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We study numerically the behavior of one-dimensional arrays of aqueous droplets containing the 

oscillatory Belousov-Zhabotinsky reaction.  Droplets are separated by an oil phase that allows 

coupling between neighboring droplets via two species: an inhibitor, Br2, and an activator, 

HBrO2.  Excitatory coupling alone (through the activator) generates in-phase oscillations and/or 

“waves”, while inhibitory coupling alone (through Br2) gives rise to anti-phase oscillations, 

Turing patterns, and their combinations.  The simultaneous presence of excitatory and inhibitory 

coupling leads to a large number of new spatio-temporal patterns, including some that exhibit 

very complex behavior.  Analysis of a simple model allows us to simulate patterns resembling 

those observed experimentally under similar conditions and to elucidate the contributions of 

droplet and gap sizes, activator and inhibitor partition coefficients, and malonic acid 

concentration to the coupling strengths. 
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1. Introduction.  

 The study of coupled oscillators is one of the most important subfields of nonlinear 

science [1-6].  Synchronization, for example, arises from the coupling of oscillators in physics 

(e.g., Huygens’s clocks [7]), chemistry [1], and biology (e.g., in coupled neurons [8]).  Such 

phenomena as quorum sensing [9,10] result primarily from excitatory, i.e., attractive, coupling 

between oscillators, while multistability and multirhythmicity are due to inhibitory, or repulsive, 

coupling [11,12].   

 Recently, we developed a new experimental system for studying coupled chemical 

oscillators with local inhibitory coupling, consisting of an array of small (≅ 100 μm in diameter) 

identical water droplets separated by a surfactant monolayer from an oil phase and/or from each 

other.  In the latter case, two monolayers of touching droplets can produce a bilayer [13,14].  

Each droplet contains the reactants of the oscillatory Belousov-Zhabotinsky (BZ) reaction 

[15,16]: malonic acid (MA), bromate, sulfuric acid, ferroin (catalyst), and a small amount of 

Ru(bpy)3
2+, which serves both as a cocatalyst and to make the BZ reaction photosensitive.  

Droplets are diffusively coupled through species dissolved in the oil phase, mainly Br2, the 

inhibitor. 

 In that system, employing both one-dimensional (1D) [13] and two-dimensional (2D) 

[17] geometries, we observed a number of spatiotemporal patterns consisting of both oscillatory 

and stationary droplets.  In 1D, we found Turing-like patterns, with mixtures of droplets in 

oxidized and reduced steady states, as well as anti-phase synchronization of oscillating drops.  In 

a “1.5D” geometry consisting of two closely packed arrays of droplets in a capillary with a 

diameter between one and two times the droplet diameter, or in a hexagonal 2D geometry, we 

observed more complex patterns.  In 1.5D, for example, we found one row of stationary droplets 
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and a second row of droplets oscillating anti-phase.  The 2D phenomena include “π-S” patterns, 

in which in each triangle of adjacent droplets one is stationary and the other two oscillate 

antiphase, and “2π/3” patterns, in which the three droplets of a triangle oscillate 2π/3 out of 

phase with one another [17].  We were also able to generate in-phase synchronization (analogous 

to quorum sensing [10]) in 1D by initially synchronizing all droplets in our photosensitive 

system with a pulse of illumination.  However, this regime is only metastable: after some time, 

one droplet suddenly undergoes a phase shift, which propagates through the system, eventually 

leading to the anti-phase regime.  Such behavior is characteristic of strong inhibitory coupling.  

 In further experiments [18], we have discovered new synchronous regimes in a 1D array 

of coupled BZ droplets, in which two or three adjacent droplets oscillate in-phase, while 

neighboring doublets or triplets oscillate anti-phase with respect to one another.  These 

experiments involve (i) a perfluorinated oil (3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-

trifluoromethyl-hexane) that increases the solubility of uncharged polar molecules, like the 

activator HBrO2, and decreases the solubility of hydrophobic molecules, like Br2, (ii) smaller  

gaps, or even no gaps, between water droplets, with the likely formation of a bilayer membrane 

between droplets in the case of direct contact, and (iii) a lower initial concentration of MA.  In-

phase oscillations have also been observed in an analogous system, in which the BZ water 

droplets in the continuous oil phase (squalane with the lipid mono-olein as the surfactant),  were 

in contact, forming a bilayer [14].  We suggest that the patterns found emerge due to a 

combination of inhibitory and excitatory coupling. Here, we present theoretical support for this 

hypothesis, focusing on the effects of droplet spacing, partition coefficient, and MA 

concentration on coupling strength and pattern formation.  
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 In Section 2 we describe, with the aid of partial differential equations (PDEs), a simple 

coupling between two water droplets separated by an oil gap as a reaction-diffusion problem.  In 

Section 3, we depict the same situation by means of ordinary differential equations (ODEs) and 

compare the results with those obtained from the corresponding PDEs to obtain an appropriate 

form for the coupling term in the ODE treatment.  In Section 4, we introduce our model for the 

BZ reaction and describe two BZ droplets coupled via activator and inhibitor with different 

coupling strengths.  In Section 5, we extend our simulations to several (3 - 9) coupled in-line 

droplets.  We conclude with a discussion in Section 6. 

 

2.  Coupling as a reaction-diffusion process (PDEs) 

 First, we simulate, using PDEs in 1D, the process of mass exchange between two water 

droplets, each of length a, separated by an oil gap of length b.   In our simulations we use the 

software package FlexPDE [19], with a typical error (ERRLIM) of 4.0 × 10-7 for each variable in 

each spatial cell.  In this section, we consider only one species, U.  We vary the partition 

coefficient, PU, of the diffusing molecule, labeled as U1 or U2 when it is present in water droplets 

1 or 2, respectively, and as S in the oil gap.  Thus PU = s0/u10 = s0/u20, where the subscript 0 

designates equilibrium concentrations, and u1 = 10
[U ]d /ξ∫

a
a , u2 = 2[U ]d /

+

+
ξ∫

2a b

a b
a , and s = 

[S]d /
+

ξ∫
a b

a
b , where ξ is the spatial coordinate with origin at the left end of droplet 1 (the oil gap 

and droplet 2 are to the right).  To mimic the coupling between BZ droplets during the period of 

fast autocatalytic increase of activator followed by its fast decrease, we apply a short (Δt = 0.2 s) 

pulse to droplet 1 that increases the concentration u1 from u10 to a maximum (u1_max = 10-4), 

allow the system to evolve for a time tp (usually larger than Δt, tp ≅ 2 s, similar to the duration of 
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the HBrO2 pulse in the BZ reaction), and then apply to droplet 1 a negative pulse of the same 

magnitude and duration as the initial positive pulse (see Fig. 1c). Details of the PDEs, boundary 

conditions, and the procedure are given in Appendix 1 and in ref. [20].  At the end of the 

negative pulse, we measure the concentration of U2, u2p, and calculate the response, R = 2(u2p - 

u20)/u1_max.  If the coupling is very strong, the response is equal to unity, while for very weak 

coupling R is close to zero.  The quantity R reflects the largest concentration of species U (above 

the equilibrium level u20) that temporarily emerges in droplet 2 due to mass transport from 

droplet 1 under the condition that the pulse period tp is comparable to or longer than the diffusion 

times, a2/(2D) or b2/(2D).  If a and b are too small and a2/(2D) << tp and b2/(2D) << tp, the 

coupling is obviously strong, but R is close to 0, since droplets 1 and 2 are almost in equilibrium.  

Another criterion for “strong” coupling may be chosen, though in this case the two regions are so 

close to each other that they should not be considered to be separate from a dynamical point of 

view.  

 In Fig. 1b, we observe a roughly inverse parabolic dependence of R on ln(PU), i.e., R 

approaches zero at both high and low values of PU and reaches a maximum in the neighborhood of 

PU = 0.1 - 1 (the maximum depends on a and b).  Intuitively, the response R is proportional to the 

rate of transfer of U from droplet 1 to droplet 2 and to the amount of U transferred.  The rate of 

transfer is proportional to the diffusion characteristics (like a2/D and b2/D), while the amount 

transferred depends on the partition coefficient, PU.  The amount of U transferred from droplet 1 to 

the gap is small if PU is small, and the amount of U transferred from the gap to droplet 2 (the 

reverse process) is small when the partition coefficient is large.  Fig. 1b shows that if PU is small 

(e.g., 0.001 or 0.01, as expected for polar molecules) then the response R, which is correlated with 

the coupling strength, is also small.  The opposite is also true: if PU is too large, the response R is 
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small.  In some sense, the dependence of R on PU is similar to the function 1( 1/ )−+x x , which has 

a maximum at x = 1.  

 Figure 1a demonstrates that if we decrease the gap (the length, b, or the diffusion time, td = 

b2/DS), the response increases.  Comparing curves 1 and 2 in Fig. 1a, we see that the maximum 

value of R is almost the same for large and small PU (PU = 1 for curve 1 and PU = 0.01 for curve 

2).  A decrease in the droplet length a (curve 3) leads to an increase in R (compare curves 2 and 3 

in Fig. 1a, as well as curves 1 and 2 in Fig. 1b) due to faster transport of U molecules from distant 

portions of the droplet to the water/oil boundary, while a decrease in DS (curve 4) results in smaller 

R because of slower diffusion through the gap.   Thus, this set of computer experiments suggests 

that, even for rather small values of PU, the coupling between water droplets can be effective if the 

oil gap is small enough.   

 

3. Coupling described by ODEs  

 To test the roles of inhibitory and excitatory coupling, we should examine BZ droplets, 

i.e., an appropriate mathematical model of the BZ reaction.  However even relatively simple BZ 

models, like the Oregonator [21], require significant computational time if they are employed in 

PDEs for systems of many coupled droplets.  It is considerably easier to work with ODEs.  To do 

this, we need to express the mass exchange process described above by PDEs in terms of ODEs.  

Although such a replacement of PDEs by ODEs can never be done exactly, as we have shown 

elsewhere [20], an adequate set of ODEs for this case is  

 du1/dt = kfrVPU(s12/PU - u1)/(1 + rVPU)      (1) 

ds12/dt = kfrV
2PU(u1 + u2 - 2s12/PU)/(1 + rVPU)   (2) 

 du2/dt = kfrVPU(s12/PU – u2)/(1 + rVPU)      (3) 
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where we introduce the subindex 12 for molecules in the oil gap between droplets 1 and 2. In one 

spatial dimension, rV and kf are given by  

rV = a/b;  kf ≅ 2D/a2         (4) 

i.e., rV is the volume ratio between a water droplet and an oil gap for a 1D configuration, where a 

is the size of a water droplet.  The physical meaning of kf is that kf
-1 is the mean time for a 

species with diffusion coefficient D to diffuse across the distance a.  The expression  

CU ≡ kfrVPU/(1 + rVPU)       (5) 

in eqs. (1)-(3) can be called the coupling strength.  If rVPU >> 1, then CU tends to kf and is 

independent of rV or PU.  Note that conservation of mass follows from (1)-(3)  

u1 + s12/rV + u2 = constant        (6) 

 To examine how well eqs. (1)-(3) capture the behavior of the system, we consider Fig. 

1d, as well as curve 5 in Fig. 1a and curve 3 in Fig. 1b, obtained from integration of ODEs (1)-

(3).  Comparing Figs. 1c and 1d, we see that the ODE kinetics is very similar to the PDE 

kinetics.  This similarity holds for other parameters a, b, PU, and D.  Curves 3 and 4 in Fig. 1b 

are obtained at the same value of rV and are quite close to one another.  The coincidence of 

curves 2 and 5 (obtained at the same PU) in Fig. 1a is less good, but still reasonable.  We 

therefore have confidence that we can describe the mass exchange process by the ODEs (1)-(3).   

 

4. Two coupled BZ droplets 

  4.1  Model 

 A mathematical model designed to describe the BZ reaction in water droplets should 

include Br2, the inhibitor that diffuses through the oil gap, in addition to the three variables used 
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in the Oregonator.  Previously, we developed such a four-variable model that was capable of 

describing complex phenomena including jumping waves [22].  

dx/dt = - k1xy + k2y - 2k3x2 + k4x(c0 - z)/(c0 - z + cmin)    (7) 

dy/dt = -3k1xy - 2k2y - k3x2 + k7u + k9z + P(I)     (8) 

dz/dt = 2k4x(c0 - z)/(c0 - z + cmin) - k9z - k10z + P(I)    (9) 

  du/dt = 2k1xy + k2y + k3x2 - k7u        (10) 

where x, y, z, and u are the concentrations of activator (HBrO2), inhibitor (Br−), oxidized form of 

the catalyst (ferriin), and Br2 (in water droplets), respectively; c0 is the total concentration of 

catalyst (ferroin + ferriin); P(I) = k(I)(c0 - z)/(bC/b + 1) is a term directly proportional to the 

intensity of illumination, k(I), which can be introduced to characterize experiments with light 

perturbation; and ki are rate constants: k1 = k1′h, k1′ = 2 × 106 M-2s-1, k2 = k2′h2A, k2′ = 2 M-3s-1, k3 

= 3000 M-1s-1, k4 = k4′hA, k4′ = 42 M-2s-1, k7 = k7′[MA], k7′ = 29 M-1s-1, k9 = k9′[MA], k10 = 

k10′[MA], k10′ = 0.05 M-1s-1; cmin = [2kr(k9 + k10)c0]0.5/kred, kr = 2 × 108 M-1s-1, kred = 5 × 106 M-1 

s-1.   In general, the constant k9′ depends on the concentration of BrMA (bromomalonic acid), 

which in turn depends on [MA], [Br2] and the time since mixing the reagents, since the 

production of BrMA is a slow process.  The concentrations of MA, Br2, and BrMA in water 

droplets depend in turn on partition coefficients of these species between water and oil.  To 

simplify the situation, we choose k9′ = 0.07 M-1s-1 (in a few simulations we used k9′ = 0.12 

M-1s-1), which gives the best fit between the experimental and theoretical z-profiles.  In most of 

our simulations, h = [H+] = 0.15 M and A = [BrO3
−] = 0.3 M. 

 The ODEs in model (7)-(10) are quite stiff, with the characteristic time for autocatalysis 

around 1 s and the period of oscillations around 1000 s.  In the numerical integration algorithm, 

the time step is automatically adjusted between about ca. 10-3 s and 10 s.   
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 Model (7)-(10) was reduced from the Field-Körös-Noyes (FKN) model of the BZ 

reaction [23] and used by us previously in simulations of coupled BZ droplets [13].  The full 

FKN model contains the radical BrO2
•, which plays the role of activator and can diffuse in the oil 

gap, potentially leading to excitatory coupling.  However, our simulations reveal that such 

coupling is very weak [13] and cannot lead to in-phase oscillations of neighboring droplets at a 

reasonable coupling strength.  Therefore there is no need to use the more complex FKN model, 

and it suffices to use model (7)-(10), which contains the same primary activator, HBrO2, as the 

FKN model. 

 Our hypothesis, which is supported by experimental results [18], is that the activator x is 

also able to diffuse in the oil gap or through the bilayer membrane, where we call it w.  The 

partition coefficients for Br2, PU, and for HBrO2, PX, differ significantly.  In separate 

experiments, we measured the partition coefficient PU for the fluorinated oil and found that PU = 

2.5, while PX is unknown but probably smaller than 0.1, since HBrO2 (which quickly 

disproportionates via the reaction 2HBrO2 →  BrO3
− + HOBr + H+) is a polar molecule and 

poorly soluble in the hydrophobic oil.  We next seek to understand why the experimentally found 

patterns, in which in-phase oscillating pairs or trios of BZ droplets oscillate anti-phase with one 

another, occur only at small [MA], which is incorporated into the rate constants k7, k9, and k10.  

To answer this question, we analyze first a pair of coupled BZ droplets, i.e., a combination of 

eqs. (1)-(3) and (7)-(10), where eqs. (1)-(3) are applied to both variables u and x.  For example, 

the final equations for the variable x are written as  

dx1/dt = - k1x1y1 + k2y1 - 2k3x1
2 + k4x1(c0 - z1)/(c0 - z1 + cmin) + CX(w12/PX - x1)  (11) 

dw12/dt  = rVCX(x1 + x2 - 2w12/PX)        (12) 

dx2/dt = - k1x2y2 + k2y2 - 2k3x2
2 + k4x2(c0 – z2)/(c0 – z2 + cmin) + CX(w12/PX - x2)  (13) 
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where 

 CX = kfrVPX/(1 + rVPX)      (14)   

Note that the coupling strengths CX (excitatory) and CU (inhibitory) are different, owing to the 

different partition coefficients, PX and PU (unless rV is so large that rVPX >> 1).  Note also that if 

rV is very large, w12 rapidly reaches equilibrium, and, by setting dw12/dt = 0 in eq. (12), we have 

w12/PX = (x1 + x2)/2.  In this case, the coupling term in eqs. (11) and (13) assumes the familiar 

form ±CX(x1 – x2)/2, and the meaning of the coupling strength CX is more evident.   

 

  4.2  Results 

 Simulating our system of two coupled BZ oscillators at different parameters kf, rV, PX, 

and [MA], we find three different stable regimes (or modes), i.e., qualitatively different 

dynamical behaviors, (i) in-phase (IP) oscillations, (ii) anti-phase (AP) oscillations, and (iii) a so-

called stationary Turing (T) mode, or inhomogeneous steady state (in the last case, the catalyst 

concentration , z, is close to its maximum, c0, in one cell and is almost zero in the other cell).  

Such modes have been found in many other systems of two coupled identical oscillators 

[11,24,25]. There are two other dynamical modes of two coupled BZ oscillators at rather small 

rV, when a << b:  (iv) one oscillator exhibits large amplitude oscillations (with the amplitude of z 

close to c0) and the other shows small amplitude oscillations (less than 0.01c0), i.e., almost 

suppressed oscillations; (v) a chaotic-like mode at still smaller rV, in which both oscillators 

demonstrate alternating bursting with different numbers of spikes in each burst.  We do not 

consider these modes further, since a > b (rV > 1) in our experiments. Note also that an 

“oscillator death” or “amplitude death” mode, in which both oscillators are in the same steady 

state [26], is theoretically possible, though we did not observe this mode in our simulations. 
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 For two coupled BZ oscillators, the IP mode exists for any parameters, but it is stable to 

large-amplitude perturbations only in a limited region of the parameter space, which we 

designate as IP. We refer to the other regions as AP/IP or simply AP (where AP oscillations are 

stable, while IP is unstable to large-amplitude perturbation) and T/IP or simply T.  Bistability 

between IP and AP oscillations (or between IP and T regimes) has been observed in other 

systems of two coupled oscillators  [7,11,27].  We also find bistability between the T and AP 

regimes.  The typical shape of AP oscillations is shown in Fig. 2a.  Close to the AP/T transition, 

the AP oscillations assume the shape presented in Fig. 2b.   

 To examine the four-dimensional parameter space (kf, rV, PX, and [MA]), we fixed two 

parameters and allowed the other two to vary.  This variation can be performed in two different 

ways.  In the first, a parameter is changed in small increments or decrements using the final state 

found with the previous parameter set as the initial state for the new parameters (“slow” 

variation).  Alternatively, we can select values of our variables that correspond to a chosen mode, 

for example, AP oscillations, and use these initial conditions at a set of parameters that can be 

quite different from those at which this probe mode was obtained (“fast” variation).  Note also 

that increasing kf corresponds to decreasing a and proportionally lowering b, since rV = constant 

[see eq. (4)].  Increasing PX implies an increase in the coupling strength CX only, which can be 

useful for analyzing the role of excitatory coupling.  Increasing rV corresponds to a decrease in b 

(since kf and a are constants).  Under the condition that rV >1 (and consequently rVPU > 1), an 

increase in rV mainly leads to an increase in CX (and only a slight increase in CU) as well as a 

decrease in the average delay time between an “action” in cell 1 (2) and a “response” in cell 2 

(1).  In general, parameters rV and kf can be converted to parameters a and b [using eq. (4)] and 

the alternative parameter space (a, b, PX, and [MA]) can be considered.  
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 Results of our simulations are shown in Figures 3-7.  In cases of the kf -PX, kf –[MA], and 

[MA] - PX parameter planes with “slow” variation of parameters, the three regions (or domains), 

IP, T, and AP, merge at a triple-point, a point where curves 1, 2, and 3 intersect.  For example, in 

Fig. 3a, the AP-domain is situated to the left of curves 1 and 3, the IP-domain is above curves 1 

and 2, while the T-domain is below curve 2 and to the right of curve 3.  The T-domain is 

subdivided into three regions which we explain later.   The position of the triple-point is strongly 

dependent on the other parameters, for example, on kf, as shown in Figs. 3a and 2b, Fig. 5a and 

5b, and Fig. 7.   If the system switches to IP oscillations, then it remains there through any 

further small change of parameters (however if an asymmetric perturbation is large enough, the 

system can switch to either AP or Turing mode depending on its position in the parameter 

space).  Therefore the transitions from AP to IP and from T to IP are unidirectional and are 

marked by single -headed arrows in all figures.  The AP/T transition is reversible and can occur 

with or without hysteresis (i.e., subcritical or supercritical).  A supercritical AP/T transition (via 

a supercritical Hopf bifurcation of the inhomogeneous steady state) is found in the kf – [MA] 

plane (Fig. 4a) and in the [MA] - PX plane (Fig. 5b) and is marked by a bidirectional arrow.  

 If the AP/T transition is subcritical, a region emerges in which both AP oscillations and 

the T-mode coexist. This region is marked as “AP/T” and lies between curves 3, 4, and 6 in 

Figures 3a, 3b and 4a, as well as between curves 1 and 3 in Fig. 5a.  Curve 6 (in Figs. 3a, 3b, and 

4a) marks the transition from AP to T, while curve 4 marks the AP/IP transition.   

 In Fig. 3c and 3d, we show where the various transitions occur if one parameter changes 

slowly.  These two figures help to understand the transitions shown in Fig. 3a.  Analogously, 

Figures 4b and 4c help to understand better the peculiar transitions happened in the kf-[MA] 

parametric plane (Fig. 4a).  For example, if we start at [MA] = 1 M at kf = 2.3 s-1 (Fig. 4b) and 
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decrease [MA], AP oscillations become unstable at [MA] ≅ 0.7 M.  However, at smaller [MA], 

between 0.09 M and 0.15 M, AP oscillations are stable again.  At still smaller [MA], below 0.09 

M, the Turing mode emerges supercritically.  

 Curve 5 in Fig. 3a, 3b, and Fig. 4a shows the result of using a fixed set of initial 

conditions (here corresponding to AP oscillations) as a probe to explore the parameter planes  

(“fast” variation).  If the final pair of parameters (for example, PX and kf in Fig. 3a) belongs to 

the AP/T domain, we obtain AP oscillations.   If this pair lies inside the small T-domain 

(between and below curves 5 and 6), then we obtain the T mode.  If the parameters are inside the 

T/IP domain (between curves 2, 4, and 5), then the final behavior is IP oscillations.  Thus, curve 

5 separates the regions where IP oscillation is more or less probable than the T mode.  Between 

curves 5 and 6 (the small T-domain), IP oscillations are also possible, but are unstable to large-

amplitude perturbations.  Analogously, in the AP/T region, AP oscillations are more probable 

than the T mode.  Note that all three types of dynamical behavior (including IP) are possible in 

the AP/T domain, depending on initial conditions.   

 In Fig. 6a, we examine the dependence of the boundary between the IP and AP (or 

AP/IP) domains in the rV-PX parametric plane as a function of [MA] (this line corresponds to 

curve 1 in Figs. 3a, 3b, 4a, and 5).  The AP/IP region shrinks as [MA] decreases, which suggests 

that at small [MA] in-phase oscillations are more stable for a set of N BZ droplets, and, as a 

result, pairs of oscillating in-phase neighboring BZ drops can emerge.  Curves 1 – 4 in Fig. 6a 

are well approximated as 

PX = constant/rV        (15) 

i.e., the product rVPX determines the boundary between the IP and AP/IP domains.  This product 

also determines the coupling strength CX [see eq. (14)].  In general, the boundary between the IP 
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and AP/IP regions at constant [MA] and kf depends on the ratio between the coupling strengths 

CU and CX; an increase in CU favors AP oscillations, whereas an increase in CX promotes IP 

oscillations (see Fig. 6b). 

 

  4.3  Analysis 

 In an effort to understand in greater depth why a decrease in [MA] broadens the IP 

region, we plot the ratios between the activator (x) and inhibitor (y and u) concentrations during 

the autocatalytic spike in the BZ reaction.  In Figs. 6c and 6d, we see that these ratios depend 

strongly on [MA], and consequently the sensitivity of the system to inhibitory and excitatory 

coupling should also depend on [MA].  However, as is often the case in nonlinear systems, a 

simple interpretation without a detailed analysis is elusive.  Such a detailed analysis was done 

recently for two coupled Huygens clocks oscillating in a harmonic regime [7], but we are 

unaware of similar analyses for a pair of coupled chemical relaxation oscillators.  

 Since the system behavior is most sensitive to parameter changes near the triple point,and 

since the region of tristability (domain AP/T) is very close to the triple point, it is important to 

determine the position of the triple  points in the parameter space.  Eqs. (14) and (15) suggest 

that changes in rV can be compensated by varying PX.  Therefore we fix rV = 10 and reduce the 

4-dimensional parameter space to a 3-dimensional space: PX, kf, and [MA].   

 The trajectory of the triple point in the kf-PX-[MA] space is shown in Fig. 7a as two 

projections “Px” and “MA” on the kf-PX and kf-[MA] planes, respectively.  Both lines “Px” and 

“MA” are well fitted by power dependences PX = C1kf
−0.65 and [MA] = C2kf

0.56, respectively.  To 

clarify how  “Px” is obtained, we copy in Fig. 7b curves 1a and 1b which are the boundaries 

between the IP and AP domains in Figs. 3a and 3b, respectively.  The bottom ends of these lines 
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are the triple points at [MA] = 0.03 M and 0.056 M.  The dotted line connecting the ends of these 

lines is a portion of  the line “Px” in Fig. 7a.  

 Finally, note that the period of IP oscillations is always shorter than the period of AP 

oscillations.  This difference, which ranges from a few percent to a factor of two, depending on 

the coupling strength CU, is one of the reasons for the very complex behavior we find when more 

than two identical BZ droplets are coupled.  

 

5. Several (3 to 9) coupled BZ droplets 

 Now we seek to answer our main question, i.e., how the combination of excitatory and 

inhibitory coupling affects pattern formation in a 1D array of BZ droplets.  Armed with our 

knowledge of how the boundaries between the IP, AP, and T regions depend on [MA] and the 

coupling strength (including parameters kf, PX, and rV), we can now simulate 1D arrays of 

coupled BZ droplets similar to those studied experimentally [18] and theoretically [13].  We pay 

special attention to parameter regions where bi- or tristability between different dynamical 

modes occurs in the case of two coupled oscillators.  However, comparison between modes 

found for two and N coupled oscillators should be done with caution.   

 

  5.1  Model equations 

 We consider here two different boundary conditions, fixed value and periodic (i.e., 

circularly coupled oscillators).  If we use symmetrical fixed value boundary conditions and oil 

drops are placed at the ends of our linear array of droplets, then the oil drop at the left end is 

described by the following equations:  

dsL/dt = rVkfrVPU(uL + u1 - 2sL/PU)/(1 + rVPU)    (16) 
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dwL/dt = rVkfrVPX(xL + x1 - 2wL/PX)/(1 + rVPX)     (17) 

The subindex L refers to the leftmost oil droplet.  Similar equations hold for the rightmost 

droplet with L replaced by R, 1 by N, and uL = uR = uT, xL = xR= xT.  In this case, the two end 

droplets are not identical with the other N-2 droplets, since they interact with the constant 

concentrations of inhibitor, uL, and activator, xL.  If our boundaries are instead impermeable 

walls, then uT = xT = 0.  In some of our experiments, we observe two (or more) stationary 

droplets (either in oxidized or reduced states) between which there are several oscillatory 

droplets.  To simulate the dynamics of a set of these oscillatory droplets, we can use fixed values 

uT and xT corresponding to the concentrations of u and x in the adjacent stationary droplets.  

Usually these adjacent stationary droplets are in the reduced state, and the concentrations of uT 

and xT can be taken from simulations of stationary Turing-like patterns.  We use uT ≅ 4 × 10-6 M 

and xT = (6-7) × 10-8 M for our chosen concentrations of [H+], [BrO3
−], and [MA]. 

For a 1D array of N water droplets with fixed-value boundary conditions, the equations 

are 

  dxn/dt = - k1xnyn + k2yn - 2k3xn
2 + k4xn(c0 - zn)/(c0 - zn + cmin) +  

kfrVPX(wn-1,n/PX + wn,n+1/PX - 2xn)/(1 + rVPX)  (18) 

  dyn/dt = -3k1xnyn - 2k2yn - k3xn
2 + k7un + k9zn       (19) 

 dzn/dt = 2k4xn (c0 - zn)/(c0 - zn + cmin) - k9zn - k10zn          (20) 

   dun/dt = 2k1xnyn + k2yn + k3xn
2 - k7un + 

kfrVPU(sn-1,n/PU + sn,n+1/PU - 2un)/(1 + rVPU)   (21) 

              dsn,n+1/dt   =  rVkfrVPU(un + un+1 - 2sn,n+1/PU)/(1 + rVPU)          (22) 

             dwn,n+1/dt  = rVkfrVPX(xn + xn+1 - 2wn,n+1/PX)/(1 + rVPX)                    (23) 

for n = 1, 2,..., N, with s0,1≡ sL, w0,1≡ wL, sN,N+1≡ sR, wN,N+1≡ wR. 
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 For periodic boundary conditions, uL and xL in eqs. (16) and (17) are replaced by uN and 

xN, respectively; sL and wL are renamed as s1,N and w1,N, respectively, and the variables sR and wR 

are eliminated.  In other words, droplets 1 and N are neighbors.  

 Each water droplet, except the two end droplets in the case of fixed value boundary 

conditions, has two neighboring water droplets, whereas in the case of two coupled oscillators, 

each droplet has only one neighbor.  Therefore, the coupling strength for N linearly coupled 

droplets (N > 2) is effectively doubled (at the same kf, PX, and rV) relative to the case of two 

coupled droplets.  

 In our previous simulations with the FKN model [13], we found several exotic modes for 

even numbers (4 or 6) of coupled oscillators, while these modes were not found for odd numbers 

of oscillators (5, for example).  This means that at least some of these modes are “symmetry- 

sensitive”.  Therefore, we must examine arrays with both even and odd numbers of water 

droplets if we want to find modes that are “stable” with respect to the number of oscillators.  

This observation gives rise to a more general question: how many droplets are needed to 

represent a very large row of water droplets in a capillary?  In our experiments we have several 

tens or even hundreds of BZ droplets separated by oil gaps.  Can we simulate the behavior of 

such a large array of droplets using fewer than 10 droplets?   

 

  5.2  Results 

 We first present selected space-time plots obtained by numerical integration of eqs. (16)-

(23) for a variety of parameters and initial conditions for periodic boundary conditions and arrays 

of three to nine water droplets.  We investigate how the number of droplets, N, affects the 

observed patterns.  To do this, we fix all parameters ([MA] = 0.02 M, rV = 10, kf = 0.45 s-1) 
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except PX.  For each array size N, we vary PX and select different initial conditions to find as 

many different patterns as we can.  Note that this method cannot guarantee finding all possible 

patterns, since the number of initial conditions is infinite, but we think that we have found all 

major patterns, since we investigated a wide range of initial conditions including anti-phase, in-

phase, Turing-like patterns, and combinations of them, as well as more complex patterns 

obtained in the course of simulations.  The results of these simulations are shown in Figs. 8 – 13.   

 In these numerical experiments, the parameters are chosen in such a way that the system 

exhibits Turing (T) patterns at small PX (< 0.001) and in-phase (IP) oscillations at large PX (> 

0.01).   If the parameter kf (= 0.45 s-1 in these set of simulations) is decreased below 0.35 s-1, AP 

emerges at small PX instead of Turing patterns (an example of such AP patterns is shown in Fig. 

11a).  Therefore, we are close to the AP/T boundary at small PX.  In the range of PX between 

0.001 and 0.01, there are many different patterns, including anti-phase oscillatory clusters 

(APOC) and anti-phase oscillatory clusters with common droplet(s) (APOCwCD).  For 3 

droplets (Fig. 8b), we find APOC in which one cluster consists of two droplets, while the other 

consists of a single droplet.  In the case of 4 droplets (Fig. 8f), both clusters consist of two 

droplets.  In addition to APOC, two new patterns emerge: anti-phase oscillations (AP) (Fig. 8e) 

and APOCwCD (Fig. 8g).  AP patterns exist only for even numbers of droplets (4, 6 and 8) and 

are unstable to large perturbations at our chosen parameters.  APOCwCD patterns usually lie 

between APOC and IP patterns in the parameter space.  In Fig. 8g, the two anti-phase oscillatory 

clusters consist of single droplets, numbers 2 and 4 (numbering from the left), while the common 

droplets, which oscillate with double frequency, are droplets 1 and 3.  

 With 5 and 6 droplets (Figs. 9 and 10), an additional pattern emerges (see Figs. 9b and 

10d) that we call APOC(1:2)wSD (anti-phase oscillatory clusters with special droplet).  The ratio 
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(1:2) signifies that the droplets in one cluster (droplets 3 and 5 in Fig. 9b) have one spike per 

period, while droplets in the other cluster (droplets 1 and 2 in Fig. 9b) exhibit two spikes.  

Oscillations of the special droplet (droplet 4 in Fig. 9b and droplet 1 in Fig. 10d) have a profile 

like the one in Fig. 2b.  The patterns shown in Figs. 9d and 9e can be considered as intermediate 

between APOC and APOCwCD.  The numbers of droplets in the clusters of the APOC patterns 

are 2 and 3 in Fig. 9c and 3 and 3 in Fig. 10c. 

 We do not find any new patterns with 7 droplets (Fig. 11).  We see T-patterns, 

APOC(1:2)wSD, and APOC.  In Fig. 11a, we show what happens to the AP patterns that emerge 

at small kf in the case of odd numbers of droplets: two droplets start oscillating in-phase, 

destroying the very symmetric AP patterns (like those in Figs. 10b or 12b) 

 Increasing the number of droplets to 8 (Fig. 12), we observe another new pattern that can 

be called “moving defects” (Figs. 12c and 12d).  The defect is a phase shift between oscillatory 

clusters, but the constitution of these clusters is not stationary in time.  A cluster can lose one or 

two droplets and acquire another one or two neighboring droplets, giving the appearance of 

moving defects.  An analogous moving defect (which reflects from the ends of the droplet array) 

is observed for 6 coupled droplets with fixed-value boundary conditions at slightly different 

parameters (Fig. 12g).  The APOCwCD pattern in Fig. 12f is similar to the pattern in Fig. 8g, 

except that the anti-phase oscillatory clusters now consist of three droplets (2-4 for one cluster 

and 6-8 for the other). 

 In the case of 9 droplets (Fig. 13), we again find new patterns, shown in Figs. 13b-d and 

13f.  The pattern in Fig. 13b is similar to APOC(1:2)wSD, but we now have three clusters, and 

we designate the pattern as APOC(1:2:2)wSD.  The oscillations of the special droplet, 5, in Fig. 
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13c are also new, with alternating long and short spikes.  The pattern in Fig. 13f resembles 

APOCwCD but with defects.   

 We conclude that an increase in the number of droplets leads in general to the emergence 

of qualitatively new patterns.  It appears that a relatively small number of droplets cannot be 

representative of a long sequence of coupled droplets.  However, some specific (and relatively 

simple) patterns in large arrays can be simulated with a small number of drops.  The range of PX 

at which generic patterns like T or APOC survive depends on the number, N, of droplets.  For 

example, the PX-ranges for APOC patterns are 0.0035-0.004 for N = 3, 0.001-0.005 for N = 4, 

0.003-0.004 for N = 5, 0.002-0.007 for N = 6, and 0.003-0.007 for N = 7.  Note also that different 

patterns can coexist at the same parameters, and this coexistence is also N-dependent.   

 In the above described set of computer experiments with periodic boundary conditions, 

we were able to reproduce APOCwCD patterns seen in our experiments, but with one 

discrepancy: our APOCwCD patterns are not surrounded by stationary (Turing) droplets, as they 

are in experiment.  We now examine what happens if we use fixed-value boundary conditions.  

First, we show in Fig. 14 that different boundary conditions give rise to entirely different 

patterns: for periodic boundary conditions (Fig. 14a), we see anti-phase oscillations that look like 

cascade patterns (since the phase shift between neighboring droplets is not exactly T/2); 

combinations of stationary and anti-phase oscillatory droplets are shown in Fig. 14b (uT= 4 × 

10−6 M, xT = 6 × 10−8 M); and Turing patterns are presented in Fig. 14c (uT= xT = 0).  

 In Fig. 15, we exhibit patterns found for uT= 4 × 10−6 M and xT = 6 × 10−8 M boundary 

conditions when we vary PX.  For this set of experiments, kf was chosen in such a way (kf = 0.3 

s-1) that our system tends to go to AP or cascade oscillations at small PX.  However, due to the 

boundary conditions, the two end droplets do not oscillate in Fig. 15a.  An increase in PX leads to 
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complex patterns (Fig. 15b and 15c) in which the number of neighboring droplets oscillating in-

phase increases.  At still larger PX, APOC patterns (Fig. 15d), a mixture between APOC and 

APOCwCD patterns (Fig. 15e) emerge.  Finally, at sufficiently large PX, only IP patterns remain. 

 Next we consider what happens if we vary kf (Fig.16 and 17) or [MA] (Fig. 18).  In Fig. 

16, we show patterns observed at small PX and uT= xT = 0 for 6 droplets.  At kf = 0.2, we find 3 

different patterns (Fig. 16a-c).  Patterns in Figs. 16a and 16b are combinations of 4 stationary 

and 2 oscillatory droplets either anti-phase (Figs. 16a) or in-phase (Figs. 16b). These two 

patterns demonstrate that stationary droplets can coexist with oscillating droplets at fixed value 

boundary conditions.  In Figs. 16c and 16d, we see complex patterns with very long global 

periods Tg equal to 5379 s and 8312 s, respectively, while the average period between two spikes 

is 672-768 s for Fig. 16c and 831-1039 s for Fig. 16d (different droplets have different average 

periods).  At larger kf (0.4-0.5 s-1), we see different Turing patterns (Figs. 16e and 16f).  

 In Fig. 17, we show patterns observed at large PX and  uT= 4 × 10−6 M, xT = 7 × 10−8 M 

for N = 5.  There are no stationary droplets at this set of parameters (except “droplets 0 and N+1” 

that constitute the fixed-value boundary conditions).  At kf = 0.1 (Fig. 17a), we see APOC 

patterns.  The patterns in Figs. 17b and 17c are mixtures of APOC and APOCwCD patterns.  At 

still larger kf (Fig. 17d), we have the striking APOCwCD pattern, observed experimentally, in 

which the central droplet has double frequency, alternately flashing in-phase with its two 

neighbors to the left and right. At still larger kf (Fig. 17e), the system goes to IP patterns.  

 Fig. 18, in which we vary [MA], is interesting because IP patterns are found both at small 

(0.02-0.025 M) and at large (0.2-0.8 M) concentrations of MA, while APOCwCD and similar 

patterns are found at moderate [MA].  Thus, if we start our experiment at relatively large [MA], 

we first see IP patterns , then as [MA] decreases we obtain anti-phase clusters of in-phase 
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oscillating neighboring droplets, but finally, at very small [MA], we return to IP patterns, now 

with a long period. 

 

6. Discussion and Conclusion 

 By including both excitatory and inhibitory coupling in our simulations, we have found 

many new periodic regimes, both simple and complex, in a system of diffusively coupled 

chemical oscillators in 1D.  These patterns, which are very similar to those found experimentally 

[18], occur at small distances between BZ droplets or even when BZ droplets are in contact, and 

at relatively small concentrations of malonic acid.  Whereas inhibitory coupling is effective at 

both small and large gaps between BZ droplets (up to 300 μm [13]), excitatory coupling through 

the polar activator, HBrO2, diffusing through the oil gap, is effective only for very small gaps 

and relatively high partition coefficient PX (but still much smaller than PU), which requires an oil 

with a relatively high dielectric constant like HFE-7500 [18].  

 Though our model assumes the presence of a hydrophobic oil gap between water droplets 

and different partition coefficients for the activator and inhibitor in this gap, it is easily extended 

to the case of a hydrophobic bilayer membrane between water droplets [14], simply by 

considering PX as the partition coefficient between the bilayer and the aqueous phase, as well as 

by reducing b (the size of the gap) to a few nanometers (in Fig. 1a, the smallest value of td/tp = 

10-6 corresponds to 60 nm).  Note that transfer of a polar molecule from water to water through a 

narrow hydrophobic region is considered here as a simple classical passage over a potential 

barrier, where the particle has a larger energy than the barrier potential.  

 Our computer simulations reveal a large number of different regimes, presented as space-

time plots, in a rather narrow region of coupling strengths, CX (activator) and CU (inhibitor).  If 
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CX increases at constant CU, the system goes to the IP regime, while if CX decreases, we see the 

AP regime or Turing patterns (depending on CU).   The contribution of kf to the coupling 

strengths, CX and CU, appears to be critical for the emergence of Turing patterns.  We note the 

prevalence of multistability, i.e., the existence of multiple stable patterns, depending on initial 

conditions, at the same set of parameters, particularly for larger droplet arrays.  Note also that the 

spatially extended system corresponding to system (7)-(10), but with normalized diffusion 

coefficients DU = 1, DX << 1 (since CX << CU), and DY = DZ = 0 (since molecules Y and Z 

cannot diffuse outside the water droplets) has Turing and Hopf or saddle instabilities (with two 

positive eigenvalues at wavelength k = 0).  Interaction between Turing and Hopf or between 

Turing and saddle instabilities can lead to several phenomena, including in-phase and anti-phase 

oscillatory Turing patterns [28-31].  In a narrow region between in-phase and anti-phase 

oscillatory Turing patterns, chaotic-like behavior has been observed in computer simulations 

[28,29].  We suggest that something similar can occur in the present system of coupled BZ 

oscillators, i.e., in a narrow region of parameters CX and CU, between the in-phase and anti-phase 

regimes, chaotic-like behavior or a very complex periodic pattern with a very long global period 

becomes possible, and many different and less complex periodic regimes arise close to the 

chaotic-like regime.  Note also that no chaotic-like behavior is observed for two coupled BZ 

droplets.   

 Our investigations show that we can control and change patterns by tuning the coupling 

strengths CX and CU, either by varying the distance between droplets or by modifying the 

partition coefficients of the activator and/or the inhibitor.  Of course, it is difficult, perhaps 

impossible, to change the partition coefficients after the system is prepared.  It may be possible, 

however, to control the coupling strengths by introducing into the gap species that can react 
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selectively with the activator or the inhibitor.  The distance between droplets also can be 

controlled dynamically by using, for example, a gel [32] whose volume is sensitive to the redox 

potential of the catalyst, Ru(bpy)3.  Such experiments might lead to materials with interesting, 

and potentially useful, patterns of chemomechanical transduction.  This notion might be tested 

by incorporating mechanical forces into the reaction-diffusion model used here [33]. 

 Note also that different regimes (like IP, Turing or AP) of initially identical coupled cells 

lead to different consumption of initial reagents, like MA or BrO3
-, by these cells, which in turn 

leads to deviations in the natural frequencies of the oscillatory droplets (if they are uncoupled).  

These dynamically induced variations in the individual cell dynamics may lead in turn to new 

dynamical patterns of the coupled oscillators.  Small differences in droplet size, a, and in gap 

size, b, inherent in the experiments, result in a form of noise in the coupling strength between 

droplets, which may also lead to new dynamical regimes.  We saw that fixed-value boundary 

conditions, which affect only the end droplets, resulted in new patterns (see, for example, Fig. 

14).  Therefore it seems likely that variations of a or b can also induce the emergence of new 

patterns.  

 Note also that our inhibitor is Br2, not Br-, which is usually considered to be the inhibitor 

in the BZ reaction.  If we use Br- as the inhibitor in our simulations (hypothetically, since Br- 

cannot diffuse in the oil phase), we are not able to find Turing patterns, and anti-phase 

oscillations of two inhibitorily coupled BZ droplets occur only in a very narrow parametric 

region.  A detailed consideration of the different inhibitory roles of Br2 and Br- is beyond the 

scope of this work.  

 Koseska et al. [34] recently analyzed a model system of 2-18 globally coupled (through a 

mean field concentration of signaling molecule) synthetic genetic oscillators (“repressilators”).  
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They also observed multiple attractors whose numbers increased with the number of oscillators, 

and they suggest that the formation of clusters in these patterns may provide a mechanism for 

dynamical differentiation in biological systems, with the size of the population playing “a crucial 

role in determining which dynamical behavior is likely to be dominant”. It has also been 

suggested that an appropriate balance between inhibitory and excitatory synapses [8,35] is 

needed to maintain the brain in a regime that lies close to the chaotic one, since the information 

capacity of such a regime is maximal [36].  Perhaps the present system, since it can be easily 

tuned, may provide a useful analog amenable to detailed analysis. 
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Figure captions  

 

Figure 1.  Simulated coupling of droplets. (a) Curves 1-4 are from PDE simulations.  curve 1: a 

= 0.01 cm, PU= 1, DS = 10-5 cm2 s-1; curve 2: a = 0.01 cm, PU = 0.01, DS = 10-5 cm2 s-1; curve 3: a 

= 0.003 cm, PU = 0.01, DS = 10-5 cm2 s-1;  curve 4: a = 0.003 cm, PU = 0.01, DS = 10-6 cm2 s-1.  

Curve 5 is obtained from an ODE simulation at PU = 0.01 and kf = 0.3 s-1.  Time tp = 1.7 s, td = 

b2/(2DS) for PDEs and  td = PU/(rVkf) for ODEs,  since td = kb
-1 = PU/(rVkf).  (b) Curves 1, 2, and 

4 are from PDE (at DU = DS = 10-5 cm2 s-1), curve 3 from ODEs.  Curve 1: a = 5 × 10-4 cm, b = 2 

× 10-3 cm; curve 2: a = b = 2 × 10-3 cm; curve 4: a = 1 × 10-2 cm, b = 3 × 10-4 cm; curve 3: kf = 

0.3 s-1, rV = 33 ( = a/b for curve 4).  (c) typical kinetics obtained from PDEs, a = 1 × 10-2 cm, b = 

3 × 10-4 cm; PU = 1, u1 = ∫0audx/a, s = ∫aa+bsdx/b, u2 = ∫a+b
2a+budx/a, DU = DS = 10-5 cm2 s-1.  (d) 

typical kinetics obtained from ODEs, kf = 1, rV = 10, PU = 1.  No flux boundary conditions are 

used for PDE simulations.  u1_max in panels (a) and (c) is 10-4. 

 

Figure 2.  AP oscillations.  Shape (a) is “normal”, while shape (b) occurs close to the AP/T 

boundary.  Parameters: kf = 2 s-1, rV = 10, PX = 0.003, [MA] = (a) 0.3 M, (b) 0.085 M.   

 

Figure 3.  Parametric plane kf-PX  (a and b) showing three possible regimes (dynamical 

behavior) of two coupled BZ oscillators, IP, in-phase oscillations; AP, anti-phase oscillations; 

and T, Turing-like stationary pattern (= two different stable steady states) at [MA] = (a) 0.03 M 

and (b) 0.056 M. Panels (c) and (d) are the dependences of the regimes on PX (c) and kf (d) at 

constant kf (= 1 s-1) and PX (= 0.0015), respectively, at [MA] = 0.03 M.  In all cases,  rV = 10; PU 

= 2.5.  In panels (a) and (b), curve 1 marks the transition from AP to IP, curve 2 marks the 
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transition from T to IP, curve 3 is the transition from T to AP, curve 4 is for the transition from 

AP to IP, curve 6 is the transition from AP to T regime, if the parameter (kf or PX) is changed by 

small steps.  Curve 5 is explained in the text.  

 

Figure 4. Parametric plane kf-[MA] (a) shows three different regimes of two coupled BZ 

oscillators: IP, AP, and T.  Panels (b) and (c) are the dependences of the regimes on [MA] at 

constant kf = 2.3 s-1 for (b) and 1.2 s-1 for (c).  Parameters: PX = 0.003, rV = 10; PU = 2.5.  Curves 

1 – 6 in (a) have the same meaning as in Fig. 3.  Note that on part of curve 3 (near the triple 

point, where the AP, IP, and T domains merge), the transitions from T to AP and vice versa 

occur at the same parameters without hysteresis.  This transition is marked by a two-headed 

arrow.  

 

Figure 5.  Parametric planes [MA]-PX at kf = (a) 0.5 s-1 and (b) 2 s-1.  The transition from T to 

AP (curve 3) is unidirectional at kf = 0.5 s-1 and bidirectional (without hysteresis) at kf = 2 s-1.  

Curve 1 (the transition from AP to IP) has a continuation in the T domain at kf = 0.5 s-1.  Curve 1′ 

in (a) is just a copy of curve 1 in (b) for easier comparison of the two parametric planes.  

 

Figure 6. (a) rV-PX parametric plane divided by four straight lines obtained at different [MA]; 

(b) CU-CX parametric plane; since CU < kf and kf = 1 s-1, CU cannot be larger than 1 s-1 in this 

case.  (c) and (d) kinetic curves at different [MA].  Parameters: k9′ = 0.12 M-1s-1, (a) kf = 0.3 s-1,  

[MA]/M = (1) 0.5, (2) 0.2, (3) 0.08, (4) 0.02; (b) kf = 1 s-1, [MA] = 0.1 M, rV and PX are varied; 

(c), (d) [MA]/M = (1) 1.5, (2) 0.6, (3) 0.3, (4) 0.1, (5) 0.04.  Time t = 7 s in (c) and (d) 

corresponds to the maximum of the activator concentration (peak of the autocatalysis). 
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Figure 7.  Trajectory of the triple point in the 3D space kf -PX - [MA] presented as two 

projections on the kf -PX and kf -[MA] planes: curves “PX” and “MA”, respectively.  Parameters: 

rV = 10, PU = 2.5.  Dotted line in (b) is a segment of  “PX” in (a).  Curves 1a and 1b in (b) 

correspond to curves 1 in Figs. 3(a) and 3(b), respectively.   

 

 

Figure 8. (Color online) (a)-(c). Space-time plots for 3 circularly coupled droplets. (a) Turing 

pattern, (b) Anti-phase oscillatory clusters (APOC), (c) In-phase oscillations (IP).  Global period 

Tg/s = (b) 1421, (c) 1143.  T-patterns is observed at PX = 0-0.02, APOC at PX = 0.0035-0.004, IP 

exist at any PX.  (d)-(g). Patterns for 4 circularly coupled droplets. (d) T, (e) AP, (f) APOC, (g) 

Anti-phase oscillatory clusters with common droplet (APOCwCD); IP oscillations are not shown 

for 4 droplets, since they are the same with the same period, 1143 s, for any number of droplets.  

Global period Tg/s = (e) 1446, (f) 1398, (g) 1560.  T-pattern is observed at PX = 0-0.0045, AP at 

0-0.003, APOC at 0.001-0.005, and APOCwCD at 0.005-0.006. Parameters: [MA] = 0.02 M, kf 

= 0.45 s-1, h = 0.15 M, [A] = 0.3 M, PU = 2.5, rV = 10. 

 

Figure 9. (Color online) Patterns for 5 circularly coupled droplets. (a) T, (b) Two anti-phase 

oscillatory clusters with special droplet [2APOC(1:2)wSD], (c) APOC, patterns (d) and (e) can 

be interpreted (although not precisely) as mixtures of APOC and APOCwCD patterns.  Global 

period Tg/s = (b) 3367, (c) 1331, (d) 4175, (e) 2842.  T-pattern is observed at PX = 0-0.015, 

pattern (b) at 0.001-0.002, (c) 0.003-0.004, (d) 0.005, (e) 0.006-0.007.  At PX > 0.008, only IP 

oscillations exist. 
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Figure 10. (Color online) Patterns for 6 circularly coupled droplets. T-pattern in (a) is observed 

at PX = 0-0.02, (b) AP at 0 - 0.003, (c) APOC at 0.002-0.007, and (d) 2APOC(1:2)wSD at 

0.0025-0.0035.  At PX > 0.008, only IP oscillations exist.  Global period Tg/s = (b) 1451, (c) 

1285, (d) 2596. 

 

Figure 11. (Color online) Patterns for 7 circularly coupled droplets. Pattern (a) is observed at PX = 

0.003, (b) at PX = 0-0.0026, (c) 2APOC(1:2)wSD at 0.0028-0.0033, (d) 0.003-0.007.  At PX > 0.008, 

only IP oscillations exist.  Global period Tg/s = (a) 1164, (c) 2487, (d) 1260.   Parameters: [MA] = 0.02 

M, kf/s-1= (a) 0.3, (b)-(d 0.45, h = 0.15 M, [A] = 0.3 M, PU = 2.5, rV = 10.   Turing pattern at small PX 

is stable at kf > 0.4, while AP patterns [like (a) at kf = 0.3 s-1] are more stable at smaller kf.  Due to odd 

number of droplets and periodic boundary conditions, two droplets in (a) oscillate in-phase. 

 

Figure 12. (Color online) Patterns for 8 circularly coupled droplets [except (j), where 6 droplets and 

uT= xT = 0 boundary condition]. Patterns are observed at PX = (a) (T-pattern) 0 - 0.008, another Turing 

pattern (not shown) with droplets 1 and 4 in the oxidized state and all others in the reduced state is 

stable at PX = 0 - 0.0035, (b) (AP) 0 - 0.003, (c) (moving defect) 0.0033-0.004, (d) (moving defect) and 

(e) (APOC) 0.005, (f) (APOCwCD) 0.01.  Global period Tg/s = (b) 1452, (c) 3753, (d) 9210, (e) 1230, 

(f) 1300.  Parameters: [MA] = 0.02 M, kf =  0.45 s-1, h = 0.15 M, A = 0.3 M, PU = 2.5, rV = 10.  

Parameters for moving defect (g): 6 droplets, uT= xT = 0, [MA] = 0.06, kf = 0.138 s-1, PX = 0.1, h = 0.08 

M, A = 0.3 M.   
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Figure 13. (Color online) Patterns for 9 circularly coupled droplets. (a) T-pattern, (b) and (c) 

Three anti-phase oscillatory clusters with special droplet [3APOC(1:2:2)wSD], (d) similar to 

AOCwCD but one cluster consisting of droplets 1, 4-6, and 9 oscillates temporally and 

periodically with a small phase shift between droplets 1, 9 and droplets 4-6; (e) APOC, (f) 

similar to APOCwCD, but with two common droplets and one defect. Pattern (a) is observed at 

PX = 0.02, (b) at 0.002 – 0.003, (c) 0.0035, (d) and (e) 0.005, (f) 0.01.  Global period Tg/s = (b) 

2870, (c) 4260, (d) 2861, (e) 1214, (f) 8943.  Parameters as in Fig. 8. 

 

Figure 14. (Color online) Effect of boundary conditions on space-time plots for 5 droplets.  (a) 

Periodic boundary conditions; (b) uT= 4 × 10−6 M, xT = 6 × 10−8 M; (c) uT= xT = 0.  Parameters: 

[MA] = 0.03 M, kf = 0.3, PX = 0.001. h = 0.15 M, [A] = 0.3 M, PU = 2.5, rV = 10. (a) Cascade 

patterns (similar to AP), (b) Turing (drops 1, 2, and 5) plus AP, (c) T-patterns.  

 

Figure 15. (Color online) Space-time plots for 5 droplets coupled in-line with boundary 

conditions uT= 4 × 10−6 M and xT = 6 × 10−8 M for increasing PX = (a) 0.001-0.002, (b) and (c) 

0.005, (d) and (e) 0.01, (f) 0.03. Parameters:  [MA] = 0.04 M, kf = 0.3 s-1, h = 0.15 M, [A] = 0.3 

M, PU = 2.5, rV = 10. 

 

Figure 16. (Color online) Space-time plots for 6 droplets coupled in-line with boundary 

conditions uT= xT = 0 for increasing kf. kf/s-1= (a) 0.2, (b) 0.2-0.4, (c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5. 

Parameters: [MA] = 0.035 M, PX = 0.004; h = 0.15 M, A = 0.3 M, PU = 2.5, rV = 10. 
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Figure 17. (Color online) Space-time plots for 5 droplets coupled in-line with boundary 

conditions uT= 4 × 10−6 M and xT = 7 × 10−8 M for increasing kf.  kf/s-1= (a) 0.1, (b) 0.15, (c) 0.2, 

(d) 0.25-0.3, (e) 0.4.  Parameters: [MA] = 0.03 M, PX = 0.015;  h = 0.15 M, A = 0.3 M, PU = 2.5, 

rV = 10. 

 

Figure 18. (Color online) Space-time plots for 5 droplets coupled in-line with boundary 

conditions uT= 4 × 10−6 M and xT = 7 × 10−8 M for increasing [MA].  [MA]/M = (a) 0.02-0.025, 

(b) 0.03-0.035, (c) 0.05, (d) 0.1, (e) 0.2-0.8. Parameters: kf = 0.3 s-1, PX = 0.015. 

 

Figure 19. Scheme for two coupled droplets 
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Appendix 1. Mass exchange between two water droplets with length a and oil gap b is simulated 

by PDEs that describe the scheme shown in Figure 19.  

 

 

 

 

 

 

The passage of molecules through a liquid/liquid interface can be envisioned with the aid of a 

very thin (a few molecules wide) layer (boundary regions “m” with length m), where diffusion of 

both molecules U1 (U2) and S is allowed.  In these regions, we introduce equilibrium reactions: 

U1 ↔ S for the left boundary region “m” and U2 ↔ S for the right boundary region “m”. The rate 

constant for reaction U1 → S is kUS1 = 4000 s-1, which is chosen arbitrarily large. The rate 

constant for back reaction S → U1 is kSU1 = kUS1/PU, where PU is the partition coefficient. Similar 

expressions hold for the rate constants in the right boundary region “m” (constants kUS2 = kUS1 

and kSU2 = kSU1).  If length m is chosen very small (10-10 -10-9 nm), then the computation time 

becomes extremely long.  To overcome this technical problem, we increase m to 10-6 - 10-5 cm 

depending on the sizes a and b, which are kept two to three orders of magnitude larger than m.  

The constant kUS1 is chosen so large and the length m so small that their values have no effect on 

the dynamics of mass exchange.  The constants kUS2, kUS1, kSU2, and kSU1 are zero outside the 

regions “m”. Molecules S (U) cannot diffuse in regions “a” (“b”), but can diffuse in regions “m”.  

The PDEs then take the form  

∂[U1]/dt = - kUS1[U1] + kSU1[S] + P1 + DU∂2[U1]/dξ2      (A1) 

∂[S]/dt =  kUS1[U1] + kUS2[U2] - (kSU1 + kSU2)[S] +  DS∂2[S]/dξ2     (A2) 

∂[U2]/dt = - kUS2[U2] + kSU2[S] + DU∂2[U2]/dξ2       (A3) 

Fig. 19 
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where the perturbation P1 is composed of two pulses with “positive” amplitude A1 and 

“negative” amplitude A2 and is written as  

 P1 = [A1×UPULSE(t - t1, t - t2) - A2×UPULSE(t - t3, t - t4) ×  

    USTEP([U1] - [U1]0)]×USTEP(a - ξ)     (A4) 

where A1 = A2 = 5×10-4, Δt = t2 – t1 = t4 – t3 = 0.2 s, t1 = 1 s, t3 = 2.8 s.  The function USTEP(arg) 

is equal to 1 if the argument arg is positive and 0 if the argument is negative, the function 

UPULSE(arg1, arg2) is equal to 1 if arg1 is positive and arg2 is negative and 0 everywhere else.  

At A1 = 5 × 10-4 and t2 – t1 = 0.2, the maximum value of [U1] reaches approximately 10-4 (at t = 

t2), which is our value of u1_max used for calculating the response R = 2(u2p - u20)/u1_max, where 

u2p is the value of u2 = 2[U ]d /
+

+
ξ∫

2a b

a b
a  taken at the end of the “negative” pulse (with amplitude 

A2) at t = t4 = 3 s (u2 reaches its maximum value at that time in Fig. 1c and 1d).  Initial 

conditions: [U1] = [U1]0×USTEP(a - ξ), [S] = [S]0×UPULSE(ξ - a - m, ξ - a – b - m), [U2] = 

[U2]0×USTEP(ξ - a – b - 2m), [U1]0 = [U2]0 = 10-5, [S]0 = [U1]0PU.   

 


