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We study numerically the behavior of one-dimensional arrays of aqueous droplets containing the
oscillatory Belousov-Zhabotinsky reaction. Droplets are separated by an oil phase that allows
coupling between neighboring droplets via two species: an inhibitor, Br,, and an activator,
HBrO,. Excitatory coupling alone (through the activator) generates in-phase oscillations and/or
“waves”, while inhibitory coupling alone (through Br,) gives rise to anti-phase oscillations,
Turing patterns, and their combinations. The simultaneous presence of excitatory and inhibitory
coupling leads to a large number of new spatio-temporal patterns, including some that exhibit
very complex behavior. Analysis of a simple model allows us to simulate patterns resembling
those observed experimentally under similar conditions and to elucidate the contributions of
droplet and gap sizes, activator and inhibitor partition coefficients, and malonic acid

concentration to the coupling strengths.



1. Introduction.

The study of coupled oscillators is one of the most important subfields of nonlinear
science [1-6]. Synchronization, for example, arises from the coupling of oscillators in physics
(e.g., Huygens’s clocks [7]), chemistry [1], and biology (e.g., in coupled neurons [8]). Such
phenomena as quorum sensing [9,10] result primarily from excitatory, i.e., attractive, coupling
between oscillators, while multistability and multirhythmicity are due to inhibitory, or repulsive,
coupling [11,12].

Recently, we developed a new experimental system for studying coupled chemical
oscillators with local inhibitory coupling, consisting of an array of small (= 100 um in diameter)
identical water droplets separated by a surfactant monolayer from an oil phase and/or from each
other. In the latter case, two monolayers of touching droplets can produce a bilayer [13,14].
Each droplet contains the reactants of the oscillatory Belousov-Zhabotinsky (BZ) reaction
[15,16]: malonic acid (MA), bromate, sulfuric acid, ferroin (catalyst), and a small amount of
Ru(bpy)s>", which serves both as a cocatalyst and to make the BZ reaction photosensitive.
Droplets are diffusively coupled through species dissolved in the oil phase, mainly Br,, the
inhibitor.

In that system, employing both one-dimensional (1D) [13] and two-dimensional (2D)
[17] geometries, we observed a number of spatiotemporal patterns consisting of both oscillatory
and stationary droplets. In 1D, we found Turing-like patterns, with mixtures of droplets in
oxidized and reduced steady states, as well as anti-phase synchronization of oscillating drops. In
a “1.5D” geometry consisting of two closely packed arrays of droplets in a capillary with a
diameter between one and two times the droplet diameter, or in a hexagonal 2D geometry, we

observed more complex patterns. In 1.5D, for example, we found one row of stationary droplets



and a second row of droplets oscillating anti-phase. The 2D phenomena include “n-S” patterns,
in which in each triangle of adjacent droplets one is stationary and the other two oscillate
antiphase, and “2n/3” patterns, in which the three droplets of a triangle oscillate 27t/3 out of
phase with one another [17]. We were also able to generate in-phase synchronization (analogous
to quorum sensing [10]) in 1D by initially synchronizing all droplets in our photosensitive
system with a pulse of illumination. However, this regime is only metastable: after some time,
one droplet suddenly undergoes a phase shift, which propagates through the system, eventually
leading to the anti-phase regime. Such behavior is characteristic of strong inhibitory coupling.

In further experiments [18], we have discovered new synchronous regimes in a 1D array
of coupled BZ droplets, in which two or three adjacent droplets oscillate in-phase, while
neighboring doublets or triplets oscillate anti-phase with respect to one another. These
experiments involve (i) a perfluorinated oil (3-ethoxy-1,1,1,2,3,4.,4,5,5,6,6,6-dodecafluoro-2-
trifluoromethyl-hexane) that increases the solubility of uncharged polar molecules, like the
activator HBrO,, and decreases the solubility of hydrophobic molecules, like Br, (if) smaller
gaps, or even no gaps, between water droplets, with the likely formation of a bilayer membrane
between droplets in the case of direct contact, and (iii) a lower initial concentration of MA. In-
phase oscillations have also been observed in an analogous system, in which the BZ water
droplets in the continuous oil phase (squalane with the lipid mono-olein as the surfactant), were
in contact, forming a bilayer [14]. We suggest that the patterns found emerge due to a
combination of inhibitory and excitatory coupling. Here, we present theoretical support for this
hypothesis, focusing on the effects of droplet spacing, partition coefficient, and MA

concentration on coupling strength and pattern formation.



In Section 2 we describe, with the aid of partial differential equations (PDEs), a simple
coupling between two water droplets separated by an oil gap as a reaction-diffusion problem. In
Section 3, we depict the same situation by means of ordinary differential equations (ODEs) and
compare the results with those obtained from the corresponding PDEs to obtain an appropriate
form for the coupling term in the ODE treatment. In Section 4, we introduce our model for the
BZ reaction and describe two BZ droplets coupled via activator and inhibitor with different
coupling strengths. In Section 5, we extend our simulations to several (3 - 9) coupled in-line

droplets. We conclude with a discussion in Section 6.

2. Coupling as a reaction-diffusion process (PDEs)

First, we simulate, using PDEs in 1D, the process of mass exchange between two water
droplets, each of length a, separated by an oil gap of length . In our simulations we use the
software package FlexPDE [19], with a typical error (ERRLIM) of 4.0 x 107 for each variable in
each spatial cell. In this section, we consider only one species, U. We vary the partition
coefficient, Py, of the diffusing molecule, labeled as U; or U, when it is present in water droplets

1 or 2, respectively, and as S in the oil gap. Thus Py = so/u19 = So/t20, Where the subscript 0

designates equilibrium concentrations, and u; = I: [U1dE/a, u= I 2ab+b[U2]d§ /a,ands =

_[Mb[S]d& /b, where ¢ is the spatial coordinate with origin at the left end of droplet 1 (the oil gap

and droplet 2 are to the right). To mimic the coupling between BZ droplets during the period of
fast autocatalytic increase of activator followed by its fast decrease, we apply a short (A= 0.2 s)
pulse to droplet 1 that increases the concentration u; from u19 to a maximum (#; max = 10'4),

allow the system to evolve for a time #, (usually larger than A¢, ¢, = 2 s, similar to the duration of



the HBrO, pulse in the BZ reaction), and then apply to droplet 1 a negative pulse of the same
magnitude and duration as the initial positive pulse (see Fig. 1¢). Details of the PDEs, boundary
conditions, and the procedure are given in Appendix 1 and in ref. [20]. At the end of the
negative pulse, we measure the concentration of U», u,,, and calculate the response, R = 2(uy,, -
u20)/U1 max. 1f the coupling is very strong, the response is equal to unity, while for very weak
coupling R is close to zero. The quantity R reflects the largest concentration of species U (above
the equilibrium level uy) that temporarily emerges in droplet 2 due to mass transport from
droplet 1 under the condition that the pulse period ¢, is comparable to or longer than the diffusion
times, a*/(2D) or b*/(2D). If a and b are too small and a*/(2D) << t, and b*/(2D) << tp, the
coupling is obviously strong, but R is close to 0, since droplets 1 and 2 are almost in equilibrium.
Another criterion for “strong” coupling may be chosen, though in this case the two regions are so
close to each other that they should not be considered to be separate from a dynamical point of
view.

In Fig. 1b, we observe a roughly inverse parabolic dependence of R on In(Py), i.e., R
approaches zero at both high and low values of Py and reaches a maximum in the neighborhood of
Py =0.1 -1 (the maximum depends on @ and b). Intuitively, the response R is proportional to the
rate of transfer of U from droplet 1 to droplet 2 and to the amount of U transferred. The rate of
transfer is proportional to the diffusion characteristics (like a*/D and b*/D), while the amount
transferred depends on the partition coefficient, Py. The amount of U transferred from droplet 1 to
the gap is small if Py is small, and the amount of U transferred from the gap to droplet 2 (the
reverse process) is small when the partition coefficient is large. Fig. 1b shows that if Py is small
(e.g., 0.001 or 0.01, as expected for polar molecules) then the response R, which is correlated with

the coupling strength, is also small. The opposite is also true: if Py is too large, the response R is



small. In some sense, the dependence of R on Py is similar to the function (x+1/x)™", which has

a maximum atx = 1.

Figure 1a demonstrates that if we decrease the gap (the length, b, or the diffusion time, ¢4 =
b*/Ds), the response increases. Comparing curves 1 and 2 in Fig. 1a, we see that the maximum
value of R is almost the same for large and small Py (Py =1 for curve 1 and Py = 0.01 for curve
2). A decrease in the droplet length a (curve 3) leads to an increase in R (compare curves 2 and 3
in Fig. 1a, as well as curves 1 and 2 in Fig. 1b) due to faster transport of U molecules from distant
portions of the droplet to the water/oil boundary, while a decrease in Ds (curve 4) results in smaller
R because of slower diffusion through the gap. Thus, this set of computer experiments suggests
that, even for rather small values of Py, the coupling between water droplets can be effective if the

oil gap is small enough.

3. Coupling described by ODEs

To test the roles of inhibitory and excitatory coupling, we should examine BZ droplets,
i.e., an appropriate mathematical model of the BZ reaction. However even relatively simple BZ
models, like the Oregonator [21], require significant computational time if they are employed in
PDEs for systems of many coupled droplets. It is considerably easier to work with ODEs. To do
this, we need to express the mass exchange process described above by PDEs in terms of ODEs.
Although such a replacement of PDEs by ODEs can never be done exactly, as we have shown

elsewhere [20], an adequate set of ODEs for this case is

duy/de = kfl’vPU(Slz/PU - ul)/(l + I"VPU) (1)
dsy2/dt = kv Pu(uy + uy - 2512/Pu)/(1 + ryPy) 2)
duy/dt = kfl’vPU(Slz/PU — uz)/(l + ryPy) 3)



where we introduce the subindex 12 for molecules in the oil gap between droplets 1 and 2. In one
spatial dimension, ry and k¢ are given by

rv=alb; ke=2Dla’ (4)
1.e., ry is the volume ratio between a water droplet and an oil gap for a 1D configuration, where a
is the size of a water droplet. The physical meaning of k is that k' is the mean time for a
species with diffusion coefficient D to diffuse across the distance a. The expression

Cu = kervPu/(1 + ryPy) (%)
in egs. (1)-(3) can be called the coupling strength. If rvPy >> 1, then Cy tends to kr and is
independent of v or Py. Note that conservation of mass follows from (1)-(3)

uy + s1/ry + up = constant (6)

To examine how well egs. (1)-(3) capture the behavior of the system, we consider Fig.

1d, as well as curve 5 in Fig. 1a and curve 3 in Fig. 1b, obtained from integration of ODEs (1)-
(3). Comparing Figs. 1c and 1d, we see that the ODE kinetics is very similar to the PDE
kinetics. This similarity holds for other parameters a, b, Py, and D. Curves 3 and 4 in Fig. 1b
are obtained at the same value of v and are quite close to one another. The coincidence of
curves 2 and 5 (obtained at the same Py) in Fig. 1a is less good, but still reasonable. We

therefore have confidence that we can describe the mass exchange process by the ODEs (1)-(3).

4. Two coupled BZ droplets
4.1 Model
A mathematical model designed to describe the BZ reaction in water droplets should

include Br», the inhibitor that diffuses through the oil gap, in addition to the three variables used



in the Oregonator. Previously, we developed such a four-variable model that was capable of

describing complex phenomena including jumping waves [22].

dx/dt = - kixy + kay - 2ksx® + kax(co - 2)/(co - z + Cmin) (7)
dy/dt = -3kixy - 2kay - ksx® + kqu + koz + P(I) (8)
dz/dt = 2kax(co - 2)/(co - z + Cmin) - koz - kioz + P(I) 9)
du/dt = 2kixy + koy + ksx® - kyu (10)

where x, y, z, and u are the concentrations of activator (HBrO,), inhibitor (Br"), oxidized form of
the catalyst (ferriin), and Br; (in water droplets), respectively; ¢ is the total concentration of
catalyst (ferroin + ferriin); P(1) = k(I)(co - z)/(bc/b + 1) is a term directly proportional to the
intensity of illumination, &(/), which can be introduced to characterize experiments with light
perturbation; and k; are rate constants: ky = ki'h, ky" =2 x 10° M'zs'l, k= kg’th, ky=2M"> s'l, k3
=3000 M's™, ky = ks'hA, ks’ =42 M5 ks = ke [MA], k7' =29 M's™, ko = ko'[MAL], k1o =
k1o’ IMA], k10" = 0.05 M™'s™; cmin = [2kclko + k10)co]” Vhreds ke =2 ¥ 10° M, kreg = 5 x 10° M
s"'. In general, the constant ko’ depends on the concentration of BrMA (bromomalonic acid),
which in turn depends on [MA], [Br;] and the time since mixing the reagents, since the
production of BrMA is a slow process. The concentrations of MA, Br,, and BrMA in water
droplets depend in turn on partition coefficients of these species between water and oil. To
simplify the situation, we choose ko’ = 0.07 M™'s™ (in a few simulations we used k¢’ = 0.12
M's™), which gives the best fit between the experimental and theoretical z-profiles. In most of
our simulations, 2 =[H']=0.15 M and 4 = [BrO; ] = 0.3 M.

The ODEs in model (7)-(10) are quite stiff, with the characteristic time for autocatalysis
around 1 s and the period of oscillations around 1000 s. In the numerical integration algorithm,

the time step is automatically adjusted between about ca. 10™ s and 10 s.



Model (7)-(10) was reduced from the Field-Ko6rds-Noyes (FKN) model of the BZ
reaction [23] and used by us previously in simulations of coupled BZ droplets [13]. The full
FKN model contains the radical BrO,", which plays the role of activator and can diffuse in the oil
gap, potentially leading to excitatory coupling. However, our simulations reveal that such
coupling is very weak [13] and cannot lead to in-phase oscillations of neighboring droplets at a
reasonable coupling strength. Therefore there is no need to use the more complex FKN model,
and it suffices to use model (7)-(10), which contains the same primary activator, HBrO,, as the
FKN model.

Our hypothesis, which is supported by experimental results [18], is that the activator x is
also able to diffuse in the oil gap or through the bilayer membrane, where we call it w. The
partition coefficients for Br,, Py, and for HBrO,, Py, differ significantly. In separate
experiments, we measured the partition coefficient Py for the fluorinated oil and found that Py =
2.5, while Px is unknown but probably smaller than 0.1, since HBrO, (which quickly
disproportionates via the reaction 2HBrO, — BrO;™ + HOBr + H") is a polar molecule and
poorly soluble in the hydrophobic oil. We next seek to understand why the experimentally found
patterns, in which in-phase oscillating pairs or trios of BZ droplets oscillate anti-phase with one
another, occur only at small [MA], which is incorporated into the rate constants k7, ko, and k.
To answer this question, we analyze first a pair of coupled BZ droplets, i.e., a combination of
egs. (1)-(3) and (7)-(10), where eqgs. (1)-(3) are applied to both variables u and x. For example,
the final equations for the variable x are written as

dx/dt = - kixiy + koy - 2esxy” + kaxi(co - z1)/(co - z1 + Cmin) + Cx(W12/Px - X1) (11)
dwip/dt = ryCx(x) + x2 - 2w12/Px) (12)

dxo/dt = - kyxays + kays - 2ksxa® + kaxa(co — 22)/(co — 22 + Cmin) + Cx(W12/Px - X2) (13)



where

Cx = kryPx/(1 + ryPx) (14)
Note that the coupling strengths Cx (excitatory) and Cy (inhibitory) are different, owing to the
different partition coefficients, Px and Py (unless ry is so large that ryPx >> 1). Note also that if
ry is very large, wy, rapidly reaches equilibrium, and, by setting dw;»/dt = 0 in eq. (12), we have
wi2/Px = (x1 + x2)/2. In this case, the coupling term in eqs. (11) and (13) assumes the familiar

form =Cx(x; — x2)/2, and the meaning of the coupling strength Cx is more evident.

4.2 Results
Simulating our system of two coupled BZ oscillators at different parameters k¢, rv, Px,

and [MA], we find three different stable regimes (or modes), i.e., qualitatively different
dynamical behaviors, (i) in-phase (IP) oscillations, (if) anti-phase (AP) oscillations, and (ii7) a so-
called stationary Turing (T) mode, or inhomogeneous steady state (in the last case, the catalyst
concentration , z, is close to its maximum, ¢y, in one cell and is almost zero in the other cell).
Such modes have been found in many other systems of two coupled identical oscillators
[11,24,25]. There are two other dynamical modes of two coupled BZ oscillators at rather small
ryv, when a << b: (iv) one oscillator exhibits large amplitude oscillations (with the amplitude of z
close to ¢y) and the other shows small amplitude oscillations (less than 0.01c¢), i.e., almost
suppressed oscillations; (v) a chaotic-like mode at still smaller 7y, in which both oscillators
demonstrate alternating bursting with different numbers of spikes in each burst. We do not
consider these modes further, since a > b (ry > 1) in our experiments. Note also that an
“oscillator death” or “amplitude death” mode, in which both oscillators are in the same steady

state [26], is theoretically possible, though we did not observe this mode in our simulations.
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For two coupled BZ oscillators, the IP mode exists for any parameters, but it is stable to
large-amplitude perturbations only in a limited region of the parameter space, which we
designate as IP. We refer to the other regions as AP/IP or simply AP (where AP oscillations are
stable, while IP is unstable to large-amplitude perturbation) and T/IP or simply T. Bistability
between IP and AP oscillations (or between IP and T regimes) has been observed in other
systems of two coupled oscillators [7,11,27]. We also find bistability between the T and AP
regimes. The typical shape of AP oscillations is shown in Fig. 2a. Close to the AP/T transition,
the AP oscillations assume the shape presented in Fig. 2b.

To examine the four-dimensional parameter space (s, rv, Px, and [MA]), we fixed two
parameters and allowed the other two to vary. This variation can be performed in two different
ways. In the first, a parameter is changed in small increments or decrements using the final state
found with the previous parameter set as the initial state for the new parameters (“slow”
variation). Alternatively, we can select values of our variables that correspond to a chosen mode,
for example, AP oscillations, and use these initial conditions at a set of parameters that can be
quite different from those at which this probe mode was obtained (“fast” variation). Note also
that increasing k¢ corresponds to decreasing a and proportionally lowering b, since ry = constant
[see eq. (4)]. Increasing Px implies an increase in the coupling strength Cx only, which can be
useful for analyzing the role of excitatory coupling. Increasing ry corresponds to a decrease in b
(since kr and a are constants). Under the condition that v >1 (and consequently rvPy > 1), an
increase in vy mainly leads to an increase in Cx (and only a slight increase in Cy) as well as a
decrease in the average delay time between an “action” in cell 1 (2) and a “response” in cell 2
(1). In general, parameters rv and k¢ can be converted to parameters a and b [using eq. (4)] and

the alternative parameter space (a, b, Px, and [MA]) can be considered.
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Results of our simulations are shown in Figures 3-7. In cases of the k/-Px, kr—[MA], and
[MA] - Px parameter planes with “slow” variation of parameters, the three regions (or domains),
IP, T, and AP, merge at a triple-point, a point where curves 1, 2, and 3 intersect. For example, in
Fig. 3a, the AP-domain is situated to the left of curves 1 and 3, the IP-domain is above curves 1
and 2, while the T-domain is below curve 2 and to the right of curve 3. The T-domain is
subdivided into three regions which we explain later. The position of the triple-point is strongly
dependent on the other parameters, for example, on k¢, as shown in Figs. 3a and 2b, Fig. 5a and
5b, and Fig. 7. If the system switches to IP oscillations, then it remains there through any
further small change of parameters (however if an asymmetric perturbation is large enough, the
system can switch to either AP or Turing mode depending on its position in the parameter
space). Therefore the transitions from AP to IP and from T to IP are unidirectional and are
marked by single -headed arrows in all figures. The AP/T transition is reversible and can occur
with or without hysteresis (i.e., subcritical or supercritical). A supercritical AP/T transition (via
a supercritical Hopf bifurcation of the inhomogeneous steady state) is found in the k— [MA]
plane (Fig. 4a) and in the [MA] - Px plane (Fig. 5b) and is marked by a bidirectional arrow.

If the AP/T transition is subcritical, a region emerges in which both AP oscillations and
the T-mode coexist. This region is marked as “AP/T” and lies between curves 3, 4, and 6 in
Figures 3a, 3b and 4a, as well as between curves 1 and 3 in Fig. 5a. Curve 6 (in Figs. 3a, 3b, and
4a) marks the transition from AP to T, while curve 4 marks the AP/IP transition.

In Fig. 3¢ and 3d, we show where the various transitions occur if one parameter changes
slowly. These two figures help to understand the transitions shown in Fig. 3a. Analogously,
Figures 4b and 4c help to understand better the peculiar transitions happened in the k-[MA]

parametric plane (Fig. 4a). For example, if we start at [ MA] =1 M at kr=2.3 s (Fig. 4b) and
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decrease [MA], AP oscillations become unstable at [MA] = 0.7 M. However, at smaller [MA],
between 0.09 M and 0.15 M, AP oscillations are stable again. At still smaller [MA], below 0.09
M, the Turing mode emerges supercritically.

Curve 5 in Fig. 3a, 3b, and Fig. 4a shows the result of using a fixed set of initial
conditions (here corresponding to AP oscillations) as a probe to explore the parameter planes
(“fast” variation). If the final pair of parameters (for example, Px and k¢ in Fig. 3a) belongs to
the AP/T domain, we obtain AP oscillations. If this pair lies inside the small T-domain
(between and below curves 5 and 6), then we obtain the T mode. If the parameters are inside the
T/IP domain (between curves 2, 4, and 5), then the final behavior is IP oscillations. Thus, curve
5 separates the regions where IP oscillation is more or less probable than the T mode. Between
curves 5 and 6 (the small T-domain), IP oscillations are also possible, but are unstable to large-
amplitude perturbations. Analogously, in the AP/T region, AP oscillations are more probable
than the T mode. Note that all three types of dynamical behavior (including IP) are possible in
the AP/T domain, depending on initial conditions.

In Fig. 6a, we examine the dependence of the boundary between the IP and AP (or
AP/IP) domains in the ry-Px parametric plane as a function of [MA] (this line corresponds to
curve 1 in Figs. 3a, 3b, 4a, and 5). The AP/IP region shrinks as [MA] decreases, which suggests
that at small [MA] in-phase oscillations are more stable for a set of N BZ droplets, and, as a
result, pairs of oscillating in-phase neighboring BZ drops can emerge. Curves 1 —4 in Fig. 6a
are well approximated as

Px = constant/ry (15)
i.e., the product rvPx determines the boundary between the IP and AP/IP domains. This product

also determines the coupling strength Cx [see eq. (14)]. In general, the boundary between the IP

13



and AP/IP regions at constant [MA] and & depends on the ratio between the coupling strengths
Cy and Cx; an increase in Cy favors AP oscillations, whereas an increase in Cx promotes [P

oscillations (see Fig. 6b).

4.3 Analysis

In an effort to understand in greater depth why a decrease in [MA] broadens the IP
region, we plot the ratios between the activator (x) and inhibitor (y and u) concentrations during
the autocatalytic spike in the BZ reaction. In Figs. 6¢ and 6d, we see that these ratios depend
strongly on [MA], and consequently the sensitivity of the system to inhibitory and excitatory
coupling should also depend on [MA]. However, as is often the case in nonlinear systems, a
simple interpretation without a detailed analysis is elusive. Such a detailed analysis was done
recently for two coupled Huygens clocks oscillating in a harmonic regime [7], but we are
unaware of similar analyses for a pair of coupled chemical relaxation oscillators.

Since the system behavior is most sensitive to parameter changes near the triple point,and
since the region of tristability (domain AP/T) is very close to the triple point, it is important to
determine the position of the triple points in the parameter space. Eqs. (14) and (15) suggest
that changes in ry can be compensated by varying Px. Therefore we fix v = 10 and reduce the
4-dimensional parameter space to a 3-dimensional space: Px, kf, and [MA].

The trajectory of the triple point in the k~Px-[MA] space is shown in Fig. 7a as two
projections “Py” and “MA” on the kp-Px and k-[MA] planes, respectively. Both lines “Px” and
“MA” are well fitted by power dependences Px = C lkf_o'és and [MA] = Cgkf0'56, respectively. To
clarify how “Px” is obtained, we copy in Fig. 7b curves la and 1b which are the boundaries

between the IP and AP domains in Figs. 3a and 3b, respectively. The bottom ends of these lines

14



are the triple points at [MA] = 0.03 M and 0.056 M. The dotted line connecting the ends of these
lines is a portion of the line “Px” in Fig. 7a.

Finally, note that the period of IP oscillations is always shorter than the period of AP
oscillations. This difference, which ranges from a few percent to a factor of two, depending on
the coupling strength Cy, is one of the reasons for the very complex behavior we find when more

than two identical BZ droplets are coupled.

5. Several (3 to 9) coupled BZ droplets

Now we seek to answer our main question, i.e., how the combination of excitatory and
inhibitory coupling affects pattern formation in a 1D array of BZ droplets. Armed with our
knowledge of how the boundaries between the IP, AP, and T regions depend on [MA] and the
coupling strength (including parameters k¢, Px, and ry), we can now simulate 1D arrays of
coupled BZ droplets similar to those studied experimentally [18] and theoretically [13]. We pay
special attention to parameter regions where bi- or tristability between different dynamical
modes occurs in the case of two coupled oscillators. However, comparison between modes

found for two and N coupled oscillators should be done with caution.

5.1 Model equations
We consider here two different boundary conditions, fixed value and periodic (i.e.,
circularly coupled oscillators). If we use symmetrical fixed value boundary conditions and oil
drops are placed at the ends of our linear array of droplets, then the oil drop at the left end is
described by the following equations:

dsp/dt = rkarVPU(uL +up - 2SL/PU)/(1 + I’VpU) (16)
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dwp/dt = rvkavPx(xy + x1 - 2wi/Px)/(1 + ryPx) (17)

The subindex L refers to the leftmost oil droplet. Similar equations hold for the rightmost
droplet with L replaced by R, 1 by N, and u;, = ur = ut, xp. = xg= xt. In this case, the two end
droplets are not identical with the other N-2 droplets, since they interact with the constant
concentrations of inhibitor, u;, and activator, x.. If our boundaries are instead impermeable
walls, then ur = x7 = 0. In some of our experiments, we observe two (or more) stationary
droplets (either in oxidized or reduced states) between which there are several oscillatory
droplets. To simulate the dynamics of a set of these oscillatory droplets, we can use fixed values
ur and x7 corresponding to the concentrations of # and x in the adjacent stationary droplets.
Usually these adjacent stationary droplets are in the reduced state, and the concentrations of ur
and xr can be taken from simulations of stationary Turing-like patterns. We use ur =4 x 10°M
and xt = (6-7) X 10™® M for our chosen concentrations of [H'], [BrOs ], and [MA].

For a 1D array of N water droplets with fixed-value boundary conditions, the equations
are

dx,/dt = - kix,y, + kayy - 2k3xn2 + kax,(co - zy)/(co - zn + Cmin) T

kfrVPx(wn_l,,/PX + Wn,n+1/Px - 2x,,)/(1 + I”Vpx) (18)
dy,/dt = -3kx,yn - 2koyn - kax,” + kyun + koz,, (19)
dz,/dt = 2kax, (co - zx)/(Co - Zn T+ Cmin) - kozu - k102x (20)

du,/dt = 2kix,y + kyy + ksx,” - kequ, +

kfl"vPU(Sn_l,n/PU + Sn,n+1/PU - 2un)/(l + l"vPU) (21)
dSn’n+1/dt = rkarVPU(un + Up+1 - 2Sn,n+1/PU)/(1 + I"VpU) (22)
de,nH/dt = rkarvPX(xn + Xn+1 - 2Wn’n+1/Px)/(1 + l"vpx) (23)

forn= 1,2,..., N, with $0,1= SL, Wo,1= WL, SN.N+1= SR, WNN+1= WR.
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For periodic boundary conditions, #; and xi, in egs. (16) and (17) are replaced by uy and
xn, respectively; sp and wy are renamed as s; y and w; y, respectively, and the variables sg and wg
are eliminated. In other words, droplets 1 and N are neighbors.

Each water droplet, except the two end droplets in the case of fixed value boundary
conditions, has two neighboring water droplets, whereas in the case of two coupled oscillators,
each droplet has only one neighbor. Therefore, the coupling strength for N linearly coupled
droplets (N > 2) is effectively doubled (at the same k¢, Px, and rv) relative to the case of two
coupled droplets.

In our previous simulations with the FKN model [13], we found several exotic modes for
even numbers (4 or 6) of coupled oscillators, while these modes were not found for odd numbers
of oscillators (5, for example). This means that at least some of these modes are “symmetry-
sensitive”. Therefore, we must examine arrays with both even and odd numbers of water
droplets if we want to find modes that are “stable” with respect to the number of oscillators.

This observation gives rise to a more general question: how many droplets are needed to
represent a very large row of water droplets in a capillary? In our experiments we have several
tens or even hundreds of BZ droplets separated by oil gaps. Can we simulate the behavior of

such a large array of droplets using fewer than 10 droplets?

5.2 Results
We first present selected space-time plots obtained by numerical integration of eqgs. (16)-
(23) for a variety of parameters and initial conditions for periodic boundary conditions and arrays

of three to nine water droplets. We investigate how the number of droplets, N, affects the

observed patterns. To do this, we fix all parameters ((MA] =0.02 M, ry = 10, kr=0.45 s
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except Px. For each array size N, we vary Px and select different initial conditions to find as
many different patterns as we can. Note that this method cannot guarantee finding all possible
patterns, since the number of initial conditions is infinite, but we think that we have found all
major patterns, since we investigated a wide range of initial conditions including anti-phase, in-
phase, Turing-like patterns, and combinations of them, as well as more complex patterns
obtained in the course of simulations. The results of these simulations are shown in Figs. 8§ — 13.

In these numerical experiments, the parameters are chosen in such a way that the system
exhibits Turing (T) patterns at small Px (< 0.001) and in-phase (IP) oscillations at large Px (>
0.01). If the parameter k¢ (= 0.45 s in these set of simulations) is decreased below 0.35 s, AP
emerges at small Px instead of Turing patterns (an example of such AP patterns is shown in Fig.
11a). Therefore, we are close to the AP/T boundary at small Px. In the range of Px between
0.001 and 0.01, there are many different patterns, including anti-phase oscillatory clusters
(APOC) and anti-phase oscillatory clusters with common droplet(s) (APOCwCD). For 3
droplets (Fig. 8b), we find APOC in which one cluster consists of two droplets, while the other
consists of a single droplet. In the case of 4 droplets (Fig. 8f), both clusters consist of two
droplets. In addition to APOC, two new patterns emerge: anti-phase oscillations (AP) (Fig. 8e)
and APOCwCD (Fig. 8g). AP patterns exist only for even numbers of droplets (4, 6 and 8) and
are unstable to large perturbations at our chosen parameters. APOCwCD patterns usually lie
between APOC and IP patterns in the parameter space. In Fig. 8g, the two anti-phase oscillatory
clusters consist of single droplets, numbers 2 and 4 (numbering from the left), while the common
droplets, which oscillate with double frequency, are droplets 1 and 3.

With 5 and 6 droplets (Figs. 9 and 10), an additional pattern emerges (see Figs. 9b and

10d) that we call APOC(1:2)wSD (anti-phase oscillatory clusters with special droplet). The ratio
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(1:2) signifies that the droplets in one cluster (droplets 3 and 5 in Fig. 9b) have one spike per
period, while droplets in the other cluster (droplets 1 and 2 in Fig. 9b) exhibit two spikes.
Oscillations of the special droplet (droplet 4 in Fig. 9b and droplet 1 in Fig. 10d) have a profile
like the one in Fig. 2b. The patterns shown in Figs. 9d and 9e can be considered as intermediate
between APOC and APOCwCD. The numbers of droplets in the clusters of the APOC patterns
are 2 and 3 in Fig. 9c and 3 and 3 in Fig. 10c.

We do not find any new patterns with 7 droplets (Fig. 11). We see T-patterns,
APOC(1:2)wSD, and APOC. In Fig. 11a, we show what happens to the AP patterns that emerge
at small & in the case of odd numbers of droplets: two droplets start oscillating in-phase,
destroying the very symmetric AP patterns (like those in Figs. 10b or 12b)

Increasing the number of droplets to 8 (Fig. 12), we observe another new pattern that can
be called “moving defects” (Figs. 12c and 12d). The defect is a phase shift between oscillatory
clusters, but the constitution of these clusters is not stationary in time. A cluster can lose one or
two droplets and acquire another one or two neighboring droplets, giving the appearance of
moving defects. An analogous moving defect (which reflects from the ends of the droplet array)
is observed for 6 coupled droplets with fixed-value boundary conditions at slightly different
parameters (Fig. 12g). The APOCwCD pattern in Fig. 12f is similar to the pattern in Fig. 8¢,
except that the anti-phase oscillatory clusters now consist of three droplets (2-4 for one cluster
and 6-8 for the other).

In the case of 9 droplets (Fig. 13), we again find new patterns, shown in Figs. 13b-d and
13f. The pattern in Fig. 13b is similar to APOC(1:2)wSD, but we now have three clusters, and

we designate the pattern as APOC(1:2:2)wSD. The oscillations of the special droplet, 5, in Fig.
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13c are also new, with alternating long and short spikes. The pattern in Fig. 13f resembles
APOCwCD but with defects.

We conclude that an increase in the number of droplets leads in general to the emergence
of qualitatively new patterns. It appears that a relatively small number of droplets cannot be
representative of a long sequence of coupled droplets. However, some specific (and relatively
simple) patterns in large arrays can be simulated with a small number of drops. The range of Px
at which generic patterns like T or APOC survive depends on the number, N, of droplets. For
example, the Px-ranges for APOC patterns are 0.0035-0.004 for N = 3, 0.001-0.005 for N =4,
0.003-0.004 for N=15, 0.002-0.007 for N = 6, and 0.003-0.007 for N = 7. Note also that different
patterns can coexist at the same parameters, and this coexistence is also N-dependent.

In the above described set of computer experiments with periodic boundary conditions,
we were able to reproduce APOCwCD patterns seen in our experiments, but with one
discrepancy: our APOCwCD patterns are not surrounded by stationary (Turing) droplets, as they
are in experiment. We now examine what happens if we use fixed-value boundary conditions.
First, we show in Fig. 14 that different boundary conditions give rise to entirely different
patterns: for periodic boundary conditions (Fig. 14a), we see anti-phase oscillations that look like
cascade patterns (since the phase shift between neighboring droplets is not exactly 77/2);
combinations of stationary and anti-phase oscillatory droplets are shown in Fig. 14b (ur=4 X
10° M, xr = 6 x 10~ M); and Turing patterns are presented in Fig. 14c (ur=xr = 0).

In Fig. 15, we exhibit patterns found for ur= 4 X 107 M and xXT=6X 10°%M boundary
conditions when we vary Px. For this set of experiments, kr was chosen in such a way (k= 0.3
s™) that our system tends to go to AP or cascade oscillations at small Px. However, due to the

boundary conditions, the two end droplets do not oscillate in Fig. 15a. An increase in Px leads to
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complex patterns (Fig. 15b and 15¢) in which the number of neighboring droplets oscillating in-
phase increases. At still larger Px, APOC patterns (Fig. 15d), a mixture between APOC and
APOCWCD patterns (Fig. 15¢) emerge. Finally, at sufficiently large Px, only IP patterns remain.

Next we consider what happens if we vary k¢ (Fig.16 and 17) or [MA] (Fig. 18). In Fig.
16, we show patterns observed at small Px and ur= xr = 0 for 6 droplets. At k¢= 0.2, we find 3
different patterns (Fig. 16a-c). Patterns in Figs. 16a and 16b are combinations of 4 stationary
and 2 oscillatory droplets either anti-phase (Figs. 16a) or in-phase (Figs. 16b). These two
patterns demonstrate that stationary droplets can coexist with oscillating droplets at fixed value
boundary conditions. In Figs. 16c and 16d, we see complex patterns with very long global
periods T, equal to 5379 s and 8312 s, respectively, while the average period between two spikes
is 672-768 s for Fig. 16¢c and 831-1039 s for Fig. 16d (different droplets have different average
periods). At larger k¢ (0.4-0.5 s™), we see different Turing patterns (Figs. 16e and 16f).

In Fig. 17, we show patterns observed at large Px and ur=4x 10° M, xr=7 x 107 M
for N=5. There are no stationary droplets at this set of parameters (except “droplets 0 and N+1”
that constitute the fixed-value boundary conditions). At ks=0.1 (Fig. 17a), we see APOC
patterns. The patterns in Figs. 17b and 17¢ are mixtures of APOC and APOCwCD patterns. At
still larger k¢ (Fig. 17d), we have the striking APOCwCD pattern, observed experimentally, in
which the central droplet has double frequency, alternately flashing in-phase with its two
neighbors to the left and right. At still larger &¢ (Fig. 17¢), the system goes to IP patterns.

Fig. 18, in which we vary [MA], is interesting because IP patterns are found both at small
(0.02-0.025 M) and at large (0.2-0.8 M) concentrations of MA, while APOCwCD and similar
patterns are found at moderate [MA]. Thus, if we start our experiment at relatively large [MA],

we first see IP patterns , then as [MA] decreases we obtain anti-phase clusters of in-phase
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oscillating neighboring droplets, but finally, at very small [MA], we return to IP patterns, now

with a long period.

6. Discussion and Conclusion

By including both excitatory and inhibitory coupling in our simulations, we have found
many new periodic regimes, both simple and complex, in a system of diffusively coupled
chemical oscillators in 1D. These patterns, which are very similar to those found experimentally
[18], occur at small distances between BZ droplets or even when BZ droplets are in contact, and
at relatively small concentrations of malonic acid. Whereas inhibitory coupling is effective at
both small and large gaps between BZ droplets (up to 300 um [13]), excitatory coupling through
the polar activator, HBrO,, diffusing through the oil gap, is effective only for very small gaps
and relatively high partition coefficient Px (but still much smaller than Py), which requires an oil
with a relatively high dielectric constant like HFE-7500 [18].

Though our model assumes the presence of a hydrophobic oil gap between water droplets
and different partition coefficients for the activator and inhibitor in this gap, it is easily extended
to the case of a hydrophobic bilayer membrane between water droplets [14], simply by
considering Px as the partition coefficient between the bilayer and the aqueous phase, as well as
by reducing b (the size of the gap) to a few nanometers (in Fig. 1a, the smallest value of #4/t, =
107 corresponds to 60 nm). Note that transfer of a polar molecule from water to water through a
narrow hydrophobic region is considered here as a simple classical passage over a potential
barrier, where the particle has a larger energy than the barrier potential.

Our computer simulations reveal a large number of different regimes, presented as space-

time plots, in a rather narrow region of coupling strengths, Cx (activator) and Cy (inhibitor). If
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Cx increases at constant Cy, the system goes to the IP regime, while if Cx decreases, we see the
AP regime or Turing patterns (depending on Cy). The contribution of ¢ to the coupling
strengths, Cx and Cy, appears to be critical for the emergence of Turing patterns. We note the
prevalence of multistability, i.e., the existence of multiple stable patterns, depending on initial
conditions, at the same set of parameters, particularly for larger droplet arrays. Note also that the
spatially extended system corresponding to system (7)-(10), but with normalized diffusion
coefficients Dy = 1, Dx <<1 (since Cx << Cy), and Dy = Dz = 0 (since molecules Y and Z
cannot diffuse outside the water droplets) has Turing and Hopf or saddle instabilities (with two
positive eigenvalues at wavelength k£ = 0). Interaction between Turing and Hopf or between
Turing and saddle instabilities can lead to several phenomena, including in-phase and anti-phase
oscillatory Turing patterns [28-31]. In a narrow region between in-phase and anti-phase
oscillatory Turing patterns, chaotic-like behavior has been observed in computer simulations
[28,29]. We suggest that something similar can occur in the present system of coupled BZ
oscillators, i.e., in a narrow region of parameters Cx and Cy, between the in-phase and anti-phase
regimes, chaotic-like behavior or a very complex periodic pattern with a very long global period
becomes possible, and many different and less complex periodic regimes arise close to the
chaotic-like regime. Note also that no chaotic-like behavior is observed for two coupled BZ
droplets.

Our investigations show that we can control and change patterns by tuning the coupling
strengths Cx and Cy, either by varying the distance between droplets or by modifying the
partition coefficients of the activator and/or the inhibitor. Of course, it is difficult, perhaps
impossible, to change the partition coefficients after the system is prepared. It may be possible,

however, to control the coupling strengths by introducing into the gap species that can react
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selectively with the activator or the inhibitor. The distance between droplets also can be
controlled dynamically by using, for example, a gel [32] whose volume is sensitive to the redox
potential of the catalyst, Ru(bpy);. Such experiments might lead to materials with interesting,
and potentially useful, patterns of chemomechanical transduction. This notion might be tested
by incorporating mechanical forces into the reaction-diffusion model used here [33].

Note also that different regimes (like IP, Turing or AP) of initially identical coupled cells
lead to different consumption of initial reagents, like MA or BrOs’, by these cells, which in turn
leads to deviations in the natural frequencies of the oscillatory droplets (if they are uncoupled).
These dynamically induced variations in the individual cell dynamics may lead in turn to new
dynamical patterns of the coupled oscillators. Small differences in droplet size, a, and in gap
size, b, inherent in the experiments, result in a form of noise in the coupling strength between
droplets, which may also lead to new dynamical regimes. We saw that fixed-value boundary
conditions, which affect only the end droplets, resulted in new patterns (see, for example, Fig.
14). Therefore it seems likely that variations of a or b can also induce the emergence of new
patterns.

Note also that our inhibitor is Br,, not Br’, which is usually considered to be the inhibitor
in the BZ reaction. If we use Br as the inhibitor in our simulations (hypothetically, since Br’
cannot diffuse in the oil phase), we are not able to find Turing patterns, and anti-phase
oscillations of two inhibitorily coupled BZ droplets occur only in a very narrow parametric
region. A detailed consideration of the different inhibitory roles of Br, and Br™ is beyond the
scope of this work.

Koseska et al. [34] recently analyzed a model system of 2-18 globally coupled (through a

mean field concentration of signaling molecule) synthetic genetic oscillators (“repressilators”).
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They also observed multiple attractors whose numbers increased with the number of oscillators,
and they suggest that the formation of clusters in these patterns may provide a mechanism for
dynamical differentiation in biological systems, with the size of the population playing “a crucial
role in determining which dynamical behavior is likely to be dominant”. It has also been
suggested that an appropriate balance between inhibitory and excitatory synapses [8,35] is
needed to maintain the brain in a regime that lies close to the chaotic one, since the information
capacity of such a regime is maximal [36]. Perhaps the present system, since it can be easily

tuned, may provide a useful analog amenable to detailed analysis.
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Figure captions

Figure 1. Simulated coupling of droplets. (a) Curves 1-4 are from PDE simulations. curve 1: a
=0.01 cm, Py=1, Ds = 107 cm? s'l; curve 2: a=0.01 cm, Py =0.01, Dg= 107 cm? s'l; curve 3: a
=0.003 cm, Py = 0.01, Ds = 107 em’s™; curve 4: a = 0.003 cm, Py =0.01, Ds = 10° cm’s™".
Curve 5 is obtained from an ODE simulation at Py = 0.01 and k= 0.3 s”. Time th=17s,t4=
b*/(2Ds) for PDEs and #q = Pu/(rvks) for ODEs, since tq = k"' = Pu/(rvks). (b) Curves 1,2, and
4 are from PDE (at Dy = Ds = 107 cm? s'l), curve 3 from ODEs. Curve 1:a=5 x 10™ cm,b=2
x 107 cm;curve2:a=b=2 X 102 cm; curve 4:a=1x 102 cm, b =3 x 10 cm; curve 3: kg =
0.3 5", rv =33 (= a/b for curve 4). (c) typical kinetics obtained from PDEs, a =1 x 10 cm, b =
3% 10% em; Py =1, uy = [o“udx/a, s = [*Psdx/b, us = [ur™* "Pudx/a, Dy = Ds = 107 cm®s™. (d)
typical kinetics obtained from ODEs, k¢= 1, rv = 10, Py = 1. No flux boundary conditions are

used for PDE simulations. u; max 1n panels (a) and (c) is 107,

Figure 2. AP oscillations. Shape (a) is “normal”, while shape (b) occurs close to the AP/T

boundary. Parameters: k=2 s, ry = 10, Px = 0.003, [MA] = (a) 0.3 M, (b) 0.085 M.

Figure 3. Parametric plane k~Px (a and b) showing three possible regimes (dynamical
behavior) of two coupled BZ oscillators, IP, in-phase oscillations; AP, anti-phase oscillations;
and T, Turing-like stationary pattern (= two different stable steady states) at [MA] = (a) 0.03 M
and (b) 0.056 M. Panels (c) and (d) are the dependences of the regimes on Px (c) and k¢ (d) at
constant k¢ (= 1 s™) and Px (= 0.0015), respectively, at [MA] = 0.03 M. In all cases, ry = 10; Py

=2.5. In panels (a) and (b), curve 1 marks the transition from AP to IP, curve 2 marks the
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transition from T to IP, curve 3 is the transition from T to AP, curve 4 is for the transition from
AP to IP, curve 6 is the transition from AP to T regime, if the parameter (kr or Px) is changed by

small steps. Curve 5 is explained in the text.

Figure 4. Parametric plane k[ MA] (a) shows three different regimes of two coupled BZ
oscillators: IP, AP, and T. Panels (b) and (c) are the dependences of the regimes on [MA] at
constant kg=2.3 s for (b) and 1.2 s™ for (c). Parameters: Px = 0.003, ry = 10; Py =2.5. Curves
1 — 6 in (a) have the same meaning as in Fig. 3. Note that on part of curve 3 (near the triple
point, where the AP, IP, and T domains merge), the transitions from T to AP and vice versa
occur at the same parameters without hysteresis. This transition is marked by a two-headed

arrow.

Figure 5. Parametric planes [MA]-Px at k¢=(a) 0.5 s and (b) 2 s™. The transition from T to
AP (curve 3) is unidirectional at kr= 0.5 s™' and bidirectional (without hysteresis) at k¢ =2 s,
Curve 1 (the transition from AP to IP) has a continuation in the T domain at k= 0.5 s™. Curve 1’

in (a) is just a copy of curve 1 in (b) for easier comparison of the two parametric planes.

Figure 6. (a) ry-Px parametric plane divided by four straight lines obtained at different [MA];
(b) Cy-Cx parametric plane; since Cy < krand k¢ =1 s'l, Cy cannot be larger than 1 s in this
case. (c)and (d) kinetic curves at different [MA]. Parameters: ko’ = 0.12 M's™, (a) kr=0.3 s,
[MA]/M = (1) 0.5, (2) 0.2, (3) 0.08, (4) 0.02; (b) ks= 15", [MA] = 0.1 M, ry and Px are varied;
(¢), (d) [MAI/M =(1) 1.5, (2) 0.6, (3) 0.3, (4) 0.1, (5) 0.04. Time t="7 s in (c) and (d)

corresponds to the maximum of the activator concentration (peak of the autocatalysis).
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Figure 7. Trajectory of the triple point in the 3D space k¢-Px - [MA] presented as two
projections on the k¢-Px and ks -[MA] planes: curves “Px” and “MA”, respectively. Parameters:
rv =10, Py=2.5. Dotted line in (b) is a segment of “Px” in (a). Curves la and 1b in (b)

correspond to curves 1 in Figs. 3(a) and 3(b), respectively.

Figure 8. (Color online) (a)-(c). Space-time plots for 3 circularly coupled droplets. (a) Turing
pattern, (b) Anti-phase oscillatory clusters (APOC), (c) In-phase oscillations (IP). Global period
Ty/s = (b) 1421, (c) 1143. T-patterns is observed at Px = 0-0.02, APOC at Px = 0.0035-0.004, IP
exist at any Px. (d)-(g). Patterns for 4 circularly coupled droplets. (d) T, (e) AP, (f) APOC, (g)
Anti-phase oscillatory clusters with common droplet (APOCwCD); IP oscillations are not shown
for 4 droplets, since they are the same with the same period, 1143 s, for any number of droplets.
Global period T,/s = (e) 1446, (f) 1398, (g) 1560. T-pattern is observed at Px = 0-0.0045, AP at
0-0.003, APOC at 0.001-0.005, and APOCwCD at 0.005-0.006. Parameters: [MA] = 0.02 M, k¢

=045, h=0.15M,[A]=0.3 M, Py=2.5, ry = 10.

Figure 9. (Color online) Patterns for 5 circularly coupled droplets. (a) T, (b) Two anti-phase
oscillatory clusters with special droplet [2APOC(1:2)wSD], (c) APOC, patterns (d) and (e) can
be interpreted (although not precisely) as mixtures of APOC and APOCwCD patterns. Global
period Ty/s = (b) 3367, (c) 1331, (d) 4175, (e) 2842. T-pattern is observed at Px = 0-0.015,
pattern (b) at 0.001-0.002, (c) 0.003-0.004, (d) 0.005, () 0.006-0.007. At Px > 0.008, only IP

oscillations exist.

30



Figure 10. (Color online) Patterns for 6 circularly coupled droplets. T-pattern in (a) is observed
at Px =0-0.02, (b) AP at 0 - 0.003, (¢) APOC at 0.002-0.007, and (d) 2APOC(1:2)wSD at
0.0025-0.0035. At Px > 0.008, only IP oscillations exist. Global period 7,/s = (b) 1451, (c)

1285, (d) 2596.

Figure 11. (Color online) Patterns for 7 circularly coupled droplets. Pattern (a) is observed at Px =
0.003, (b) at Px = 0-0.0026, (c) 2APOC(1:2)wSD at 0.0028-0.0033, (d) 0.003-0.007. At Px > 0.008,
only IP oscillations exist. Global period Ty/s = (a) 1164, (c) 2487, (d) 1260. Parameters: [MA] = 0.02
M, ki/s'= (a) 0.3, (b)-(d 0.45, h=0.15 M, [A] = 0.3 M, Py =2.5, ry = 10. Turing pattern at small Px
is stable at k¢ > 0.4, while AP patterns [like (a) at k= 0.3 s™'] are more stable at smaller k. Due to odd

number of droplets and periodic boundary conditions, two droplets in (a) oscillate in-phase.

Figure 12. (Color online) Patterns for 8§ circularly coupled droplets [except (j), where 6 droplets and
ut=x1 = 0 boundary condition]. Patterns are observed at Px = (a) (T-pattern) O - 0.008, another Turing
pattern (not shown) with droplets 1 and 4 in the oxidized state and all others in the reduced state is
stable at Px = 0 - 0.0035, (b) (AP) 0 - 0.003, (c) (moving defect) 0.0033-0.004, (d) (moving defect) and
(e) (APOC) 0.005, (f) (APOCwCD) 0.01. Global period Ty/s = (b) 1452, (c) 3753, (d) 9210, (e) 1230,
(f) 1300. Parameters: [MA] = 0.02 M, k¢= 0.45 s'l, h=0.15M,4=03M, Py=2.5,rv=10.
Parameters for moving defect (g): 6 droplets, ur=x1r =0, [MA] =0.06, k= 0.138 s'l, Px=0.1, h=0.08

M,4=03M.
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Figure 13. (Color online) Patterns for 9 circularly coupled droplets. (a) T-pattern, (b) and (c)
Three anti-phase oscillatory clusters with special droplet [3APOC(1:2:2)wSD], (d) similar to
AOCWCD but one cluster consisting of droplets 1, 4-6, and 9 oscillates temporally and
periodically with a small phase shift between droplets 1, 9 and droplets 4-6; (e) APOC, (f)
similar to APOCwCD, but with two common droplets and one defect. Pattern (a) is observed at
Px=0.02, (b) at 0.002 — 0.003, (c) 0.0035, (d) and (e) 0.005, (f) 0.01. Global period /s = (b)

2870, (c) 4260, (d) 2861, (e) 1214, (f) 8943. Parameters as in Fig. 8.

Figure 14. (Color online) Effect of boundary conditions on space-time plots for 5 droplets. (a)
Periodic boundary conditions; (b) ur=4 x 10° M, xr = 6 x 10 M; (c) ur=xr = 0. Parameters:
[MA]=0.03 M, ks= 0.3, Px=0.001. 2= 0.15M, [A] = 0.3 M, Py =2.5, rv = 10. (a) Cascade

patterns (similar to AP), (b) Turing (drops 1, 2, and 5) plus AP, (c) T-patterns.

Figure 15. (Color online) Space-time plots for 5 droplets coupled in-line with boundary
conditions ur=4 x 10° M and x1 = 6 x 10~* M for increasing Px = (a) 0.001-0.002, (b) and (c)
0.005, (d) and (e) 0.01, (f) 0.03. Parameters: [MA]=0.04 M, k;=0.3s", h=0.15M, [A]=0.3

M, Py=2.5,ry=10.

Figure 16. (Color online) Space-time plots for 6 droplets coupled in-line with boundary

conditions ur= xt = 0 for increasing k. kifs'= (a) 0.2, (b) 0.2-0.4, () 0.2, (d) 0.3, (e) 0.4, (f) 0.5.

Parameters: [MA]=0.035M, Px=0.004; =0.15M,4=0.3 M, Py=2.5, ry = 10.
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Figure 17. (Color online) Space-time plots for 5 droplets coupled in-line with boundary
conditions ut=4 x 10™° M and xr = 7 x 10~ M for increasing ks. k¢/s™'= (a) 0.1, (b) 0.15, () 0.2,
(d) 0.25-0.3, (e) 0.4. Parameters: [MA]=0.03 M, Px=0.015; h=0.15M,4=03 M, Py=2.5,

rv = 10.
Figure 18. (Color online) Space-time plots for 5 droplets coupled in-line with boundary

conditions ur=4 x 10° M and xr = 7 x 10~* M for increasing [MA]. [MA]/M = (a) 0.02-0.025,

(b) 0.03-0.035, (c) 0.05, (d) 0.1, (e) 0.2-0.8. Parameters: k¢= 0.3 s, Px = 0.015.

Figure 19. Scheme for two coupled droplets
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Appendix 1. Mass exchange between two water droplets with length a and oil gap b is simulated

by PDEs that describe the scheme shown in Figure 19.

m m

— 4 —
U, S U, Fig. 19

-— (g —-> p <«— aq —

The passage of molecules through a liquid/liquid interface can be envisioned with the aid of a
very thin (a few molecules wide) layer (boundary regions “m” with length m), where diffusion of
both molecules U; (U,) and S is allowed. In these regions, we introduce equilibrium reactions:
U, <> S for the left boundary region “m” and U, < S for the right boundary region “m”. The rate
constant for reaction U; — S is kyg; = 4000 s'l, which is chosen arbitrarily large. The rate
constant for back reaction S — Uj is ksy = kusi1/Pu, where Py is the partition coefficient. Similar
expressions hold for the rate constants in the right boundary region “m” (constants kysy = kusi
and ksuz = ksu1). If length m is chosen very small (10'10 107 nm), then the computation time
becomes extremely long. To overcome this technical problem, we increase m to 10 - 10 cm
depending on the sizes a and b, which are kept two to three orders of magnitude larger than m.
The constant kys) is chosen so large and the length m so small that their values have no effect on
the dynamics of mass exchange. The constants kys», kusi, ksu2, and ksy are zero outside the
regions “m”. Molecules S (U) cannot diffuse in regions “a” (“b”), but can diffuse in regions “m”.

The PDEs then take the form

8[U1]/dt =- kUSl[Ul] + ks[n[S] + P+ DU82[U1]/d§2 (Al)
A[SV/dt = kusi[Ur] + kusa[Uz] - (ksut + ksu2)[S] + Dsd’[S)/d& (A2)
o[U,)/dt = - kysa[Ua] + ksua[S] + Dyd’[Ua)/d& (A3)
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where the perturbation P; is composed of two pulses with “positive” amplitude 4, and
“negative” amplitude 4, and is written as

Py =[AxUPULSE(¢ - 1, t - t2) - A>XUPULSE(? - 13, t - t4) X

USTEP([U4] - [U1]0)IXUSTEP(a - &) (A4)

where 41 =4, = 5><10'4, At=th—t1=ta—t3=0.2s,t,=1s,t3=2.8s. The function USTEP(arg)
is equal to 1 if the argument arg is positive and 0 if the argument is negative, the function
UPULSE(arg, argy) is equal to 1 if arg) is positive and arg; is negative and 0 everywhere else.
AtA4,=5x% 10* and t, — t; = 0.2, the maximum value of [U,] reaches approximately 10 (att=

1), which is our value of u; max used for calculating the response R = 2(u2p - #20)/t41_max, Where
upp 18 the value of u, = J.h:b[Uz]dZ:, / a taken at the end of the “negative” pulse (with amplitude

Ay) at t =t4 = 3 s (up reaches its maximum value at that time in Fig. 1c and 1d). Initial
conditions: [U;] = [U;]oXUSTEP(a - &), [S] = [S]oXUPULSE(¢-a-m, E-a—b - m), [Us] =

[Uz]oXUSTEP(f- a— b - 2m), [U1]0 = [U2]0 = 10_5, [S]() = [U]]oPU.
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