coordinate system, zA, zB , and zC are all zero by the choice of the z axis. The

other three nonzero z coordinates zD, zE, and zF can be determined from the three dihedral angles

between ABC and its three adjoining neighbors. For example, zD ≈ dD,ACθ1, where dD,AC is the
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distance from point D to edge AC. So, alternatively, we can also determine the curvature tensor

from the three dihedral angles θ1, θ2, and θ3.

This method works for both uniform and variable lattices.

Appendix B: Analytical solutions for c-cones

W+dW

W

T

T+dT

ρ

ρ+dρ

F

p

rθ0

Figure 12: (Color online) Edge view of an element along the meridian in a c-cone. W and T are the axial

and radial forces per unit length. ρ is the radial distance from the axis, and r is the meridional length

(equivalent to the radial distance from the apex in the material coordinate). For an ideal c-cone, the normal

pressure p is zero everywhere except at the rim. F and θ0 are the central pushing force and the half opening

angle, respectively.

Ref. [42] provides detailed information on the general theory of symmetrically loaded shells of

revolution, including conical shells. Its derivation assumes that the deformation is small relative

to the size of the structure, but may be comparable to the thickness. In this regime, both bending

and in-plane stretching may occur and thus need to be considered together. However, for many

problems only the force and moment balance of the undistorted element is needed, and the result-

ing equations are normally linear. Here, we will simply quote the relevant equations presented
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in Ref. [42] and use them to find the specific equations for c-cones assuming that the supporting

container’s rim is infinitely hard.

As shown in Figure 12, p, W , and T are the pressure, axial and radial forces per unit length,

respectively. ρ is the radial distance from the axis and it is related to r through ρ = r sin(θ0). In a

conical shell these variable and φ satisfy the following equations according to Ref. [42]:

Wρ = −
∫

pρdρ+ V , (B1)

κ sin(θ0)[ρ
d

dρ
{1
ρ

d

dρ
(ρφ)}] + Tρ cot(θ0) = −

∫
pρdρ+ V , (B2)

sin(θ0)[ρ
d

dρ
{1
ρ

d

dρ
(ρ2T )}]− hY φ cot(θ0) = cos(θ0)[

d

dρ
(pρ2)− 1

ρ

∫
pρdρ+

V

ρ
] , (B3)

where V is a constant of integration. It is worth noting that these equations are derived for sheets

whose unstressed (or undeformed) state has curvature, but we find that they are also valid when

the unstressed state is flat.

Since we assume the supporting container’s rim is infinitely hard, using the balance of force it

is straightforward to determine that in c-cones W has the following functional form:

W =
F

2πρ
H(R− ρ) (B4)

where H(x) is the Heaviside step function. Combining Equations B1 and B4, we can get:

p =
F

2πR
δ(ρ− R) , and V =

F

2π
, (B5)

where δ(x) is the Dirac delta function. Plugging this into Equations B2 and B3 and replacing ρ

with r sin(θ0) yield:

r
d2φ

dr2
+

dφ

dr
− φ

r
+

Tr cos(θ0)

κ
=

⎧⎪⎨
⎪⎩

F
2πκ

for r < R csc(θ0)

0 for r > R csc(θ0)
, (B6)

r
d2(Tr)

dr2
+

d(Tr)

dr
− (Tr)

r
− hY φ cos(θ0)

sin2(θ0)
=

⎧⎪⎨
⎪⎩

F cos(θ0)

2πr sin2(θ0)
for r < R csc(θ0)

0 for r > R csc(θ0)
. (B7)

Equation B6 can be rewritten to get an explicit expression for Tr:

Tr = −κ sec(θ0)[r
d2φ

dr2
+

dφ

dr
− φ

r
] +

⎧⎪⎨
⎪⎩

F sec(θ0)
2π

for r < R csc(θ0)

0 for r > R csc(θ0)
, (B8)
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Plugging Equation B8 into Equation B7, we can get a forth order partial differential equation

for φ:

r2
d4φ

dr4
+ 4r

d3φ

dr3
+

hY φ

κ
cot2(θ0) =

⎧⎪⎨
⎪⎩
−F csc2(θ0)

2πrκ
for r < R csc(θ0)

0 for r > R csc(θ0)
(B9)

which is equivalent to Equation 6.
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[49] W. Flügge, Stresses in Shells (Springer-Verlag, Berlin, 1960).

24



[50] G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, 1944), 2nd

ed.

[51] Due to the local deformation, the length of the meridian within a distance of b increases by ur ∼
√
d2 + b2−b ∼ d2/b, but the stretching due to this elongation is spread over a distance much larger than

b. This can be shown through the following exercise. For the cone shown in Figure 2(a), let us remove

the top part that is above the rim, fix the outer edge, and pull the top edge of the remaining cone along

the meridian away from the outer edge by a distance of ur. Then γrr ∼ ur/X and γθθ ∼ ur/R, where

X is the decay length of γrr. The resulting total stretching energy will be Eh[(ur/X)2+(ur/R)2]RX.

Minimizing this energy gives X ∼ R.

25


