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Abstract

We analyze the efficiency of available algorithms for thewdation of classical fidelity and show that
their computational costs increase exponentially withrttumber of degrees of freedom. Then we present
an algorithm for which the number of trajectories neededctmvergence is independent of the system’s
dimensionality and show that, within a continuous familyattforithms, this algorithm is the only one with
this property. Simultaneously we propose a general acalygipproach to estimate efficiency of trajectory-
based methods and suggest how to use it to accelerate tialesilaf other classical correlation functions.
Converged numerical results are provided for systems witts@ space volun2 7 times larger than the

volume of the initial state.
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Introduction While the solution of the time-dependent Schrodingeratiqn scales exponen-
tially with dimensionality and is feasible for only a few doruous degrees of freedom (DOF),
classical molecular dynamics simulations are, in prirgifgasible for millions of atoms. It may
therefore be surprising that studies of classical fidelayenprovided numerical results for only
one or a few DOF [1-4]. A notable exception is Ref. [5], whifdr,the largest systems, relies on
initial densities given by characteristic functions. Bele explain this situation by showing that
for initial Gaussian densities, not only quantum but ald@edviously used classical algorithms
for fidelity scale exponentially with the numbgérof DOF. Hence even when quantum effects are
negligible and classical picture is appropriate, the “detplassical simulations may be unfeasi-
ble. Since numerical simulations are important for teséinglytical theories of classical fidelity in
large systems, we design an efficient classical fidelityrélgm that avoids the exponential scaling
with D.

Classical and quantum fidelitElassical fidelity is important both as a theoretical measidr
stability of classical dynamics [1-5] and as a practical toaneasure the accuracy of classical
molecular dynamics with an approximate many-body Hami#toite.g., a “force field”) [6]. While
important in its own right, classical fidelity can be vieweskle classical limit of quantum fidelity
[7], introduced by Peres [8] to measure the stability of quandynamics. Quantum fidelity is the
squared overlapom () at timet of two quantum states, identical @at= 0, but evolved with two

different HamiltoniansH, and H, = Hy + €V

Fou(t) = | fou(t)[* (1)
fom(t) = (@ [UZ'Ug| ). o)

where fom(t) is the quantum fidelity amplitude arid := exp(—iH.t/h) the quantum evolution
operator. Rewriting Eq. (2) a&w(t) = (¢ |U*| ) with the echo operatdr’ := U 'U{, it can be
interpreted as the Loschmidt echo, i.e., an overlap of diaistate with a state evolved for tinie
with H, and subsequently for timet with H.. (In general, we write timé as a superscript. Sub-
scripte denotes that/, was used for dynamics. If an evolution operator, phase spamelinate,

or density lacks a subscript, Loschmidt echo dynamics idiedp) Quantum fidelity has many
applications, e.g., in NMR spin echo experiments [9], rmuscattering [10], ultrafast electronic
spectroscopy [11], quantum computation and decohere2{eddd as a measure of nonadiabatic-

ity [13] or accuracy of molecular quantum dynamics on an agipnate potential energy surface

[6].



For simplicity, we first assume that the initial states areepand defer the generalization to
mixed states and other phase space densities to a laterse@tie can rewrite quantum fidelity (1)
asFom(t) = Tr (pLph), wherept .= UlpU-" is the density operator at tinie In the phase-space
formulation of quantum mechanics, quantum fidelity becomgg(t) = h™" [ dxpl () phw (),
wherez := (¢, p) is a point in phase space adgy(z) = [d&{q — £/2|A| g + £/2)e/ is the
Wigner transform ofd. This form of quantum fidelity suggests directly its claasiamit, which

is precisely the classical fidelity, defined as [1, 2]

Feu(t) = Fia(t) = h™” / drpl(x)h(x) 3)

— Fodt) = 1P / dapt (2)p°(z) @)

where the first and second line express classical fidelityaritlelity and Loschmidt echo pictures,
respectivelyp! is the classical phase-space density evolved Withandy' is this density evolved
under the echo dynamics. While expressions (3)-(4) are taiglp classical, the phase-space
volume is measured in units & to make the quantum-classical correspondence explicit. We
omit subscript “CL” for classical quantities andp since classical fidelity is the main subject of
this paper.

Algorithms. The exponential scaling of quantum dynamics widhis well known. As for
classical fidelity, Egs. (3)-(4) may be evaluated, e.g hwijectory, grid, or mesh-based methods.
Clearly, the grid-based methods would suffer from an exptiakscaling as quantum dynamics
on a grid. We focus on the most general and straightforwajddtory-based methods, obtained

from Egs. (3)-(4) using the Liouville theorem, yielding éealent expressions

Fut) = [ dplz)play) and (5)

Faend) = h™P / 02 p(~)p(a?). (6)

Above,z! := ®!(z°), where®! is the Hamiltonian flow off., andz! := ®!(z°), whered' :=

®-' o d} is the Loschmidt echo flow. Since it is the phase space paatier than the densities
that evolve in expressions (5)-(6), we can take- py, i.e., the Wigner transform of the initial
guantum state. We further rewrite Egs. (5)-(6) in a formahlé for Monte Carlo evaluation, i.e.,

as an average
0 o fdeA(xO,t)W(xO)
(A(z ’t>>W(:p0) = [ dz"W (a0)




wherelV is the sampling weight for initial conditions”. The weight can be any positive defi-
nite function but it is advantageous to consider the weighid related to the densigy While
previously used algorithms sampled frgn{2, 4, 5], we consider more general weights =
Wi (2%) = p(2®) andW = Wy (zy") = p(®"(2°))M for the echo and fidelity dynamics,
respectively. These weights yiel-dependent algorithms

Eid_M(t) = I]\/[ <p(l’;t)p(l’at)I_N[>p(mat)M, (7)

FechoM(t) = IM<p(x_t)p(x0)1_M>p(m0)M, (8)

wherely, := h™P [ p(2°)Mdz is a normalization factor. In both families of algorithmg-(3),
sampling can be done by Metropolis Monte Carlo for generabdyics and any positive definite
weight p™. For M > 0, the echo algorithms (8) are, however, much more practioaesthe
initial state is often known explicitly (and generally is aiusmoother than the final state), making
sampling easier. Furthermore, for simple initial stateshsas Gaussian wavepackets (GWPs), the
Metropolis sampling in the echo algorithms can be replagedralytical sampling. Therefore,
for M > 0 the fidelity algorithms are more of a theoretical possipilitan a practical tool. For
M = 0, the sampling is uniform and makes sense only for a compasespace of finite volume
Q=0 = (nlh)D, where(); andn, are respectively the phase space volume and Hilbert-space
dimension for a single DOF. Fav/ > 0, importance sampling based on the weight; is used
and an infinite phase space is allowed. For genkfathe sampling is only defined for classical
states (such as GWPs), for whigh> 0. However, forAM/ = 0 and for the important special case

of M = 2, the sampling is defined for any state, i.e., even for negatiues of.

In order to compute classical fidelity directly from algbris (7) or (8), the normalization
factor I, must be known analytically. For general pure stafgsjs known analytically only for
M = 0,1, or2. For M = 0, I, = n? because of the requirement of finite phase space. For
bothM = 1andM = 2, I; = 1sinceTrp = Trp* = 1. ForM ¢ {0, 1,2}, algorithms (7)
and (8) can only be used for special initial states. E.g.jrftial GWPsp(z) = g(z; X,a) =
2P exp [~ (q — Q)?/a® — (p — P)*a®/h?], whereX is the center and the width of the GWP, we
havel,; = (2M‘1/M)D for generalM > 0. However, the unknown normalization factor can
be removed from Eqgs. (7) and (8) by dividing them by the valué,dnote that/,(0) = F(0)]
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obtained with the same algorithm and trajectories. Resuftnormalized” (N) algorithms,

(o) plag VM) oy
(o0 M) ooy
(o) p(a®) ™M) oy

(@) M) o
are practical for general initial states and for ady As far as we know, from the four families of
algorithms (7), (8), (9), and (10) only echo-1 (8) has beadyseviously [2, 4, 5]. Note, however,

Fiign-m(t) = ; (9)

Fecho-nar (t) = (10)

that for initial densities given by characteristic functso(which may not necessarily correspond
to quantum states), echo-1 = echb= echo-N4/ for all M > 0.

Efficiency.The cost of a typical method propagatiNgrajectories for time is O (¢t N), where
¢t is the cost of a single force evaluation. However, among buz@ mentioned algorithms, this
is only true for the fidelity algorithms witid/ = 0. Remarkably, in all other cases, the cost is
O(et*N). For a single time, the cost is linear in time, but if one wants to know classiichlity
for all times up tot, the cost is quadratic with For the echo algorithms, it is because one must
make full backward propagation for each time betwéemd¢. For the fidelity algorithms, it is
because the weight functionz—*) changes with time and the sampling has to be redone from
scratch for each time betweérandt. In other words, different trajectories are used for eacteti
betweer) andt.

The above estimates are correct but not the full story. Taerdnidden costs since the number
of trajectoriesV required for convergence can dependart, dynamics, initial state, and method.
One usually empirically increasés until convergence but this is often impracticable. Insieasl
estimateVN analytically. An essential point is that is fully determined by the desired discretiza-
tion error ogise.  The expected systematic componentogf, is zero orO(N—1) for all cases

studied and is negligible to the expected statistical camptr = O(N ~'/2) which therefore de-

termines convergence. This statistical error is compusect@, N) = F(t, N)? — F(t, N)z, the
overline denoting an average over infinitely many indepahdanulations with/V trajectories.
Hence we can formulate the problem of efficiency preciseW¢hat N is required to converge
fidelity F' to within a statistical erros?” We let NV be a function off’ because in many applica-
tions, one is interested iA" above a certain threshold valug,,. This threshold can vary with
application: It may be close to unity (in quantum computiwgere high fidelity is required inde-
pendently ofD) or to zero (yet finite, in calculations of spectra as Fouttiansforms of fidelity

which must be known with certain precision independerdhfQuite generally, the threshold will
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beindependenbf D. Moreover, as will turn out below, expressingas a function ofF’ permits
obtaining general expressions valid for any dynamics.

The discretized form of Eq. (7) iBiig-a(t, N) = I,y N~! Z;V:l p(z_5)p(ags)'~M, from which

Frg. (£, N)? = Iy N~ p(a ') o) 72M) yarty

+ (1 - NYHF2

Similarly, from Eq. (8)Fuchoas(t, N) = IyyN~! Zj-v:l p(z;")p(z) ™, hence

J

Fechoar(t, N)? = 112\4N_1(P(x_t)zp(xo)2_2M>p(m0)M

+(1—-NYHYF2

Realizing thatFiig.as (t, N) = Fechoar (t, N) = F(t) in both cases, we obtain the same error

Ufzid-M = UgchoM = N_I(IMJM - F2)v (11)

Iy = h_D/dep(x_t)2p(x0)2_M. (12)
In the special case dff = 2, we find ourfirst major result
Tfga = Oachos = N ' (1 — F) . (13)

This expression shows that for general pure states and fargledynamics, statistical errors of

Fiig.2 and Fecno2 depend only onV and F'. In other words, the number of trajectories needed for

convergence isndependentf ¢, D, or dynamics of the system. This important result is due to

the fact that for the sampling weighit = p?, each numerical trajectory contributes evenly to the

weighted average (at tinte= 0).

As for algorithms (7)-(8) with\/ # 2, one might hope to improve convergence by employing

the normalized versions (9)-(10). The error analysis igp$iited using the formula for statistical

error of a ratio of two random variables,

2 - _
(G = () () " as

In our casefn.u(t, N) = A/B, whereA = Fy,(t,N), B = F;(0,N), A= F(t), B= F(0) =
1, ando4 andop are given by Eq. (11). The only unknown in Eq. (14)Yi8. For the normalized
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echo algorithms (10), we have

AB = Fechoar (t, N) Fechoar (0, N)
= Iy N (e ™) p(a®)* M) a0y
+ (1= NTHYF(t)F(0)
= N 'yKy+(1—NYEF,

where Ky := h™P [da® p(z7")p(z°)**. The same derivation goes through for the fidelity

algorithms. In both cases, the error is
UI%I-J\/[ = N_llj\/[ (JM - 2K]\/[F + I4_]\/[F2) . (15)

Exponential growth of the error for/ # 2. Now we will show that the special cage = 2
is unique and that all the other above-mentioned algoritfwsch include all the algorithms
available in the literature) may have an error growing exguially with D. Since we are searching
for counterexamples, special cases are sufficient. Forase thill be initial GWP states and “pure
displacement” (PD) or “pure squeezing” (PS) dynamics [3].

In the PD case, the center of the GWP moves while both its saagesize remain constant.
Such fidelity dynamics can be realized exactly by two disggdiegimple harmonic oscillator (SHO)
potentials with equal force constants. For PD, the width= ¢° = o and X! = X° + AX".
classical fidelity isF'(t) = h™" [ dz g(z; X", a)g(x; X°, a) = exp {—% l(ATQt)Z + (%)2} }

2371%

D
and the factor (12) can be expressed in terms ak.J,;, = (m) Frwithyy, =4—-8/(4 —

M), reducing statistical error (11) to
ohpp=N""(BRF™ - F?), (16)

4
Bo = 2ny andBycprca = m

The error diverges fol > 4. Note that5,, > 1 and the minimunp, = 1, achieved forM = 2,

(17)

agrees with the general result (13). Exceptidr= 2, 55, > 1, showing that even in the simple
case of PD, errors of all algorithms from families (7) and g&w exponentiallywith D, which
is thesecond major resuldf this paper. Normalized methods (9) and (10) lower theguteir
but do not change the exponential scaling with Since K, = [23~M /(4 — M)|P F°M, where
o =2—2/(4— M), the statistical error is

Oy pp = N5 (F — 2R 0 4 F2)
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In the PS case, the center of the GWP remains fixed while ithwidrrows in some directions
and spreads in others. PS dynamics is realized by two inV&#t#0s with common centers and
different force constants. FOor< M < 4,

o ps= N (ﬁz\Dﬂz_D/Q — F?), (18)
ofps= N5 (R7P/? =217 PPF + ) (19)
whereR := 14 py (F7%P = 1), T =1+ 7y (F7/P = 1), pyr :== 82— M)/(4 — M)?, and

v = 4(3 — M)/(4 — M)*. ForD — oo, these errors grow as

UJQV[, ps~ N7! (51\D4FpM — FQ) ; (20)
ONa, ps~ N7 By (FP — 2FF™ 4 F2) | (21)

increasingexponentiallywith D for all M exceptM = 2. The errors diverge always far > 4
but, depending o’ and D, may diverge for any/ > 2.

To summarize, in all cases studied, fors>> 1 the number of trajectories required for a specified

convergence is

N = o %a(F)3” (22)
wherea andj depend on the method and dynamics and are listed in TabléHdonost important
special cases. For both fidelity and echo algorithms with= 2, for any dynamics and any initial
state, the coefficient = 1, implying independence ab. Note also that algorithms with/ = 2
are automatically normalized. For all other algorithmstkbecho and fidelity, both unnormalized
and normalized, and for any/ # 2) and for both PD and PS dynamic$,> 1, implying an
exponential growth withD. This growth is dramatic fol/ = 0 (3 = 2n; > 1): sincen? is the
Hilbert space dimension, the costbf = 0 algorithms approaches that of quantum fidelity. This
is unfortunate sincéiq. is the only algorithm that scales linearly with time. On thkey hand,
for the most intuitive and most commavi = 1 algorithms,5 = 4/3, and the growth is much
slower, although still exponential.

Mixed states and general phase space densitidsfinitions of quantum or classical fidelity
can be generalized to mixed states in different ways [7, K&gping definitions (3)-(4) also
for classical fidelity of mixed states, expression (11) reainchanged. FolM = 2, 05 =
N='(P? — F?),whereP = h™" [ dzp(z)? is the purity, and the error is again independenbof

Since for mixed stateg < 1 even att = 0, classical fidelity is usually generalized as

o [ded@h@) [ dep @)@
PO = ey = Jdefr

8
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Method Dynamics type alF) I5;

fid-0 displacement F? 2nq
fid-0 squeezing F 2n4
echo-1 displacement F4/3 4/3
echo-1 squeezing) — oo F8/9 4/3
echo-N-1 displacement F?2 4 F43 _9F/3 4/3
echo-N-1 squeezing) — oo F2 4 [8/9 _op17/9 4/3
echo-2 general, general state 1— F? 1

TABLE |. The number of trajectories needed for convergemsciii D > 1 given by N = o~ 2a(F)BP.
The table lists(F') and 5 for important special cases. Note that fid-0, echo-1, and-&&h results are
for initial GWPs and scale exponentially with while the echo-2 result, valid for any initial density, is

independent oD.

giving F = 1 att = 0. This definition works for any normalized phase space dgifsiten with
P > 1). Evaluating Eq. (23) with fid-N¥/ or echo-N4/ algorithms gives

G2, = N*% (JM — 2Ky F + 14_MF2> . (24)
For M = 2, the error is independent dd for any normalized phase space density sifite =
N1 (1 - Fz) , which is thethird major resultof this paper.

Numerical results and conclusidru illustrate the analytical results obtained above, nucaér
tests were performed in multidimensional systems of unesbgisplaced SHOs (for PD dynam-
ics), inverted SHOs (for PS dynamics), and perturbed kické¢ators (for generic nonlinear inte-
grable and chaotic dynamics). The last model is defined](27), by the mapy;+1 = ¢; + pj,
piy1 = pj — VW(gj+1) — €VV(gj+1), whereW (q) = —kcosq is the potential and’(¢) =
— cos(2q) the perturbation of the systerhande determine the type of dynamics and perturbation
strength, respectively. Uncoupled systems were used ier dadmake quantum fidelity calcu-
lations feasible (as a product @ 1-dimensional calculations); however, the classical itigel
calculations were performed as for a trulydimensional system. The initial state was always a
multidimensional GWP, withX = (0.1,0.9) - 27, a = v/A (in Fig. 1) orX = (1/2,0),a = 1 (in
Fig. 2) in all dimensions. Expected statistical errors westmated by averaging actual statistical

errors overl00 different sets ofV trajectories. No fitting was used in any figure, yet all numer-
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ical results agree with analytical estimates. The figuresvstesults also for algorithm echo-1’,
Fecho-1(t) = 1+ (p(z7") — p(x0)>p(m0), which is a variant of echo-1 accurate for high fidelity. Both
echo-1 and echo-1’ reduce to echo-N-1 if normalized.

Figure 1 displays fidelity in 400-dimensional system of kicked rotators. It shows that echo-
2 converges with several orders of magnitude fewer trajesstdhan the echo-1, echo-1’, and
echo-N-1 algorithms. Figure 2 confirms thatn..»is independent of) while oecho-1, Techo-1» @nd
Oecho-N-1 grOW exponentially withD. The normalized echo-N-1 algorithm is the most efficient

among the methods with/ = 1.

I I I I I I I I
T . . quantum .
Lr e echo-1 (N=7x107) 1
: | = == echo-1' (N=7x10 )7
: | | === echo-N-1 (N=7x10")
e, ] I === echo-2 (N=2048)
L 05 | i, R4 SRR classical (N=co) ]
0 r |
-1 |
] ] ] ] 1 ] ] ] ]
0 5 10 15 20 25 30 35 40

FIG. 1. (Color online) Convergence of different classicdefity algorithms in al00-dimensional system
of perturbed { = 10~*) quasi-integrablek = 0.2) kicked rotators withn; = 131072. Algorithm echo-2
agrees with the quantum result and converges with dhly 2048 trajectories whereas the echo-1, echo-1',
and echo-N-1 results are far from converged even Witk 7 x 107. Fully converged classical\| = oo)
result is computed as a product of 100 one-dimensional fiieieli The “hopelessly” unconverged fid-0

algorithm not shown. For clarity, echo-1' error bars notwhdor ¢t > 20.

In conclusion, we have shown on the example of classicaltiydélat not only quantum simu-
lations but also classical algorithms can be unfeasibl@mpiex systems due to the exponential
scaling with dimensionality. We have proposed an efficidassical fidelity algorithm for which

this exponential scaling disappears. The echo-2 algonitiakes high-dimensional studies of clas-
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FIG. 2. (Color online) Statistical error grows exponetyiatith D for the echo-1, echo-1’, and echo-N-1
algorithms and is independent of for the echo-2 algorithm. Dynamics corresponds to (a) pisplace-
ment or (b) pure squeezing. In both cas¥sx 107 and time was chosen separately for eAtko thatF is
independent oD. (a) F' =~ 0.3. The two SHOs had the same force constagrt 3 while their displacement
in each DOF decreased with increasibgrom 0.8 to 0.2 (to obtain a slower decay Bfper DOF for high
D). (b) F =~ 0.99. While the displacement of the unperturbed and perturbe@<SWas zero, their force

constants weré = —3 andk = —3.5, respectively.

sical fidelity practical for general initial densities. Thkgorithm thus enables, e.g., a systematic
analysis of the stability of molecular dynamics to perttidras or a rigorous evaluation of the
accuracy of molecular dynamics following an approximateddield. In the special case of initial
densities given by characteristic functions all ecilcand echo-NA/ algorithms (forM > 0) col-
lapse into a single algorithm. In particular, the “naturaljorithm sampling fronp is equivalent

to our algorithm sampling from?. This may explain why high-dimensional calculations wee p
viously done only with characteristic functions. Theseaitssshould be also useful in applications
computing more general overlaps of phase space distritmitieor example, the sampling weight
W(x) < p¥ (z) A% (x) BY (x) may accelerate the calculation of correlation functionthefform
Cap(t) = h=P [dzp® () A° (z) B* (z). Finally, the technique we used to analyze efficiency of
general trajectory-based algorithms can be useful in deuad) approximate methods for quan-
tum dynamics of large systems [15]. Our research was sugghbost Swiss NSF with grants No.
200021124936 and NCCR MUST, and by EPFL. We thank G. Benenti, B. Bakh T. Prosen,
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M. éulc, and G. Veble for useful discussions.
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