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Robustness of two coupled networks system has been studied separately only for dependency coupling (S.
Buldyrev et. al., Nature, 464, 08932, 2010) and only for connectivity coupling (E. A. Leicht and R. M. D’Souza,
arxiv:09070894). Here we study, using a percolation approach, a more realistic coupled networks system where
both interdependent and interconnected links exist. We finda rich and unusual phase transition phenomena
includinghybrid transition of mixed first and second order, i.e., discontinuities like in a first order transition of
the giant component followed by a continuous decrease to zero like in a second order transition. Moreover, we
find unusual discontinuous changes from second order to firstorder transition as a function of the dependency
coupling between the two networks.
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I. INTRODUCTION

During the last decade complex networks have been stud-
ied intensively, where most of the research was devoted to
analyzing the structure and functionality of isolated systems
modeled as single non-interacting networks [1–23]. However,
most real networks are not isolated, as they either comple-
ment other networks (“interconnected networks”), must con-
sume resources supplied by other networks (”interdependent
networks”) or both [24–28]. Thus, real networks continuously
interact with each other, composing a large complex systems,
and with the enhanced development of technology, the cou-
pling between many networks becomes more complex and
more significant.

Until now two different types of coupled networks mod-
els have been studied. Buldyrev et. al. [29] investigated
the robustness of coupled systems with only interdependence
links. In these systems, when a node of one network fails,
its dependent counterpart node in the other network also fails.
They found that this interdependence makes the system sig-
nificantly morevulnerable [29, 30]. At the same time, Le-
icht and D’Souza [31] studied the case where only connectiv-
ity links couple the networks, i.e., “interconnected networks”,
and found that the interconnected links make the system sig-
nificantly morerobust. However, real coupled networks of-
ten contain both types of links, interdependent as well as in-
terconnected links. For example, the airport and the railway
networks in Europe are two coupled networks composing a
transportation system. In order to arrive to an airport, one
usually uses the railway while people arriving to the country
by airport usually use the railway. In this system, if the airport
is disabled by some strike or accident, the passengers can still
use the nearby railway station and travel to their destination or
to another airport by train, so the two networks complement
each other and are coupled by connectivity links. On the other
hand, if the railway network is disabled, the airport traffic is
damaged, and if the airport is disabled, the railway traffic is

damaged, so both networks are coupled by dependency links
as well. The important characteristics of such systems, is that
a failure of nodes in one network carries implications not only
for this network, but also on the function of other dependent
networks. In this way it is possible to have cascading failures
between the coupled networks, that may lead to a catastrophic
collapse of the whole system. Nevertheless, small clustersdis-
connected from the giant component in one network can still
function through interconnected links connecting them to the
giant component of the other network. Thus, we have two
competing effects, the inter-connectivity linksincrease the ro-
bustness of the system, while the inter-dependency linksde-
crease its robustness. Here we study the competition of the
two types of inter-links on the system robustness using a per-
colation approach, and find unusual types of percolation phase
transitions.

II. GENERAL FRAMEWORK

Let us consider a system of two networks,A andB, which
are coupled by both dependency and connectivity links (see
Fig. 1). The two networks are partially coupled by depen-
dency links, so that a fractionqA of A-nodes depends on
nodes in networkB, and a fractionqB of B-nodes depends
on the nodes in networkA, with the following two assump-
tions: a node from one network depends on no more than
one node from the other network, and that if nodeAi de-
pends on nodeB j, then if B j depends on someAh, thenh = i
(Fig. 1). In addition, the connectivity links within each net-
work and between the networks can be described by a set
of degree distributions{ρA

kA ,kAB
, ρB

kB,kBA
}, whereρA

kA,kAB
(ρB

kB,kBA
)

denotes the probability of anA-node (B-node) to havekA

(kB) links to otherA-nodes (B-node) andkAB (kBA) links to-
wardsB-nodes (A-nodes). In this manner we get a two di-
mensional generating function describing all the connectivity
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FIG. 1: (Color online) Two types of inter-links where the dependency
links (dashed arrows) are not necessarily bidirectional. The nodes of
A and B are randomly connected withconnectivity-links (full line).
The functionality of some of the A nodes (red) open circlesdepend
on B-nodes (purple) solid circles and vice versa.

links [31],GA
0 (xA, xB) =

∑

kA,kAB

ρA
kA ,kAB

xkA
A xkAB

B , andGB
0 (xA, xB) =

∑

kB,kBA

ρB
kB ,kBA

xkBA
A xkB

B .

The cascading process is initiated by randomly removing a
fraction 1− p of theA-nodes and all their connectivity links.
Because of the interdependence between the networks, the
nodes in networkB that depend on the removedA-nodes are
also removed along with their connectivity links. As nodes
and links are removed, each network breaks up into connected
components (clusters). We assume that when the network
is fragmented, the nodes belonging to the largest component
(called the giant component) representing a finite fractionof
the network which is still functional, while nodes that are parts
of the remaining smaller clusters become dysfunctional,un-
less there exists a path of connectivity-links connecting these
small clusters to the largest component of the other network.
Since the networks have different topologies, the removal of
nodes and related dependency links, is not symmetric in both
networks, so that a cascading process occurs, until the system
either becomes fragmented or stabilizes with a giant compo-
nent.

Let gA(ϕ, φ) andgB(ϕ, φ) be the fraction of A-nodes and B-
nodes in the giant components after the percolation process
initiated by removing a fraction of 1− ϕ and 1− φ of net-
works A and B respectively [11]. The functionsgA(ϕ, φ) and
gB(ϕ, φ) depend only onGA

0 (xA, xB) andGB
0 (xA, xB) (for details

see Appendix) and the dynamics of the cascading process can
be described by the following set of equations,

ϕ1 = p, φ1 = 1, PA
1 = ϕ1gA(ϕ1, φ1), (1)

φ2 = 1− qB

(

1− pgA(ϕ1, φ1)
)

, PB
2 = φ2gB(ϕ1, φ2),

ϕ2 = p
(

1− qA (1− gB(ϕ1, φ2))
)

, PA
2 = ϕ2gA(ϕ2, φ2),

φ3 = 1− qB

(

1− pgA(ϕ2, φ2)
)

, PB
3 = φ3gB(ϕ2, φ3),

whereφi, ϕi are the remaining fraction of nodes at stagei of
the cascade of failures andPA

i , PB
i are the corresponding gi-

ant components of networksA andB at the cascading stagei,

respectively. Generally, thenth step is given by the equations,

ϕn = p
(

1− qA (1− gB(ϕn−1, φn))
)

, (2)

φn = 1− qB

(

1− pgA(ϕn−1, φn−1)
)

,

PA
n = ϕngA(ϕn, φn), PB

n = φngB(ϕn−1, φn).

By introducing two new notations

uA ≡ gA(ϕ∞, φ∞), uB ≡ gB(ϕ∞, φ∞), (3)

we can write Eqs.(2) at the end of the cascading process,n→
∞, as

φ∞ = p
(

1− qA(1− uB)
)

, ϕ∞ = 1− qB(1− puA), (4)

and the giant components are,

PA
∞ = uAφ∞ = uA p

(

1− qA(1− uB)
)

, (5)

PB
∞ = uBϕ∞ = uB

(

1− qB(1− puA)
)

.

III. POISSONIAN DEGREE DISTRIBUTIONS

We consider the case where all degree distributions of the
connectivity intra- and inter-links arePoissonian, for which
the functionsuA and uB obtain a simple form. AssumekA

andkB are the average intra-link degrees in networksA andB,
andkAB, kBA are the average inter-connectivity links degrees
betweenA andB (allowing the casekAB , kBA, since the two
networks may be of different sizes), we obtain,

uA = 1− e−kA puA

(

1−qA(1−uB)
)

−kABuB

(

1−qB(1−puA)
)

, (6)

uB = 1− e−kBA puA

(

1−qA(1−uB)
)

−kBuB

(

1−qB(1−puA)
)

.

Generally, for fixed parameterskA, kB, kAB, kBA, qA, qB and
p, it is often impossible to achieve an explicit formula for the
giant componentsPA

∞ andPB
∞. However, one can still solve

Eqs. (6) graphically (numerically) and substitute the numer-
ical solution into Eqs. (5). For simplicity and without loss
of generality, we study the case wherekA = kB ≡ k and
kAB = kAB ≡ K. Fig. 2a compares the numerical solutions
with the simulation results forPA

∞ andPB
∞ as a function ofp,

showing that the analytical results of Eqs. (5) and (6) are in
excellent agreement with the simulations.

A. Partial Dependence

Next we are interested in the properties of the phase transi-
tion under random attack, so first we determine the conditions
when transition does not occur. This is the case where for
a givenqB < 1 even if all nodes of network A are removed
(i.e, p = 0), there still exists a giant component in network
B (see circles in Fig. 2a) and no phase transition occurs. For
Poissonian degree distributions, it is easy to see, that if after
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FIG. 2: (Color online)a. Giant componentsPA
∞ andPB

∞ vs. fraction
of remaining nodes,p, for N = 10000,k = 2 andK = 1. NetworksA
(open symbols) andB (full symbols) are shown for different (qA, qB)
pairs: (0.8, 0.1) (◦); (0.1,0.8) (⋄); (0.8,0.8) (�). The symbols repre-
sent simulations and the lines the theory. We see three different types
of behaviors: no phase transition (◦), second order phase transition
(⋄) and first order phase transition (�). b. Phase diagram showing
the first order, second order and hybrid phase transition regimes and
the boundaries, forqB = 1 andk = 3. In the second order transition
regime, between the two dashed curve (red and blue) there exists a
hybrid phase transition regime (details in Fig. 3c). Since the hybrid
transition is continuous in the neighborhood ofpc and jump occurs
well abovepc, we classify this hybrid phase transition as a second
order phase transition.

the removal of all B-nodes that depend on the attacked A-
nodes, the new average intra-link degree in network B is less
than one, i.e.,

kB(1− qB) < 1, (7)

a phase transition does occur. Therefore, our further analysis
is based on condition (7). In addition, from now on, we will
set both dependency couplings,qA andqB, to be larger than
zero.

For a second order phase transition, the giant component
decreases continuously to zero at the percolation threshold pc.
Thus, by taking the limit of system (6) atuA = uB = 0 we
obtain the second order threshold,

pII
c =

1− kB(1− qB)
(

kA + (kBAkAB − kAkB)(1− qB)
)

(1− qA)
. (8)

In particular forqA = 1 and 0< qB < 1 this threshold becomes

pII
c =

1

kB(1− qB)
,

which together with Eq. (7) implies thatpII
c > 1, and therefore

the phase transition must be of first order atpI
c < 1 (that will

be determined later).
When extractinguB from the first equation of system (6), it

can be rewritten as,

uB = −
log(1− uA) + kA p(1− qA)uA

kA pqAuA + kAB[1 − qB(1− puA)]
≡ H1(uA), (9)

uB = 1− e−kBAuA p
(

1−qA(1−uB)
)

−kBuB

(

1−qB(1−uA p)
)

≡ H2(uA).

The intersection of the two curves (maximum solution of
uA, uB) is the solution of the system. When the phase tran-
sition is first order andp = pI

c, the curves of Eqs. (9) are
tangentially touching at the solution point, where,

(dH1

duA
=

dH2

duA

)

∣

∣

∣

∣

∣

p=pI
c

. (10)

Obviously,uA, uB andp can be treated as variables of Eqs. (9)
and (10). Solving these equations, the minimal solution ofp
and the corresponding maximaluA anduB is the solution of
the system at criticality.

B. Full Dependence

When networks A and B are fully dependent, i.e.,qA =

qB = 1, both networks must be the same size and therefore
kAB = kBA ≡ K system (6) yields a simple form

uA = 1− exp
{

−puAuB

(

kA + K
)}

,

uB = 1− exp
{

−puAuB

(

kB + K
)}

.

The size of the mutual giant component,P∞, is thus given by,

P∞ = PA
∞ = PB

∞ = p
(

1− e−P∞(kA+K)
)(

1− e−P∞(kB+K)
)

, (11)

which is similar to the solution of fully interdependent system
[29, 32], where the only difference is that the degrees of net-
works A and B are now replaced bykA + kAB andkB + kBA, re-
spectively. Thus, interestingly, in a fully interdependent cou-
pled networks system adding connectivity inter-links has the
same effect as increasing the intra-degree of the correspond-
ing networks and therefore, in this case, the phase transition
must be of first order. From Eqs. (9) and (10), one can get the
threshold,

pI
c =

1

kA(1− uA)
[

−1+ (1− uA)α − uAα(1− uA)α−1
] , (12)

where,α ≡ (kB+kBA)/(kA+kAB), anduA satisfies the equation,

uA = 1− exp
{ uA[1 − (1− uA)α]
(1− uA)[−1+ (1− uA)α − uAα(1− uA)α−1]

}

.

(13)
By substitutingpII

c from Eq. (8) into Eqs. (9) and (10) and
evaluating bothuA anduB we can derive in the phase diagram,
the boundary between the first and second order transitions
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FIG. 3: a. Size of giant components vs. dependency and connectivity links strength, forqB = 1 andk = 3. The giant components size at
pc changes from zero to a finite value while changingqA andK. WhenqA andK are at the boundary of different phase transitions, the jump
occurs (see Fig. 2b). b. The values ofPA

∞(pc) (◦), PB
∞(pc) (�) along the boundary forqB = 1 andk = 3. c. An hybrid phase transition, for

qB = 1, qA = 0.35,k = 3 andK = 0.1. According to Eqs. (5),PA
∞ andPB

∞ have the same properties asuA anduB respectively. Atp = ph
c ≈ 0.66

the values ofuA anduB jump, and then for lowerp values they continuously approach zero. In the inset, simulation and theoretical results are
symbols and lines respectively.

(see dashed line in Fig. 2b). An interesting phenomenon,
which to the best of our knowledge, has not been observed
before, is that when the phase transition changes from first
to second order, there are discontinuities (abrupt jumps) of
PA
∞(pc), PB

∞(pc) in the phase transition boundary (see Fig. 3a
and 3b). The boundary between first and second order phase
transition satisfiespI

c = pII
c . Therefore, by replacingpI

c by
pII

c in Eq. (9) and evaluating bothuA and uB we obtain the
boundary, seen in Fig. 3a, between the first and second order
transitions. When we reduce the three equations to a single
equation,uA, uB should always be the maximal non-negative
solution in [0,1]. When Eqs. (9) and (10) have more than one
solution, we always choose the minimal non-negative value,
pmin

c , and the corresponding maximal values,umax
A , umax

B as the

physical solution at the threshold. In part of the boundary,
umax

A > 0 andumax
B > 0, and of coursepmin

c , uA = 0, uB = 0
are also the solution of the system. This means that there exist
two intersections where both satisfy the tangential condition
on the boundary (as shown in Fig. 4a). This implies that when
the order of the phase transition changes from first to second,
PA
∞

(

pc

)

, PB
∞

(

pc

)

are discontinuous (see Fig. 3a and 3b). This
phenomenon contrasts most known systems possessing both
first and second order transitions. Usually, in physical sys-
tems, the first order jump in the order parameter, and other
related properties, such as the specific heat, present a continu-
ous change along the transition line when the system changes
from first to second order [34].

In addition to the existence of jumps inPA
∞(pc), PB

∞(pc) at
the boundary between the first and second order phase tran-
sitions, we find also another unusual phenomenon. When
one network strongly depends on the other, there existhybrid
phase transitions. An hybrid phase transition means that when
the attack strength, 1−p, increases the size of the giant compo-
nent jumps atph

c from a large value to a small value, and then
continuously decreases to zero. A similar behavior has been
found in bootstrap percolation [33]. Since the second order
transition is characterized by a giant component which is con-
tinuous in the neighborhood ofpc we regard, the hybrid phase
transition regime as a second order phase transition regime
(see Fig. 2b). For the hybrid phase transition, there exists a
thresholdph

c at which the jump occurs. Forp just belowph
c ,

the solution of Eqs. (9) foruA, uB, will jump to lower values .
After the jump, whenp further decreases,uA anduB approach
to zero continuously which implies that the giant components
sizes change to zero continuously (see Fig. 3c).

For the three equations system (Eqs. (9) and (10)), the min-
imal solution ofpmin in [0,1] is pc (the physical solution). Be-
sidespmin, if Eqs. (9) have another solutionph

c ∈ (0, 1) and
corresponding solutionuh

A, uh
B, we can find an hybrid phase

transition. The set (ph, uh
A, uh

B) means that whenp is just
below ph

c , the solutionsuA, uB of the first two equations of
Eqs. (9) will jump to small values. After the jump, when
we continue to decreasep towardspc = pmin, both uA and
uB will continuously decrease to zero. For example, for the
parametersqA = 0.35, qB = 1, k = 3 andK = 0.1, we ob-
tain pc ≈ 0.556 andph

c ≈ 0.66. Whenp is just below 0.66,
the giant components drop to smaller positive values like ina
first order phase transition. After this discontinuous drop, the
giant components’ sizes continuously decrease to zero while
decreasingp from 0.66 to 0.556, like a second order phase
transition (see Fig. 4b).
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FIG. 4: (Color online) Tangential conditions.a. An abrupt jump
on the boundary forqA = 0.394, qB = 0.8 andk = 3,K = 0.2.
Here pI

c = pII
c = 0.5464 which is the threshold of the system. Al-

though both intersections (one of which is at the origin) satisfy the
tangential condition, theumax

A , u
max
B values are the physical solution

and the transition is of the first order.b. Hybrid transition analysis,
for qB = 1, qA = 0.35, k = 3 andK = 0.1. Herepc ≈ 0.556 and
ph

c ≈ 0.66. The maximal intersection S satisfies the tangential con-
dition. When continuously decreasingp, the solution of the system
jumps from the maximal intersection S to the minimal intersection Q
and then continuously decreases to zero.

IV. SUMMARY AND CONCLUSION

In summary, we studied the dynamics of the cascading fail-
ures process and the steady solutions of failures of the giant
components in coupled networks, when both interdependent
and interconnected links exist, using a percolation approach.
Although our detailed analysis is for ER networks, the the-
ory can be applied to any network systems topology. We find
that the existence of inter-connectivity links between inter-
dependent networks, introduces rich and intriguing phenom-
ena through the process of cascading failures. Increasing the
strength of interconnecting links can significantly changethe
transition behavior and often brings up some counterintuitive
phenomena, such as changing the transition from second or-
der to first order (as seen in Fig. 2b). We also find an unusual
abrupt jump in the boundary between first and second order
phase transitions at the criticality. Moreover, when one ofthe
networks strongly depends on the other network, unusual hy-
brid phase transitions are observed.

We thank Amir Bashan for helpful discussions. This work
is partially supported by ONR, DFG, DTRA, EU project Epi-
work and the Israel Science Foundation. Y. Hu is supported

by NSFC under Grant No. 60974084, 60534080.

V. APPENDIX: HOW TO GET gA(ϕ, φ) AND gB(ϕ, φ)

We model the percolation process using the branching pro-
cess approach. LetGA

0 (xA, xB) =
∑

kA,kAB

ρA
kA ,kAB

xkA
A xkAB

B , and

GB
0 (xA, xB) =

∑

kB,kBA

ρB
kB ,kBA

xkBA
A xkB

B , be the degree distributions’

generating functions. The probability of following a randomly
chosenAB-link connecting anA-node of degreekA to a B-
node with excesskAB degree (i.e., having totalA to B degree
of kAB+1) is proportional to (kAB+1)ρA

kA,kAB
, and the generating

function for this distribution is [31],

GAB
1 (xA, xB) =

∑

kA ,kAB

(kAB + 1)ρA
kA,kAB+1

∑

k′A,k
′
AB

k′AB ρ
A
k′A,k

′
AB

· xkA
A xkAB

B . (14)

Analogously, we construct the other three excess generating
functionsGAA

1 (xA, xB),GBA
1 (xA, xB) andGBB

1 (xA, xB).
After removing a fraction 1−ϕ of nodes in networkA, and a

fraction 1−φ of nodes in networkB, we can set new arguments
to the generating functions, so that,xA andxB will be replaced
by 1−ϕ(1−xA) and 1−φ(1−xB), respectively [35–37]. Suppose
gA(ϕ, φ), gB(ϕ, φ) are the fractions ofA-nodes andB-nodes in
the giant components after removal of 1−ϕ and 1−φ fractions
of networksA andB, respectively. Then we have,

gA(ϕ, φ) = 1− GA
0

(

1− ϕ(1− fA), 1− φ(1− fBA)
)

, (15)

gB(ϕ, φ) = 1− GB
0

(

1− ϕ(1− fAB), 1− φ(1− fB)
)

,

where,

fA = G
AA
1

(

1− ϕ(1− fA), 1− φ(1− fBA)
)

, (16)

fAB = G
AB
1

(

1− ϕ(1− fA), 1− φ(1− fBA)
)

,

fBA = G
BA
1

(

1− ϕ(1− fBA), 1− φ(1− fB)
)

,

fB = G
BB
1

(

1− ϕ(1− fBA), 1− ϕ(1− fB)
)

.

When all degree distributions of inter and intra networksA
andB are Poissonian distributed, all the functions can be more
simple. AssumekA andkB are the average intra-links degrees
in networksA andB andkAB, kBA are the average inter-links
degrees betweenA andB (allowing the casekAB , kBA, since
the network sizes ofA andB can be different), then we have
GAA

0 (xA) = ekA(xA−1), GAB
0 (xB) = ekB(xB−1), GBA

0 (xA) = ekBA(xA−1),

GBB
0 (xB) = ekB(xB−1) and

(17)

GAA
1 (xA, xB) = GAB

1 (xA, xB) = GA
0 (xA, xB) = GAA

0 (xA)GAB
0 (xB)

GBB
1 (xA, xB) = GBA

1 (xA, xB) = GB
0 (xA, xB) = GBA

0 (xA)GBB
0 (xB)

Submitting the above equations into systems (15) and (16), we
get

gA(ϕ, φ) = 1− exp
{

−kAxgA(ϕ, φ) − kABygB(ϕ, φ)
}

, (18)

gB(ϕ, φ) = 1− exp
{

−kBAxgA(ϕ, φ) − kBygB(ϕ, φ)
}

.
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