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Abstract

We analyze the efficiency of available algorithms for the simulation of classical fidelity and show that

their computational costs increase exponentially with thenumber of degrees of freedom. Then we present

an algorithm for which the number of trajectories needed forconvergence is independent of the system’s

dimensionality and show that, within a continuous family ofalgorithms, this algorithm is the only one with

this property. Simultaneously we propose a general analytical approach to estimate efficiency of trajectory-

based methods and suggest how to use it to accelerate calculations of other classical correlation functions.

Converged numerical results are provided for systems with phase space volume21700 times larger than the

volume of the initial state.
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Introduction. While the solution of the time-dependent Schrödinger equation scales exponen-

tially with dimensionality and is feasible for only a few continuous degrees of freedom (DOF),

classical molecular dynamics simulations are, in principle, feasible for millions of atoms. It may

therefore be surprising that studies of classical fidelity have provided numerical results for only

one or a few DOF [1–4]. A notable exception is Ref. [5], which,for the largest systems, relies on

initial densities given by characteristic functions. Below we explain this situation by showing that

for initial Gaussian densities, not only quantum but also all previously used classical algorithms

for fidelity scale exponentially with the numberD of DOF. Hence even when quantum effects are

negligible and classical picture is appropriate, the “simple” classical simulations may be unfeasi-

ble. Since numerical simulations are important for testinganalytical theories of classical fidelity in

large systems, we design an efficient classical fidelity algorithm that avoids the exponential scaling

with D.

Classical and quantum fidelity.Classical fidelity is important both as a theoretical measure of

stability of classical dynamics [1–5] and as a practical tool to measure the accuracy of classical

molecular dynamics with an approximate many-body Hamiltonian (e.g., a “force field”) [6]. While

important in its own right, classical fidelity can be viewed as the classical limit of quantum fidelity

[7], introduced by Peres [8] to measure the stability of quantum dynamics. Quantum fidelity is the

squared overlapFQM(t) at timet of two quantum states, identical att = 0, but evolved with two

different Hamiltonians,H0 andHǫ = H0 + ǫV :

FQM(t) := |fQM(t)|2 , (1)

fQM(t) := 〈ψ
∣

∣U−t
ǫ U t

0

∣

∣ψ〉, (2)

wherefQM(t) is the quantum fidelity amplitude andU t
ǫ := exp(−iHǫt/~) the quantum evolution

operator. Rewriting Eq. (2) asfQM(t) = 〈ψ |U t|ψ〉 with the echo operatorU t := U−t
ǫ U t

0, it can be

interpreted as the Loschmidt echo, i.e., an overlap of an initial state with a state evolved for timet

with H0 and subsequently for time−t with Hǫ. (In general, we write timet as a superscript. Sub-

scriptǫ denotes thatHǫ was used for dynamics. If an evolution operator, phase spacecoordinate,

or density lacks a subscript, Loschmidt echo dynamics is implied.) Quantum fidelity has many

applications, e.g., in NMR spin echo experiments [9], neutron scattering [10], ultrafast electronic

spectroscopy [11], quantum computation and decoherence [12], and as a measure of nonadiabatic-

ity [13] or accuracy of molecular quantum dynamics on an approximate potential energy surface

[6].
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For simplicity, we first assume that the initial states are pure and defer the generalization to

mixed states and other phase space densities to a later section. One can rewrite quantum fidelity (1)

asFQM(t) = Tr (ρ̂tǫρ̂
t
0), whereρ̂tǫ := U t

ǫ ρ̂U
−t
ǫ is the density operator at timet. In the phase-space

formulation of quantum mechanics, quantum fidelity becomesFQM(t) = h−D
∫

dxρtǫ,W(x)ρt0,W(x),

wherex := (q, p) is a point in phase space andAW(x) :=
∫

dξ〈q − ξ/2 |A| q + ξ/2〉eipξ/~ is the

Wigner transform ofA. This form of quantum fidelity suggests directly its classical limit, which

is precisely the classical fidelity, defined as [1, 2]

FCL(t) := Ffid(t) = h−D

∫

dxρtǫ(x)ρ
t
0(x) (3)

= Fecho(t) = h−D

∫

dxρt(x)ρ0(x) (4)

where the first and second line express classical fidelity in the fidelity and Loschmidt echo pictures,

respectively,ρtǫ is the classical phase-space density evolved withHǫ, andρt is this density evolved

under the echo dynamics. While expressions (3)-(4) are completely classical, the phase-space

volume is measured in units ofhD to make the quantum-classical correspondence explicit. We

omit subscript “CL” for classical quantitiesF andρ since classical fidelity is the main subject of

this paper.

Algorithms. The exponential scaling of quantum dynamics withD is well known. As for

classical fidelity, Eqs. (3)-(4) may be evaluated, e.g., with trajectory, grid, or mesh-based methods.

Clearly, the grid-based methods would suffer from an exponential scaling as quantum dynamics

on a grid. We focus on the most general and straightforward trajectory-based methods, obtained

from Eqs. (3)-(4) using the Liouville theorem, yielding equivalent expressions

Ffid(t) = h−D

∫

dx0ρ(x−t
ǫ )ρ(x−t

0 ) and (5)

Fecho(t) = h−D

∫

dx0ρ(x−t)ρ(x0). (6)

Above,xtǫ := Φt
ǫ(x

0), whereΦt
ǫ is the Hamiltonian flow ofHǫ, andxt := Φt(x0), whereΦt :=

Φ−t
ǫ ◦ Φt

0 is the Loschmidt echo flow. Since it is the phase space points rather than the densities

that evolve in expressions (5)-(6), we can takeρ = ρW, i.e., the Wigner transform of the initial

quantum state. We further rewrite Eqs. (5)-(6) in a form suitable for Monte Carlo evaluation, i.e.,

as an average
〈

A(x0, t)
〉

W (x0)
:=

∫

dx0A(x0, t)W (x0)
∫

dx0W (x0)
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whereW is the sampling weight for initial conditionsx0. The weight can be any positive defi-

nite function but it is advantageous to consider the weight to be related to the densityρ. While

previously used algorithms sampled fromρ [2, 4, 5], we consider more general weightsW =

WM(x0) := ρ(x0)M andW = WM(x−t
0 ) = ρ(Φ−t

0 (x0))M for the echo and fidelity dynamics,

respectively. These weights yieldM-dependent algorithms

Ffid-M(t) = IM〈ρ(x−t
ǫ )ρ(x−t

0 )1−M〉ρ(x−t

0
)M , (7)

Fecho-M(t) = IM〈ρ(x−t)ρ(x0)1−M〉ρ(x0)M , (8)

whereIM := h−D
∫

ρ(x0)Mdx0 is a normalization factor. In both families of algorithms (7)-(8),

sampling can be done by Metropolis Monte Carlo for general dynamics and any positive definite

weight ρM . ForM > 0, the echo algorithms (8) are, however, much more practical since the

initial state is often known explicitly (and generally is much smoother than the final state), making

sampling easier. Furthermore, for simple initial states such as Gaussian wavepackets (GWPs), the

Metropolis sampling in the echo algorithms can be replaced by analytical sampling. Therefore,

for M > 0 the fidelity algorithms are more of a theoretical possibility than a practical tool. For

M = 0, the sampling is uniform and makes sense only for a compact phase space of finite volume

Ω = ΩD
1 = (n1h)

D, whereΩ1 andn1 are respectively the phase space volume and Hilbert-space

dimension for a single DOF. ForM > 0, importance sampling based on the weightWM is used

and an infinite phase space is allowed. For generalM , the sampling is only defined for classical

states (such as GWPs), for whichρ ≥ 0. However, forM = 0 and for the important special case

of M = 2, the sampling is defined for any state, i.e., even for negative values ofρ.

In order to compute classical fidelity directly from algorithms (7) or (8), the normalization

factorIM must be known analytically. For general pure states,IM is known analytically only for

M = 0, 1, or 2. For M = 0, I0 = nD
1 because of the requirement of finite phase space. For

bothM = 1 andM = 2, IM = 1 sinceTr ρ̂ = Tr ρ̂2 = 1. ForM /∈ {0, 1, 2}, algorithms (7)

and (8) can only be used for special initial states. E.g., forinitial GWPsρ(x) = g(x;X, a) :=

2D exp [−(q −Q)2/a2 − (p− P )2a2/~2], whereX is the center anda the width of the GWP, we

haveIM =
(

2M−1/M
)D

for generalM > 0. However, the unknown normalization factor can

be removed from Eqs. (7) and (8) by dividing them by the value of I2 [note thatI2(0) = F (0)]
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obtained with the same algorithm and trajectories. Resulting “normalized” (N) algorithms,

Ffid-N-M(t) =
〈ρ(x−t

ǫ )ρ(x−t
0 )1−M〉ρ(x−t

0
)M

〈ρ(x−t
0 )2−M〉ρ(x−t

0
)M

, (9)

Fecho-N-M(t) =
〈ρ(x−t)ρ(x0)1−M〉ρ(x0)M

〈ρ(x0)2−M〉ρ(x0)M
, (10)

are practical for general initial states and for anyM . As far as we know, from the four families of

algorithms (7), (8), (9), and (10) only echo-1 (8) has been used previously [2, 4, 5]. Note, however,

that for initial densities given by characteristic functions (which may not necessarily correspond

to quantum states), echo-1 = echo-M = echo-N-M for all M > 0.

Efficiency.The cost of a typical method propagatingN trajectories for timet isO(cftN), where

cf is the cost of a single force evaluation. However, among the above mentioned algorithms, this

is only true for the fidelity algorithms withM = 0. Remarkably, in all other cases, the cost is

O(cft
2N). For a single timet, the cost is linear in time, but if one wants to know classicalfidelity

for all times up tot, the cost is quadratic witht. For the echo algorithms, it is because one must

make full backward propagation for each time between0 andt. For the fidelity algorithms, it is

because the weight functionρ(x−t)M changes with time and the sampling has to be redone from

scratch for each time between0 andt. In other words, different trajectories are used for each time

between0 andt.

The above estimates are correct but not the full story. Thereare hidden costs since the number

of trajectoriesN required for convergence can depend onD, t, dynamics, initial state, and method.

One usually empirically increasesN until convergence but this is often impracticable. Instead, we

estimateN analytically. An essential point is thatN is fully determined by the desired discretiza-

tion errorσdiscr. The expected systematic component ofσdiscr is zero orO(N−1) for all cases

studied and is negligible to the expected statistical componentσ = O(N−1/2) which therefore de-

termines convergence. This statistical error is computed as σ2(t, N) = F (t, N)2 − F (t, N)
2
, the

overline denoting an average over infinitely many independent simulations withN trajectories.

Hence we can formulate the problem of efficiency precisely: “WhatN is required to converge

fidelity F to within a statistical errorσ?” We letN be a function ofF because in many applica-

tions, one is interested inF above a certain threshold valueFmin. This threshold can vary with

application: It may be close to unity (in quantum computing,where high fidelity is required inde-

pendently ofD) or to zero (yet finite, in calculations of spectra as Fouriertransforms of fidelity

which must be known with certain precision independent ofD). Quite generally, the threshold will
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be independentof D. Moreover, as will turn out below, expressingN as a function ofF permits

obtaining general expressions valid for any dynamics.

The discretized form of Eq. (7) isFfid-M(t, N) = IMN
−1
∑N

j=1 ρ(x
−t
ǫ,j)ρ(x

−t
0,j)

1−M , from which

Ffid-M(t, N)2 = I2MN
−1〈ρ(x−t

ǫ )2ρ(x−t
0 )2−2M〉ρ(x−t

0
)M

+ (1−N−1)F 2.

Similarly, from Eq. (8)Fecho-M(t, N) = IMN
−1
∑N

j=1 ρ(x
−t
j )ρ(x0j )

1−M , hence

Fecho-M(t, N)2 = I2MN
−1〈ρ(x−t)2ρ(x0)2−2M〉ρ(x0)M

+ (1−N−1)F 2.

Realizing thatFfid-M(t, N) = Fecho-M(t, N) = F (t) in both cases, we obtain the same error

σ2
fid-M = σ2

echo-M = N−1(IMJM − F 2), (11)

JM := h−D

∫

dx0ρ(x−t)2ρ(x0)2−M . (12)

In the special case ofM = 2, we find ourfirst major result,

σ2
fid-2 = σ2

echo-2 = N−1
(

1− F 2
)

. (13)

This expression shows that for general pure states and for general dynamics, statistical errors of

Ffid-2 andFecho-2 depend only onN andF . In other words, the number of trajectories needed for

convergence isindependentof t, D, or dynamics of the system. This important result is due to

the fact that for the sampling weightW = ρ2, each numerical trajectory contributes evenly to the

weighted average (at timet = 0).

As for algorithms (7)-(8) withM 6= 2, one might hope to improve convergence by employing

the normalized versions (9)-(10). The error analysis is simplified using the formula for statistical

error of a ratio of two random variables,

(

σA/B

A/B

)2

=
(σA
Ā

)2

+
(σB
B̄

)2

− 2
AB − ĀB̄

ĀB̄
. (14)

In our case,FN-M(t, N) = A/B, whereA = FM(t, N), B = FM(0, N), Ā = F (t), B̄ = F (0) =

1, andσA andσB are given by Eq. (11). The only unknown in Eq. (14) isAB. For the normalized
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echo algorithms (10), we have

AB = Fecho-M(t, N)Fecho-M(0, N)

= I2MN
−1〈ρ(x−t)ρ(x0)3−2M〉ρ(x0)M

+ (1−N−1)F (t)F (0)

= N−1IMKM + (1−N−1)F,

whereKM := h−D
∫

dx0 ρ(x−t)ρ(x0)3−M . The same derivation goes through for the fidelity

algorithms. In both cases, the error is

σ2
N-M = N−1IM

(

JM − 2KMF + I4−MF
2
)

. (15)

Exponential growth of the error forM 6= 2. Now we will show that the special caseM = 2

is unique and that all the other above-mentioned algorithms(which include all the algorithms

available in the literature) may have an error growing exponentially withD. Since we are searching

for counterexamples, special cases are sufficient. For us these will be initial GWP states and “pure

displacement” (PD) or “pure squeezing” (PS) dynamics [3].

In the PD case, the center of the GWP moves while both its shapeand size remain constant.

Such fidelity dynamics can be realized exactly by two displaced simple harmonic oscillator (SHO)

potentials with equal force constants. For PD, the widthat = a0 = a andX t = X0 + ∆X t.

classical fidelity isF (t) = h−D
∫

dx g(x;X t, a)g(x;X0, a) = exp

{

−1
2

[

(

∆Qt

a

)2

+
(

∆P ta
~

)2
]}

and the factor (12) can be expressed in terms ofF asJM =
(

23−M

4−M

)D

F γM with γM = 4− 8/(4−
M), reducing statistical error (11) to

σ2
M , PD = N−1

(

βD
MF

γM − F 2
)

, (16)

β0 = 2n1 andβ0<M<4 =
4

(4−M)M
. (17)

The error diverges forM ≥ 4. Note thatβM ≥ 1 and the minimumβ2 = 1, achieved forM = 2,

agrees with the general result (13). Except forM = 2, βM > 1, showing that even in the simple

case of PD, errors of all algorithms from families (7) and (8)grow exponentiallywith D, which

is thesecond major resultof this paper. Normalized methods (9) and (10) lower the prefactor

but do not change the exponential scaling withD: SinceKM = [23−M/(4 −M)]DF δM , where

δM = 2− 2/(4−M), the statistical error is

σ2
N-M , PD = N−1βD

M

(

F γM − 2F 1+δM + F 2
)

.
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In the PS case, the center of the GWP remains fixed while its width narrows in some directions

and spreads in others. PS dynamics is realized by two inverted SHOs with common centers and

different force constants. For0 < M < 4,

σ2
M , PS= N−1

(

βD
MR

−D/2 − F 2
)

, (18)

σ2
N-M , PS= N−1βD

M

(

R−D/2 − 2T−D/2F + F 2
)

, (19)

whereR := 1 + ρM
(

F−2/D − 1
)

, T := 1 + τM
(

F−2/D − 1
)

, ρM := 8(2 −M)/(4 −M)2, and

τM := 4(3−M)/(4−M)2. ForD → ∞, these errors grow as

σ2
M , PS∼ N−1

(

βD
MF

ρM − F 2
)

, (20)

σ2
N-M , PS∼ N−1βD

M

(

F ρM − 2F 1+τM + F 2
)

, (21)

increasingexponentiallywith D for all M exceptM = 2. The errors diverge always forM ≥ 4

but, depending onF andD, may diverge for anyM > 2.

To summarize, in all cases studied, forD ≫ 1 the number of trajectories required for a specified

convergence is

N = σ−2α(F )βD (22)

whereα andβ depend on the method and dynamics and are listed in Table I forthe most important

special cases. For both fidelity and echo algorithms withM = 2, for any dynamics and any initial

state, the coefficientβ = 1, implying independence ofD. Note also that algorithms withM = 2

are automatically normalized. For all other algorithms (both echo and fidelity, both unnormalized

and normalized, and for anyM 6= 2) and for both PD and PS dynamics,β > 1, implying an

exponential growth withD. This growth is dramatic forM = 0 (β = 2n1 ≫ 1): sincenD
1 is the

Hilbert space dimension, the cost ofM = 0 algorithms approaches that of quantum fidelity. This

is unfortunate sinceFfid-0 is the only algorithm that scales linearly with time. On the other hand,

for the most intuitive and most commonM = 1 algorithms,β = 4/3, and the growth is much

slower, although still exponential.

Mixed states and general phase space densities.Definitions of quantum or classical fidelity

can be generalized to mixed states in different ways [7, 14].Keeping definitions (3)-(4) also

for classical fidelity of mixed states, expression (11) remains unchanged. ForM = 2, σ2
2 =

N−1 (P 2 − F 2), whereP = h−D
∫

dxρ(x)2 is the purity, and the error is again independent ofD.

Since for mixed statesF < 1 even att = 0, classical fidelity is usually generalized as

F̃ (t) :=

∫

dx ρtǫ(x)ρ
t
0(x)

∫

dx ρt0(x)
2

=

∫

dx ρt(x)ρ0(x)
∫

dx ρ0(x)2
, (23)
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Method Dynamics type α(F ) β

fid-0 displacement F 2 2n1

fid-0 squeezing F 2n1

echo-1 displacement F 4/3 4/3

echo-1 squeezing,D → ∞ F 8/9 4/3

echo-N-1 displacement F 2 + F 4/3 − 2F 7/3 4/3

echo-N-1 squeezing,D → ∞ F 2 + F 8/9 − 2F 17/9 4/3

echo-2 general, general state 1− F 2 1

TABLE I. The number of trajectories needed for convergence is forD ≫ 1 given byN = σ−2α(F )βD .

The table listsα(F ) andβ for important special cases. Note that fid-0, echo-1, and echo-N-1 results are

for initial GWPs and scale exponentially withD while the echo-2 result, valid for any initial density, is

independent ofD.

giving F̃ = 1 at t = 0. This definition works for any normalized phase space density (even with

P > 1). Evaluating Eq. (23) with fid-N-M or echo-N-M algorithms gives

σ̃2
N-M = N−1 IM

P 2

(

JM − 2KM F̃ + I4−M F̃
2
)

. (24)

ForM = 2, the error is independent ofD for any normalized phase space density sinceσ̃2
N-2 =

N−1
(

1− F̃ 2
)

, which is thethird major resultof this paper.

Numerical results and conclusion.To illustrate the analytical results obtained above, numerical

tests were performed in multidimensional systems of uncoupled displaced SHOs (for PD dynam-

ics), inverted SHOs (for PS dynamics), and perturbed kickedrotators (for generic nonlinear inte-

grable and chaotic dynamics). The last model is defined,mod(2π), by the mapqj+1 = qj + pj ,

pj+1 = pj − ∇W (qj+1) − ǫ∇V (qj+1), whereW (q) = −k cos q is the potential andV (q) =

− cos(2q) the perturbation of the system;k andǫ determine the type of dynamics and perturbation

strength, respectively. Uncoupled systems were used in order to make quantum fidelity calcu-

lations feasible (as a product ofD 1-dimensional calculations); however, the classical fidelity

calculations were performed as for a trulyD-dimensional system. The initial state was always a

multidimensional GWP, withX = (0.1, 0.9) · 2π, a =
√
~ (in Fig. 1) orX = (1/2, 0), a = 1 (in

Fig. 2) in all dimensions. Expected statistical errors wereestimated by averaging actual statistical

errors over100 different sets ofN trajectories. No fitting was used in any figure, yet all numer-
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ical results agree with analytical estimates. The figures show results also for algorithm echo-1’,

Fecho-1’(t) = 1+〈ρ(x−t)− ρ(x0)〉ρ(x0), which is a variant of echo-1 accurate for high fidelity. Both

echo-1 and echo-1’ reduce to echo-N-1 if normalized.

Figure 1 displays fidelity in a100-dimensional system of kicked rotators. It shows that echo-

2 converges with several orders of magnitude fewer trajectories than the echo-1, echo-1’, and

echo-N-1 algorithms. Figure 2 confirms thatσecho-2 is independent ofD while σecho-1, σecho-1’, and

σecho-N-1 grow exponentially withD. The normalized echo-N-1 algorithm is the most efficient

among the methods withM = 1.

 0

 0.5

 1

 0  5  10  15  20  25  30  35  40
t

F

quantum
echo-1 (N≈ 7 ×107)
echo-1’ (N≈ 7 ×107)
echo-N-1 (N≈ 7 ×107)
echo-2 (N= 2048)
classical (N=∞)

FIG. 1. (Color online) Convergence of different classical fidelity algorithms in a100-dimensional system

of perturbed (ǫ = 10−4) quasi-integrable (k = 0.2) kicked rotators withn1 = 131072. Algorithm echo-2

agrees with the quantum result and converges with onlyN = 2048 trajectories whereas the echo-1, echo-1’,

and echo-N-1 results are far from converged even withN ≈ 7 × 107. Fully converged classical (N = ∞)

result is computed as a product of 100 one-dimensional fidelities. The “hopelessly” unconverged fid-0

algorithm not shown. For clarity, echo-1’ error bars not shown for t > 20.

In conclusion, we have shown on the example of classical fidelity that not only quantum simu-

lations but also classical algorithms can be unfeasible in complex systems due to the exponential

scaling with dimensionality. We have proposed an efficient classical fidelity algorithm for which

this exponential scaling disappears. The echo-2 algorithmmakes high-dimensional studies of clas-
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σ
echo-1,  numer.
echo-1,  analyt.
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echo-1’,  analyt.

10-5

10-4

10-3

10-2

10-1
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D

(b)

echo-N-1, numer.
echo-N-1, analyt.
echo-2, numer.
echo-2, analyt.

FIG. 2. (Color online) Statistical error grows exponentially with D for the echo-1, echo-1’, and echo-N-1

algorithms and is independent ofD for the echo-2 algorithm. Dynamics corresponds to (a) pure displace-

ment or (b) pure squeezing. In both cases,N ≈ 107 and time was chosen separately for eachD so thatF is

independent ofD. (a)F ≈ 0.3. The two SHOs had the same force constantk = 3 while their displacement

in each DOF decreased with increasingD from 0.8 to 0.2 (to obtain a slower decay ofF per DOF for high

D). (b) F ≈ 0.99. While the displacement of the unperturbed and perturbed SHOs was zero, their force

constants werek = −3 andk = −3.5, respectively.

sical fidelity practical for general initial densities. Thealgorithm thus enables, e.g., a systematic

analysis of the stability of molecular dynamics to perturbations or a rigorous evaluation of the

accuracy of molecular dynamics following an approximate force field. In the special case of initial

densities given by characteristic functions all echo-M and echo-N-M algorithms (forM > 0) col-

lapse into a single algorithm. In particular, the “natural”algorithm sampling fromρ is equivalent

to our algorithm sampling fromρ2. This may explain why high-dimensional calculations were pre-

viously done only with characteristic functions. These results should be also useful in applications

computing more general overlaps of phase space distributions. For example, the sampling weight

W (x) ∝ ρ0 (x)A0 (x)B0 (x) may accelerate the calculation of correlation functions ofthe form

CAB(t) = h−D
∫

dxρ0 (x)A0 (x)Bt (x). Finally, the technique we used to analyze efficiency of

general trajectory-based algorithms can be useful in developing approximate methods for quan-

tum dynamics of large systems [15]. Our research was supported by Swiss NSF with grants No.

200021124936 and NCCR MUST, and by EPFL. We thank G. Benenti, B. Eckhardt, T. Prosen,
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