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We experimentally demonstrate the use of continuous, time-delayed, feedback stimulation for
controlling the synchronization of neuron action potentials. Phase based models were experimen-
tally constructed from a single synaptically-isolated cultured hippocampal neuron. These models
were used to determine the stimulation parameters necessary to produce the desired synchroniza-
tion behavior in the action potentials of a pair of neurons coupled through a global time-delayed
interaction. Measurements made using a dynamic clamp system confirm the generation of the syn-
chronized states predicted by the experimentally constructed phase model. This model was then
utilized to extrapolate the feedback stimulation parameters necessary to disrupt the action potential
synchronization of a large population of globally interacting neurons.

I. INTRODUCTION

Abnormal synchronization of neural activity can be
seen in many neurological diseases including epilepsy,
Parkinsons disease and essential tremors [1–4]. Neu-
rostimulation therapy can be used to alleviate the symp-
toms of these diseases [5, 6]; it typically involves applying
a pulse-train stimulation signal to an electrode which has
been surgically implanted into the brain of the patient [7–
9]. This electrical stimulation signal modulates the extra-
cellular potential of all of the neurons within the targeted
area, which is thought to alter their collective behavior.
One main challenge is determining the necessary stimula-
tion parameters in order to obtain the desired collective
firing behavior. While electrical stimulation has been
shown to modulate the activity of individual neurons, its
effect on the synchronization behavior of a group of neu-
rons is currently under investigation [10, 11]. Theoretical
models have been developed which illustrate how electri-
cal stimulation can be utilized to alter the firing patterns
of simulated populations of neurons [12, 13].

Time-delayed feedback has been shown to desynchro-
nize groups of model neurons [12, 14–18], and can be em-
ployed in place of pulse-train stimulation. The feedback
can be used to design a therapeutic state of synchro-
nization [19, 20]. The application of locally-addressable
stimulation has been shown to synchronize the action po-
tentials of neurons [21].

Here, we experimentally demonstrate the use of time-
delayed feedback stimulation for engineering the synchro-
nization of the action potentials of cultured neurons.
Phase models have been shown to have sufficient accu-
racy to allow precise control over synchronization states
of complex oscillatory systems [21–29]. The standard ap-
proach for the construction of a phase model involves
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measuring the phase response of a system to a set of
discrete pulses applied at specific times in the cycle of
the element [21, 24, 30–35]. However, precise measure-
ments of phase shift are difficult to obtain, particularly
when, for example, the period is non-stationary. In this
paper, an experimental method was used to construct
phase based models using continuous stimulation of a sin-
gle patch clamped neuron. We believe that this method
overcomes some of the limitations inherent with standard
pulse-based approaches. The mean period of the neuron
was measured with and without applied feedback. The
change in the mean period of the action potentials as a
result of the application of feedback was determined as a
function of feedback delay. This allowed for the construc-
tion of a phase model of the dynamical behavior of the
neuron. The experimentally constructed model was then
used to determine the feedback parameters necessary to
produce in-phase and anti-phase synchronization states
within a two neuron system using global stimulation. The
parameters were applied to an experimental system of
two patch clamped neurons, and the desired synchroniza-
tion states were observed. The validated model was then
used to determine feedback parameters which may dis-
rupt the synchronization of a large population of globally
coupled neurons.

II. THEORY

A phase based model can be constructed to represent
the dynamical behavior of a population of coupled oscil-
latory elements

dφi

dt
= ωi +

K

N

N
∑

j=1

H(φj − φi) for i = 1, 2, ..., N (1)

where φi is the phase of the element, K is the interaction
strength, ωi is the natural frequency, and H(∆φ) is the
interaction function [36, 37]. The interaction function
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can be determined from macroscopic physical quantities

H(∆φ) =
1

2π

∫ 2π

0

Z(φ)h(φ+∆φ) dφ (2)

where Z(φ) is the response function and h(φ) is the stim-
ulation function [37]. The response function quantifies
the sensitivity of the neuron to perturbations as a func-
tion of phase, while the stimulation function quantifies
the amount of stimulation applied to the neuron at a
given phase.

The construction of the model proceeds by experimen-
tal determination of the response function of the neuron.
Standard methods for determining the response function
of an oscillatory element often require large pulses [38]
or access to multiple coupled elements [39], making them
difficult to apply in experimental systems. As a result, a
method was developed which utilized weak delayed self-
feedback stimulation applied to a single oscillator [40]. A
phase model can be defined for a system composed of 1
element as

dφ1

dt
= ω1 +KH(φ†

1 − φ1) (3)

where φ†
1 is the phase of the stimulation signal applied to

the element. For delayed self-feedback stimulation, the
phase of the stimulation is related to the phase of the
physical element by

φ†
1 = φ1 − τ (4)

where τ is the feedback delay.

The phase of an oscillator can be integrated over one
cycle and expressed as a function of the period of the
oscillation

2π =

∮

dφi =

∫ Pi+∆Pi

0

dt
dφi

dt
(5)

where Pi is the intrinsic mean period of the oscillator
(2π/ωi), and ∆Pi is the change in the period of the os-
cillator due to external stimulations, such that Pi +∆Pi

is the observed period of the element [39, 41]. Substitut-
ing equation 3 and 4 into 5, H(∆φ) can be analytically
approximated as

H(∆φ) =
−2π

KP 2
1

[∆P1(∆φ)] (6)

∆φ = −τ.

Equation 6 allows for the determination of the interaction
function directly from experimental measurements of the
period of a oscillatory element stimulated using delayed
self-feedback. A similar method was developed using a
synaptic stimulation function by Cui, et al. [42].

Z(φ) can be analytically determined from equation 2
given an experimentally measured interaction function
obtained under a known stimulation. Each function in

equation 2 can be expanded in a Fourier series

H(∆φ) =

∞
∑

n=1

Rn cos(n∆φ) + Sn sin(n∆φ) (7)

Z(φ) =

∞
∑

m=1

Am cos(mφ) +Bn sin(mφ) (8)

h(φ) =

∞
∑

l=1

Cl cos(lφ) +Dm sin(lφ). (9)

Substituting these Fourier series into equation 2 and in-
tegrating, yields a linear system of equations in terms of
their Fourier coefficients

(

Cn Dn

Dn −Cn

)(

An

Bn

)

=

(

2Rn

2Sn

)

(10)

which can be solved using standard matrix techniques.

Once the response function is known, Equation 1 & 2
can be used to determine how the the parameters of the
stimulation function affect the collective phase behavior
of a set of two or more neurons. For a system of two
neurons, we construct a phase model of the form

dφi

dt
= ωi +

K

2

2
∑

j=1

H(φj − φi) for i = 1, 2 (11)

which by subtraction yields

d∆φ

dt
= ∆ω +

K

2
[H(−∆φ)−H(∆φ)] . (12)

Stationary solutions to this equation will occur at phase
differences which satisfy

∆ω

K
= H−(∆φ) (13)

where H−(∆φ) is the odd part of the interaction func-
tion. A linear stability analysis indicates that these sta-
tionary states will be stable when

dH−(∆φ)

d∆φ
> 0. (14)

Synchronization states can therefore be generated by se-
lecting feedback stimulation parameters such that the in-
teraction function has the necessary properties (Equation
13 & 14) to stabilize the desired states.

III. EXPERIMENTAL METHODS AND

APPARATUS

Rat hippocampal cells were cultured using methods
modified from the literature [43, 44]. Cultures were pre-
pared from P0-P1 Sprague-Dawley newborn rats. The
newborn rats were decapitated, their brains removed and
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placed in cold HEPES-buffered Hank’s balanced salt so-
lution (HEPES-HBSS). The hippocampi were removed
under a dissecting microscope and collected in a small
petri dish containing HEPES-HBSS. Tissues were incu-
bated in 0.125% trypsin for 15 min at 37oC. Trypsin solu-
tion was replaced with 5 mL HEPES-HBSS and the cells
were rinsed twice more with HEPES-HBSS at 5 min in-
tervals. Hippocampi were triturated until no fragments
of tissue remained. Neurons were collected by centrifuga-
tion and resuspended in 5 mL of Dulbeccos modified Ea-
gles medium (DMEM) and F-12 supplement (1 : 1) (In-
vitrogen) with 10% fetal bovine serum (heat-inactivated,
Invitrogen), 2 mM L-glutamine (Invitrogen), and peni-
cillin (100 U/mL)-streptomycin (100 U/mL).

Culture dishes were coated with poly-lysine and filled
with 2 mL of culture medium. Cells were plated at a
minimum density of 50,000 per 35 mm2 dish and kept
at 37oC in a 5% CO2 incubator. After 24 h, the culture
medium was changed to serum-free medium containing
2% B27 and 2 mmol/L glutamine. The medium was re-
placed with fresh medium every 2-3 days. The cultures
used for the experiments were between 9 and 15 days old.
Cells were placed in external media consisting of (in mM):
146 NaCl, 3 KCl, 2 CaCl2, 3 MgCl2, 11 glucose, and 10
HEPES, pH 7.4, osmolarity 310-315 mOsm. The neurons
were synaptically isolated by adding 50 µM DL-AP5, 50
µM bicuculline methiodide and 20 µM DNQX. In order
to create periodic spiking, 50 µM of 4-aminopyridine (4-
AP), a common agent used to induce seizure-like activity,
was added to the external solution.

Cells were patched using a micropipette with a resis-
tance of 6-9 MΩ and filled with a solution of (in mM): 145
K-gluconate, 0.6 EGTA, 11 HEPES, 8 KCl, 3 NaCl and
4 MgATP, pH 7.3, osmolarity 295-300 mOsm. A silver
counter electrode was placed into the external solution.
The membrane potentials of the cells were recorded using
two Axopatch amplifiers. The amplified membrane po-
tential measurements were digitized using a 16-bit data
acquisition system. A Xilinx FPGA processor was pro-
grammed to calculate a stimulation signal from the mem-
brane potential measurements of the neurons. The stim-
ulation was of the form

I(t) = Iapp + δI (15)

δI =
K

N

N
∑

i=1

h(Vi(t)) (16)

h(V ) = K0 +K1(V (t− τ)− V ) (17)

where I(t) is the injected current stimulation signal, Iapp
is the baseline injected current, V is the mean value of
the neuron membrane potential, K is the feedback gain,
τ is the feedback delay, and V is the measured neuron
membrane potential. The loop rate of the controller was
25kHz. A schematic of the dynamic clamp apparatus is
in Fig. 1. Other similar dynamic clamp apparatuses have
been discussed in the literature [45, 46].

After the cells were successfully patched, they were hy-

FIG. 1: (Color online) Schematic of the patch clamp appa-
ratus setup. For one cell experiments only one patch clamp
apparatus was used and for the two neuron experiments both
patch clamp apparatuses were used.

perpolarized to -70 mV and allowed to rest for 120 sec-
onds to ensure the formation of a 1 GΩ seal. A baseline
current of 40 pA was injected into the neurons causing
repetitive spiking. After allowing 1 second for accommo-
dation, feedback stimulation was applied to the neuron.
The feedback signal was applied for approximately 10
seconds, after which time the current stimulation was re-
moved and the neuron was allowed to rest for a period
of approximately 20-30 seconds, before the next depolar-
ization.

IV. EXPERIMENTAL RESULTS

Experiments were conducted to illustrate the use of
global feedback stimulation for controlling the synchro-
nization behavior of neurons. The interaction function of
a single, synaptically isolated neuron to delayed feedback
stimulation was experimentally measured. A single neu-
ron was patch clamped and its membrane potential was
recorded over time (Figure 2 A). Delayed feedback stim-
ulation was then applied to the neuron. Figure 2 B-D
illustrates the firing period of the neuron as a function of
feedback delay. Baseline observations of the natural fir-
ing rate of the neuron (without applied stimulation) were
taken before and after each experiment (left and right
panels). The natural period distribution of the neuron
was observed to be approximately the same before and
after the application of feedback stimulation, indicating
that the stimulation did not disrupt the intrinsic behav-
ior of the neuron. Experiments were repeated using three
different neurons.
The period of the neuron action potentials was ob-

served to change as the feedback delay was increased
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FIG. 2: A) The membrane potential of a single neuron (top)
and the applied stimulation signal (bottom) as a function of
time (K0 = 13 mV, K1 = 350, τ = 0.5 rad/2π). B, C &
D) Period distributions for three separate cells. Middle panel
shows the period distribution as feedback stimulation delay
was increased from from 0 to 1 rad/2π. Left and right panels
illustrate the period distribution of the neuron action poten-
tials before and after application of stimulation.

(middle panels, Figure 2 B-D). The maximum firing pe-
riod was achieved with a feedback delay of approximately
τ = 0.25 rad/2π while minimum firing period was ob-
tained at approximately τ = 0.7 rad/2π. The firing pe-
riod of the neuron with τ = 1 rad/2π was close to the
firing period when τ = 0 rad/2π. Drift in the natural
period of the action potentials occurred, but was small
compared to the mean period of the action potentials,
except for the case of the second cell (Figure 2 C). For
this cell, the mean period was adjusted linearly from the
initial pre-stim mean period to the post-stim mean pe-
riod. The qualitative frequency response was found to be
similar for each neuron.

Equation 6 was applied to the experimental observa-
tions in Figure 2 B-D; the resulting interaction functions
are illustrated in Figure 3 A. The period of the neu-
ron action potentials was taken to be the median period

FIG. 3: A) Calculated interaction function data and Fourier
fit for three neurons. B) Calculated response functions for
three isolated neurons. C) Odd part of the interaction func-
tion for the experimental system with applied global feedback
(K0 = 13 mV, K1 = 350, and τ=0 rad/2π). D) Odd part of
the interaction function for the experimental system with ap-
plied global feedback (K0 = 13 mV, K1 = 350, and τ=0.5
rad/2π). In C) and D) the open circles are stable states and
the gray squares are unstable states.

of the observed action potentials. Once the interaction
functions were determined for each of the neurons, their
corresponding response functions were calculated using
Equation 2. For this calculation, the stimulation function
was set to Equation 17 and the neuron waveform, x(φ),
was set to the mean cycle of the neuron action potential.
The resulting response functions for each of the neurons
are illustrated in Figure 3 B. Qualitative agreement was
seen between these three functions, indicating that their
sensitivities to electrical stimulation are approximately
equal.

The experimentally constructed phase model was used
to determine the values of feedback delay which would
produce in-phase and anti-phase synchronization states
in a system of two neurons. As indicated by Equations
12 and 14, a system of two neurons will exhibit a stable
phase-locked state when the odd part of the interaction
function equals the value ∆ω/K with positive slope. As-
suming the ratio of ∆ω/K is small, the stationary states
of the system can be found at the roots of H−(∆φ). The
roots ofH−(∆φ) for the experimental system were deter-
mined as a function of the feedback delay. It was observed
that feedback delays less than 0.2 rad/2π produced a
unique and stable in-phase synchronization state while
feedback delays between 0.4 and 0.6 rad/2π produced a
unique and stable anti-phase synchronized state. Figure
3 C & D illustrates the odd part of the interaction func-
tion for feedback delay of 0 and 0.5 rad/2π respectively.
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FIG. 4: (Color online) A) Membrane potential recording of 2
neurons. B) Applied stimulation current (Ko = 13 mV, K =
400). C&D) Period distribution of neuron action potentials of
neuron 1 & 2 respectively. E) Observed distribution of phase
differences between the action potentials of the two neurons.

The identified feedback delays were applied to the two
neuron system in order to produce the expected in-phase
and anti-phase synchronization states. To insure that
the neurons were connected only through the feedback
stimulation, the neurons were synaptically isolated and
placed in separate cultures. Both neurons were patch
clamped using standard methods. The recorded mem-
brane potentials for both cells under different experimen-
tal conditions can be seen in Figure 4 A1-A3; the applied
stimulation signal is illustrated in Figure 4 B1-B3. The
neurons were observed to experience accommodation for
the first three seconds of each experiment; this data was
not considered as part of the analysis.
Without feedback stimulation, the phases of the action

potentials of the two neurons were found to be uncorre-
lated (Figure 4 A1-E1). The mean periods of the cells
were not observed to lock and no preferred phase ori-
entation was found (Figure 4 E1). Application of the
global feedback stimulation with a delay of τ = 0 rad/2π
caused the mean period of the two cells to lock with a
period of approximately 180ms (Figure 4 C2&D2). The
mean phase difference between the neuron action poten-
tials was observed to be approximately 0.05 rad/2π, in-
dicating the presence of a nearly in-phase synchronized
state (Figure 4 E2). This observation was consistent with
theoretical expectations (Figure 3C). The in-phase syn-

chronized state persisted until the feedback stimulation
was removed (not shown). Increasing the feedback de-
lay to τ = 0.5 rad/2π caused the action potentials of the
two neurons to synchronize in an anti-phase configuration
(Figure 4 A3-E3). This was consistent with expectations
(Figure 3D).

V. DISCUSSION

Current research has explored the synchronization be-
havior of neurons as a function of inhibitory and excita-
tory synaptic connections [47–49]. Here we demonstrate
that the phase model can also be used to generate global
electrical stimulation parameters which can potentially
overcome natural behaviors of a neural system. Phase
based models have proven to be a valuable tool for char-
acterizing the individual and collective dynamical behav-
ior of neurons [30, 31, 35, 50, 51]. Such models are advan-
tageous since no detailed knowledge of the biochemistry
of neurons is required; only macroscopic measurements
of membrane potential are necessary for model construc-
tion. Typically, models are generated from experimental
measurements on a single neuron and subsequently used
to infer the synchronization behavior of a population of
interacting neurons. We reverse the process by using the
phase model to determine the stimulation required to
produce a desired synchronization behavior.

Models constructed from experimental measurements
on single neurons have proved effective for estimating
stimulation parameters for controlling the action poten-
tial synchronization of two neurons. However, the ulti-
mate goal is the creation (or disruption) of synchroniza-
tion in large-scale systems. To demonstrate this appli-
cation, the experimentally constructed phase model was
utilized to estimate stimulation parameters which would
disrupt the collective synchronization of a large popula-
tion of globally coupled neurons. The dynamical behav-
ior of such a system is governed by the superposition of
all interactions (internal and external) between elements.

dφi

dt
= ωi+

N
∑

j=1

Hint(φj−φi)+Hext(φj−φi) for i = 1...N

(18)
Typically the intrinsic interactions (Hint) of such a sys-
tem are unknown. The application of an external stim-
ulation is utilized to overwhelm the unknown intrinsic
coupling between elements allowing new dynamical be-
haviors to be artificially created. The challenge is in
picking the stimulation parameters which will produce
the desired effect on the collective behavior of the target
system.
To create a desynchronized state, all stationary states

of the system must be simultaneously destabilized. The
stability of synchronized states can be determined by cal-
culating the eigenvalues associated with these states. As-
suming that only balanced phase cluster states are pos-
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sible, the associated eigenvalues can be determined from
the Fourier coefficients of the net interaction function
[52, 53]. To actively disrupt phase synchronized states
in a rhythmic population, a set of feedback parameters
must be selected such that all phase cluster states have
at least 1 eigenvalue with positive real part.

Having experimentally obtained the response function
of the experimental neuron system, the stability of bal-
anced phase cluster states can be determined as a func-
tion of the stimulation parameters. Only linear feedback
will be considered for this analysis. By adjusting the
feedback delay parameter, the stability of the synchro-
nized states can be externally influenced; the amplitude
of the feedback signal does not effect the stability of such
states. The eigenvalues of cluster states 1-4 were calcu-
lated as a function of feedback delay for the experimental
neuron system under first order feedback (Figure 5). The
eigenvalues indicate that the external feedback signal will
desynchronize a population of globally coupled neuron
when the feedback delay is between 0.35-0.45 rad/2π. In
this parameter range each cluster state will have at least
1 eignevalue with a positive real part. This parameter
range is believed to be large enough to provide a robust
starting point for future experiments.

The use of model derived feedback signals for control-
ling the synchronization behavior of neurons may repre-
sent an improvement over the ad-hoc methods of param-
eter estimation for current neurostimulation therapies.
We have previously demonstrated that phase models can
be used to engineer global feedback stimulations for con-
trolling the collective behavior of large populations of
complex rhythmic elements in nonlinear electrochemical
systems [22]. This work demonstrates proof of concept
for applying our engineering framework to control the
synchronization behavior of biological neurons. As seen
in Figure 4, both in-phase and anti-phase configurations
were successfully generated using global delayed feed-
back. In both cases, a single common stimulation signal
was applied equally to the neurons. Such global stimula-
tion is required for clinical neurostimulation applications.
Previous work has demonstrated the use of addressable
electrical stimulation for influencing the synchronization
of neurons [54].

The effect of synaptic connections on the synchroniza-
tion of neurons was not considered due to experimental
limitations. However, past work has shown that synap-
tic connectivity and interactions may be directly incor-
porated into the phase model [49, 55]. Previous work has
also demonstrated that stimulation signals can be created
to overwhelm intrinsic interactions between elements and
guide the target system towards the desired state [22].
The use of nonlinear stimulation for controlling popu-
lations of neurons has been previously demonstrated in
numerical simulations [56].

The use of a phase model for estimating neurostimula-
tion parameters is subjected to limitations. As derived,
the phase model requires the use of relatively periodic
elements. Since neurons under physiological conditions

FIG. 5: Eigenvalues calculated for balanced cluster states as
a function of feedback stimulation delay. A) 1-Cluster state.
B) 2-Cluster state. C) 3-Cluster state. D) 4-Cluster state.
Dashed lines indicate region of possible desynchronization.
In the 3-Cluster state λ1 = λ2, and in the 4-Cluster state
λ1 = λ3.

have long quiescent periods, describing their natural be-
havior by such model may not be possible. However,
neurological events such as seizures have long episodes of
roughly periodic neuronal activation which may be de-
scribed using such models [57].
Additionally, the use of phase models requires that the

stimulation signal remains small such that the amplitude
of the action potential remains undisturbed. However,
weak feedback stimulation is desirable since it minimizes
disruption of the natural rhythmic behavior of the neu-
rons. This can be seen in Figure 2, where upon the re-
moval of the feedback stimulation, the period distribution
of the action potentials of the neurons return to their pre-
stimulation baseline distribution. No permanent changes
to the neuron were observed.

VI. CONCLUSIONS

A method of constructing a phase model, using time
delayed self-feedback, has been developed; this method
requires experimental access to only a single representa-
tive rhythmic unit. After constructing the phase model
from observations of the action potential of a single neu-
ron, it was used to predict the synchronization states
of a two neuron system. Experiments were conducted
to observe the phase behavior of the action potentials
of two neurons under linear time-delayed feedback. The
predictions of the phase model were confirmed by the ex-
perimental observations. This method provides an addi-
tional approach for the construction of dynamical models
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of complex rhythmic systems.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grant CBET-0730597, the Na-

tional Institutes of Health under grants RO1 NS040337,
RO1 NS044370, UO1 NS58204 and T32 GM08715
(Biotechnology Training Program), and the Biomedical
Innovation Fund of the University of Virginia.

[1] A. Schnitzler and J. Gross, Nat Rev Neurosci, 6, 285
(2005).

[2] P. J. Uhlhaas and W. Singer, Neuron, 52, 155 (2006).
[3] J. Artieda, M. Alegre, M. Valencia, E. Urrestarazu,

M. Perez-Alcazar, M. J. Nicolas, J. L. Azcarate, and
J. Iriarte, Anales Del Sistema Sanitario De Navarra, 32,
45 (2009), suppl. 3.

[4] A. Pogosyan, F. Yoshida, C. C. Chen, I. Martinez-Torres,
T. Foltynie, P. Limousin, L. Zrinzo, M. I. Hariz, and
P. Brown, Neuroscience, 171, 245 (2010).

[5] R. J. Coffey, Artificial Organs, 33, 208 (2009).
[6] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry,

R. Gross, K. Oommen, I. Osorio, J. Nazzaro, D. Labar,
M. Kaplitt, M. Sperling, E. Sandok, J. Neal, A. Hand-
forth, J. Stern, A. DeSalles, S. Chung, A. Shetter,
D. Bergen, R. Bakay, J. Henderson, J. French, G. Bal-
tuch, W. Rosenfeld, A. Youkilis, W. Marks, P. Gar-
cia, N. Barbaro, N. Fountain, C. Bazil, R. Goodman,
G. McKhann, K. B. Krishnamurthy, S. Papavassiliou,
C. Epstein, J. Pollard, L. Tonder, J. Grebin, R. Coffey,
and N. Graves, Epilepsia, 51, 899 (2010).

[7] G. C. Albert, C. M. Cook, F. S. Prato, and A. W.
Thomas, Neuroscience and Biobehavioral Reviews, 33,
1042 (2009), iSI Document Delivery No.: 475QM Times
Cited: 5 Cited Reference Count: 164.

[8] M. Hodaie, R. A. Wennberg, J. O. Dostrovsky, and A. M.
Lozano, Epilepsia, 43, 603 (2002).

[9] K. H. Lee, C. D. Blaha, P. A. Garris, P. Mohseni, A. E.
Horne, K. E. Bennet, F. Agnesi, J. M. Bledsoe, D. B.
Lester, C. Kimble, H. K. Min, Y. B. Kim, and Z. H.
Cho, Neuromodulation, 12, 85 (2009).

[10] D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Pot-
ter, Journal of Neuroscience, 25, 680 (2005).

[11] B. J. Gluckman, H. Nguyen, S. L. Weinstein, and S. J.
Schiff, Journal of Neuroscience, 21, 590 (2001).

[12] C. Hauptmann, O. Popovych, and P. A. Tass, Biological
Cybernetics, 93, 463 (2005).

[13] P. J. Franaszczuk, P. Kudela, and G. K. Bergey, Epilepsy
Research, 53, 65 (2003).

[14] E. Scholl, G. Hiller, P. Hovel, and M. A. Dahlem,
Philosophical Transactions of the Royal Society a-
Mathematical Physical and Engineering Sciences, 367,
1079 (2009).

[15] C. A. Batista, S. R. Lopes, R. L. Viana, and A. M.
Batista, Neural Netw, 23, 114 (2010).

[16] C. Hauptmann, O. Popovych, and P. A. Tass, Compu-
tational Neuroscience: Trends in Research 2005, 65-66,
759 (2005).

[17] O. V. Popovych, C. Hauptmann, and P. A. Tass, Phys.
Rev. Lett., 94, 164102 (2005).

[18] O. V. Popovych, C. Hauptmann, and P. A. Tass, Biol.
Cybern., 95, 69 (2006).

[19] S. Santaniello, G. Fiengo, L. Glielmo, and W. M. Grill,
Ieee Transactions on Neural Systems and Rehabilitation
Engineering, 19, 15 (2011), times Cited: 0.

[20] R. J. Andrews, Annals of the New York Academy of Sci-
ences, 1199, 204 (2010).

[21] T. I. Netoff, M. I. Banks, A. D. Dorval, C. D. Acker,
J. S. Haas, N. Kopell, and J. A. White, Journal of Neu-
rophysiology, 93, 1197 (2005).

[22] I. Z. Kiss, C. G. Rusin, H. Kori, and J. L. Hudson,
Science, 316, 1886 (2007).

[23] C. G. Rusin, I. Z. Kiss, H. Kori, and J. L. Hudson,
Industrial & Engineering Chemistry Research, 48, 9416
(2009).

[24] R. F. Galán, G. B. Ermentrout, and N. N. Urban, Phys-
ical Review Letters, 94, 158101 (2005).

[25] J. A. Goldberg, C. A. Deister, and C. J. Wilson, Journal
of Neurophysiology, 97, 208 (2007).

[26] F. H. Sieling, C. C. Canavier, and A. A. Prinz, Journal
of Neurophysiology, 102, 69 (2009).

[27] I. Tateno and H. P. C. Robinson, Biosystems, 89, 110
(2007).

[28] A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Syn-
chronization: A Universal Concept in Nonlinear Science

(Cambridge University Press, Cambridge, 2001).
[29] S. C. Manirubia, A. S. Mikhailov, and D. H. Zanette,

Emergence of dynamical order: synchronization phenom-

ena in complex systems, World Scientific lecture notes in
complex systems, Vol. 2 (World Scientific, River Edge,
N.J., 2004).

[30] C. D. Acker, N. Kopell, and J. A. White, Journal of
Computational Neuroscience, 15, 71 (2003).

[31] B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes, Jour-
nal of Neurophysiology, 94, 1623 (2005).

[32] T. I. Netoff, C. D. Acker, J. C. Bettencourt, and J. A.
White, Journal of Computational Neuroscience, 18, 287
(2005).

[33] A. J. Preyer and R. J. Butera, Physical Review Letters,
95, 138103 (2005).

[34] T. Tateno and H. P. C. Robinson, Biophysical Journal,
92, 683 (2007).

[35] Y. Tsubo, M. Takada, A. D. Reyes, and T. Fukai, Eu-
ropean Journal of Neuroscience, 25, 3429 (2007).

[36] A. T. Winfree, The Geometry of Biological Time

(Springer, New York, NY, 1980).
[37] Y. Kuramoto, Chemical Oscillations, Waves and Turbu-

lence (Springer, New York, NY, 1984).
[38] I. Z. Kiss, Y. Zhai, and J. L. Hudson, Phys. Rev. Lett.,

94, 248301 (2005).
[39] J. Miyazaki and S. Kinoshita, Physical Review Letters,

96, 194101 (2006).
[40] C. G. Rusin, I. Tokuda, I. Z. Kiss, and J. L. Hudson,

Angewandte Chemie, 10.1002/ange.201008194 (2011).



8

[41] J. Miyazaki and S. Kinoshita, Physical Review E, 74

(2006).
[42] J. X. Cui, C. C. Canavier, and R. J. Butera, Journal of

Neurophysiology, 102, 387 (2009).
[43] G. Banker and K. Goslin, eds., Culturing Nerve Cells,

2nd ed. (MIT Press, Cambridge, Mass, 1998).
[44] J. Nunez, Journal of Visualized Experiments, 19 (2008).
[45] A. D. Dorval, D. J. Christini, and J. A. White, Annals

of Biomedical Engineering, 29, 897 (2001).
[46] T. Nowotny, A. Szucs, R. D. Pinto, and A. I. Selverston,

Journal of Neuroscience Methods, 158, 287 (2006).
[47] T. Nowotny, V. P. Zhigulin, A. I. Selverston, H. D. I.

Abarbanel, and M. I. Rabinovich, Journal of Neuro-
science, 23, 9776 (2003).

[48] N. Kopell and B. Ermentrout, Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica, 101, 15482 (2004).

[49] J. G. Mancilla, T. J. Lewis, D. J. Pinto, J. Rinzel, and
B. W. Connors, Journal of Neuroscience, 27, 2058 (2007).

[50] R. F. Galán, G. B. Ermentrout, and N. N. Urban, Neu-

rocomputing, 69, 1112 (2006).
[51] E. M. Izhikevich, Dynamical Systems in Neuroscience:

The Geometry of Excitability and Bursting (MIT Press,
Cambridge, Mass., 2007).

[52] K. Okuda, Physica D, 63, 424 (1993).
[53] S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette,

Emergence of Dynamical Order: Synhronization Phe-

nomena in Complex Systems (World Scientific Sigapore,
2004).

[54] J. Suzurikawa, M. Nakao, Y. Jimbo, R. Kanzaki, and
H. Takahashi, Ieee Transactions on Biomedical Engineer-
ing, 56, 2660 (2009).

[55] D. Hansel, G. Mato, and C. Meunier, Europhysics Let-
ters, 23, 367 (1993).

[56] J. Wang, B. Deng, and X. Y. Fei, Chaos Solitons &
Fractals, 27, 1272 (2006).

[57] J. L. P. Velazquez, R. F. Galan, L. G. Dominguez,
Y. Leshchenko, S. Lo, J. Belkas, and R. G. Erra, Physical
Review E, 76 (2007).


