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Robustness of two coupled networks system has been stugliedasely only for dependency coupling (S.
Buldyrev et. al., Nature, 464, 08932, 2010) and only for @miwity coupling (E. A. Leicht and R. M. D'Souza,
arxiv:09070894). Here we study, using a percolation apgroa more realistic coupled networks system where
both interdependent and interconnected links exist. Wedimigh and unusual phase transition phenomena
including hybrid transition of mixed first and second order, i.e., discorities like in a first order transition of
the giant component followed by a continuous decrease tlikerin a second order transition. Moreover, we
find unusual discontinuous changes from second order toofidst transition as a function of the dependency
coupling between the two networks.

PACS numbers: 89.75.Hc, 64.60.ah, 89.75.Fb
Keywords: Cascading failures, Percolation, Coupled ne&s/dPhase transition

I. INTRODUCTION damaged, so both networks are coupled by dependency links
as well. The important characteristics of such systembais t

During the last decade complex networks have been studslfailu_re of nodes in one network carries implications ndyon
ied intensively, where most of the research was devoted " this network, but also on the function of other dependent
analyzing the structure and functionality of isolated eyss networks. In this way it is possible to have cascading fasur _
modeled as single non-interacting networks [1-23]. Howeve between the coupled networks, that may lead to a catastrophi
most real networks are not isolated, as they either compleollapse of the whole system. Nevertheless, small cludters
ment other networks (“interconnected networks”), must-con cOnnected from the giant component in one network can still
sume resources supplied by other networks (”interdependeﬁfncnon through interconnected links connecting thenht® t
networks”) or both [24—28]. Thus, real networks continugus 9iant component of the other network. Thus, we have two
interact with each other, composing a large complex system§0mpeting &ects, the inter-connectivity linkscrease the ro-
and with the enhanced development of technology, the col2usStness of the system, while the inter-dependency lileks

pling between many networks becomes more complex anff€ase its robystne_ss. Here we study the competitiqn of the
more significant. two types of inter-links on the system robustness using a per

Until now two different types of coupled networks mod- colation approach, and find unusual types of percolatios@ha

els have been studied. Buldyrev et. al. [29] investigatedransitions.
the robustness of coupled systems with only interdeperedenc

links. In these systems, when a node of one network fails,

its dependent counterpart node in the other network alfo fai

They found that this interdependence makes the system sig-
nificantly morevulnerable [29, 30]. At the same time, Le-

icht and D’Souza [31] studied the case where only connectiv- Let us consider a system of two networksandB, which

ity links couple the networks, i.e., “interconnected natkgd, are coupled by both dependency and connectivity links (see
and found that the interconnected links make the system sid=ig. 1). The two networks are partially coupled by depen-
nificantly morerobust. However, real coupled networks of- dency links, so that a fractioga of A-nodes depends on
ten contain both types of links, interdependent as well as innodes in networkB, and a fractiongg of B-nodes depends
terconnected links. For example, the airport and the rgilwa on the nodes in network, with the following two assump-
networks in Europe are two coupled networks composing dions: a node from one network depends on no more than
transportation system. In order to arrive to an airport, onene node from the other network, and that if nodlede-
usually uses the railway while people arriving to the coyntr pends on nod&;, then if B; depends on som#&,, thenh = i

by airport usually use the railway. In this system, if thgpait ~ (Fig. 1). In addition, the connectivity links within eachtne

is disabled by some strike or accident, the passengersittan sivork and between the networks can be described by a set
use the nearby railway station and travel to their destinair  of degree distributiongof | .8 |}, wherepf | (of | )

to another airport by train, so the two networks complementienotes the probability of aA-node B-node) to haveka
each other and are coupled by connectivity links. On therothe(kg) links to otherA-nodes B-node) andkag (Kga) links to-
hand, if the railway network is disabled, the airporffiais = wardsB-nodes A-nodes). In this manner we get a two di-
damaged, and if the airport is disabled, the railwayfitds = mensional generating function describing all the conmiygti

Il. GENERAL FRAMEWORK
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respectively. Generally, thé? step is given by the equations,

¢n = p(1 - a (1 - galen-1, #n))). @)
¢n = 1-0(1- PgA(@n-1.6n-1)).
PA = onGalen, ¢n), PR = ¢nda(¢n-1, $n)-
By introducing two new notations
Ua = Oa(Peor b0),  Up = OB(Poos o), (3)
we can write Eqgs.(2) at the end of the cascading process,
o0, as
FIG. 1: (Color online) Two types of inter-links where the éegency
links (dashed arrows) are not necessarily bidirectionaé ffodes of oo = p(1 —ga(l- UB)), Voo =1—0a(1-pun), (4)
A and B are randomly connected witbnnectivity-links (full line).
The functionality of some of the A nodes (red) open cirdesend  and the giant components are,
on B-nodes (purple) solid circles and vice versa.
P2 = Uage = UaP(1 - ga(1 - Ug)), )

links [31], G5(Xa. Xg) = ka: PfA,kABXI;(\XEAB’ andgg(xa, Xe) = PS = Ugpw = UB(l— Os(1 - pUA))-
A KAB
% PEB,kBAXI/(fAXEB-

kakBA

The cascading process is initiated by randomly removing a 1.
fraction 1— p of the A-nodes and all their connectivity links.
Because of the interdependence between the networks, theWe consider the case where all degree distributions of the
nodes in networlB that depend on the removédnodes are  connectivity intra- and inter-links areoissonian, for which
also removed along with their connectivity links. As nodesthe functionsus andug obtain a simple form. Assumie

and links are removed, each network breaks up into connectgghdkg are the average intra-link degrees in netwokiandB,

components (clusters). We assume that when the network, g, . &, are the average inter-connectivity links degrees
is fragmented, the nodes belonging to the largest compone

(called the giant component) representing a finite fractibn Betweena andB (allowing the caséag # Kga, since the two

the network which is still functional, while nodes that aesetg networks may be of dierent sizes), we obtain,
of the remaining smaller clusters become dysfunctiou,

less there exists a path of connectivity-links connecting these
small clusters to the largest component of the other network
Since the networks haveftérent topologies, the removal of
nodes and related dependency links, is not symmetric in both
networks, so that a cascading process occurs, until therayst
either becomes fragmented or stabilizes with a giant comp

nent. - : .
. Egs. (6) graphically (numerically) and substitute the nume
Letga(e, ¢) andge(y, ¢) be the fraction of A-nodes and B- -5 sojution into Egs. (5). For simplicity and without loss
nodes in the giant components after the percolation proces

initiated by removing a fraction of ¢ and 1- ¢ of net- st g(ingraht_y, e S-'tUdz); the case w?]d(,e - kE? EI K Ia n.d
works A and B respectively [11]. The functiogs(e, #) and as = Kap = K. Fig. com&arest ,-f numerical solutions
ga(e, ¢) depend only O@Q(XA, Xg) andgg(xA, xg) (for details with t_he simulation resu_lts foPZ, andPZ as a function ofp, _
see Appendix) and the dynamics of the cascading process anovxﬂng that the analytﬁarl] res_ultsl of Egs. (5) and (6) are in
be described by the following set of equations, excellent agreement with the simulations.

POISSONIAN DEGREE DISTRIBUTIONS

Up=1- e*RApUA(1*(1A(1*UB))*RABUB(LCIB(LpUA)),

(6)

Ug = 1— o KeaPua(1-0a(1-Ug))—Keue(1-Gs(1-pun))

Generally, for fixed parameteks, kg, kag, Ksa, 0a, 0s and

, it is often impossible to achieve an explicit formula foeth
0= A B ;

giant component®?, andPS. However, one can still solve

P} = ¢10apr. #1). (1)
PS = ¢20s(¢1, 62),
P5 = 020a(02. 62).
P5 = ¢30(¢2. $3).

pn=p ¢=1

¢2 = 1-ds(L - Pgaler, d1)),
¢2 = p(1 - da (L - gal(er, 42))).
¢3 = 1-ds(L - Pgale2, 62)),

A. Partial Dependence

Next we are interested in the properties of the phase transi-
tion under random attack, so first we determine the condition
when transition does not occur. This is the case where for
a givengs < 1 even if all nodes of network A are removed

whereg;, ¢; are the remaining fraction of nodes at stagdé
the cascade of failures aer, PiB are the corresponding gi-
ant components of networldsandB at the cascading stage

(i.e,p = 0), there still exists a giant component in network
B (see circles in Fig. & and no phase transition occurs. For
Poissonian degree distributions, it is easy to see, thdtef a
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which together with Eq. (7) implies that' > 1, and therefore
the phase transition must be of first ordepgat< 1 (that will
be determined later).

When extractingig from the first equation of system (6), it
can be rewritten as,

__log(1—up) +Kkap(1—ga)ua
KaPdaua + Kag[1 — gg(1 — pua)]
Ug = 1 — e Keauap(1-aa(1-ue))-Reus(1-a(L-UaP)) = H(up).

B= = Hi(ua),  (9)

L
0O 02 04 _06 08 1

(b) 4 : The intersection of the two curves (maximum solution of
Ua, Ug) is the solution of the system. When the phase tran-
0.8 Hybrid sition is first order and = p., the curves of Egs. (9) are
0.6 tangentially touching at the solution point, where,
< N R First Order dH dH
0.4 —-x, (d_1 = d—z) . (10)
0.2 ta - GUA et
0 Second Order ~ ‘ Obviously,ua, Ug andp can be treated as variables of Egs. (9)
0 1 2 3 4 and (10). Solving these equations, the minimal solutiop of
K and the corresponding maximal andug is the solution of

the system at criticality.
FIG. 2: (Color online)a. Giant component®? andPg vs. fraction
of remaining nodesp, for N = 10000,k = 2 andK = 1. NetworksA

(open symbols) and (full symbols) are shown for dierent €, gg) B. Full Dependence
pairs: (08,0.1) (o); (0.1,0.8) (¢); (0.8,0.8) (m). The symbols repre-
sent simulations and the lines the theory. We see thifégreint types When networks A and B are fully dependent, i.ga, =

of behaviors: no phase transitios)( second order phase transition gs = 1, both networks must be the same size and therefore
() and first order phase transition){ b. Phase diagram showing K = E’ - K svystem (6) yields a simple form
the first order, second order and hybrid phase transitidmesgand A8 = KBA = K SY n Imp

the boundaries, fagg = 1 andk = 3. In the second order transition

regime, between the two dashed curve (red and blue) thesesexi Ua=1- exp[—puAuB(kA + K)}
hybrid phase transition regime (details in Fig).3Since the hybrid _1_ _ T .\
transition is continuous in the neighborhoodmfand jump occurs Ug =1 exp[ puAuB(kB * K)}

well abovep, we classify this hybrid phase transition as a secon

order phase transition. dThe size of the mutual giant componeRy,, is thus given by,

P.=PA=PB = p(l _ efpm(RﬁK))(l_ e—Pw(RBR)), (11)

the removal of all B-nodes that depend on the attacked A-

nodes, the new average intra-link degree in network B is les&/nich is similar to the solution of fully interdependent&rs
than one. i.e. [29, 32], where the only dlierence is that the degrees of net-

works A and B are now replaced by + kag andkg + kga, re-
ks(1-qg) < 1, (7)  spectively. Thus, interestingly, in a fully interdepentieou-
pled networks system adding connectivity inter-links Hees t
a phase transition does occur. Therefore, our further aisaly same fect as increasing the intra-degree of the correspond-
is based on condition (7). In addition, from now on, we will ing networks and therefore, in this case, the phase transiti
set both dependency couplingg, anddg, to be larger than  must be of first order. From Egs. (9) and (10), one can get the

Zero. - _ threshold,
For a second order phase transition, the giant component
decreases continuously to zero at the percolation thréghol I _ 1 (12)
C

Thus, by taking the limit of system (6) aly = ug = 0 we

_ * ka(L— Un)[~1+ (1~ Un)” — Unar(1 — un)e-t]’
obtain the second order threshold,

y 1- RB(l — ) where,a = (kg+kga)/(ka+Kag), andup satisfies the equation,
c = = — — : @
(Ka + (keakas — kaks)(1 - dg))(1 - Ga) Up = 1—ex Ua[1 — (1 - ua)7]
A p[(l U1+ (1— Un)? — Upa(1— up)™ ] }
In particular forga = 1 and 0< gg < 1 this threshold becomes (13)
By substitutingpl from Eq. (8) into Egs. (9) and (10) and
pll = 1 evaluating bothuy andug we can derive in the phase diagram,
L=

ks(1 - QB), the boundary between the first and second order transitions
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FIG. 3: a. Size of giant components vs. dependency and connectivikg strength, fogg = 1 andk = 3. The giant components size at
pc changes from zero to a finite value while changipgandK. Wheng, andK are at the boundary of fierent phase transitions, the jump
occurs (see Fig.19). b. The values ofP2(p) (o), PE(p.) (1) along the boundary fogg = 1 andk = 3. c. An hybrid phase transition, for
gs = 1,0a = 0.35,k = 3 andK = 0.1. According to Egs. (52 andP8 have the same propertiesigsandug respectively. Aip = pl! ~ 0.66
the values ofiy andug jump, and then for lowep values they continuously approach zero. In the inset, sitimi and theoretical results are
symbols and lines respectively.

(see dashed line in Fig.n2 An interesting phenomenon, physical solution at the threshold. In part of the boundary,
which to the best of our knowledge, has not been observedy® > 0 anduf®™ > 0, and of coursepg“i”,uA =0,ug=0
before, is that when the phase transition changes from firsire also the solution of the system. This means that these exi
to second order, there are discontinuities (abrupt jumps) otwo intersections where both satisfy the tangential caoomlit

P2 (po), P2 (pc) in the phase transition boundary (see Fig. 3 on the boundary (as shown in Figa)4 This implies that when
and 3). The boundary between first and second order phasthe order of the phase transition changes from first to second
transition satisfieg, = py. Therefore, by replacing; by P{;(pc), Pfo(pc) are discontinuous (see Figaand ). This

p¢ in Eq. (9) and evaluating botii andug we obtain the  phenomenon contrasts most known systems possessing both
boundary, seen in Fig.a3between the first and second order first and second order transitions. Usually, in physicat sys
transitions. When we reduce the three equations to a singigms; the first order jump in the order parameter, and other
equationua, ug should always be the maximal non-negative g|ated properties, such as the specific heat, presentiagent

solution in [0,1]. When Egs. (9) and (10) have more than ong,ys change along the transition line when the system changes
solution, we always choose the minimal non-negative valu€som first to second order [34].

pIin, and the corresponding maximal valug&>, ul® as the

In addition to the existence of jumps R (pc), PE(pc) at For the three equations system (Egs. (9) and (10)), the min-
the boundary between the first and second order phase traimal solution ofp™" in [0,1] is p. (the physical solution). Be-
sitions, we find also another unusual phenomenon. Whesidesp™", if Egs. (9) have another solutigpf € (0,1) and
one network strongly depends on the other, there éylstid  corresponding solutiouE\, ug, we can find an hybrid phase
phase transitions. An hybrid phase transition means thabwh transition. The setf", ufi, ul) means that whem is just
the attack strength-Ip, increases the size of the giant compo- pelow pf!, the solutionsua, ug of the first two equations of
nent jumps apf from a large value to a small value, and then ggs. (9) will jump to small values. After the jump, when
continuously decreases to zero. A similar behavior has beefje continue to decreagetowardsp. = p™", bothu, and
found in bootstrap percolation [33]. Since the second ordefy; will continuously decrease to zero. For example, for the
transition is characterized by a giant component whichis co parametergja = 0.350s = 1,k = 3 andK = 0.1, we ob-
tinuous in the neighborhood @f we regard, the hybrid phase {5i, Pe ~ 0.556 andpll ~ 0.66. Whenp is just below 0.66,
transition regime as a second order phase transition regimge giant components drop to smaller positive values like in
(see Fig. bh)- For the hybrid phase transition, there ext:sts &irst order phase transition. After this discontinuous ¢tbp
thresholdpg at which the jump occurs. Farjust belowps,  giant components’ sizes continuously decrease to zer@whil

the solution of Eqs. (9) faua, ug, will jump to lower values . gecreasing from 0.66 to 0.556, like a second order phase
After the jump, wherp further decreases andug approach i ansition (see Fig.H).

to zero continuously which implies that the giant compogent
sizes change to zero continuously (see F@j. 3
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. V. APPENDIX: HOW TO GET ga(¢. ) AND gg(¢. ¢)

We model the percolation process using the branching pro-
cess approach. LeFh(xa.Xe) = 3 ph, X¢x$e, and
kAvaB ’

GE(xa.X8) = 3 p2 |, XX, be the degree distributions’
ke.kea

generating functions. The probability of following a ramadly
chosenAB-link connecting anA-node of degreéda to a B-
node with exceskag degree (i.e., having tot#l to B degree
of kag+1) is proportional toKas + 1)p@A,kAB’ and the generating
function for this distribution is [31],

A
G180 X8) = e * Dol

Kaa 08
Ka.Kag k’zk:’ ABpkA’kAB
‘AKap

0 0.2 04 y 06 0.8 1
B

x'j(‘ x'éAB . (24)

Analogously, we construct the other three excess gengratin

functionsG}*(xa, Xg), G24(Xa, xg) andGF8(xa, Xg).

1 After removing a fraction £ ¢ of nodes in networld, and a
fraction 1-¢ of nodes in networlB, we can set new arguments
to the generating functions, so that,andxg will be replaced

FIG. 4: (Color online) Tangential conditionsa. An abrupt jump by 1-¢(1-Xa) and :-¢(1-xg), respectively [35-37]. Suppose

on the boundary foga = 0.394gs = 08 andk = 3K = 02.  ga(p,¢), 9s(e, ¢) are the fractions of-nodes andB-nodes in

Herep, = p.' = 0.5464 which is the threshold of the system. Al- the giant components after removal 6f& and 1- ¢ fractions

though both intersections (one of which is at the originjséathe of networksA andB, respectively. Then we have,
tangential condition, thef™, uz™ values are the physical solution

and the transition is of the first ordel. Hybrid transition analysis, oalp,¢) = 1- g@(l —p(1-fa),1-0(1- fBA)), (15)
forggs = 1,ga = 0.35k = 3 andK = 0.1. Herep. ~ 0.556 and B

bl ~ 0.66. The maximal intersection S satisfies the tangential con- ~ 98(#.4) = 1 - Go(1 - ¢(1 - fas), 1 - ¢(1 - fs)),

dition. When continuously decreasimg the solution of the system

jumps from the maximal intersection S to the minimal intetem Q where,
and then continuously decreases to zero. fa = g'l‘\A(]_ —o(1-fa),1-g(1- fBA)), (16)
fag = G12(1— (1 - fa). 1— ¢(1— fan)).
IV. SUMMARY AND CONCLUSION foa = GPA(1 - ¢(1 - fan), 1 - (1 - fg)),

BB
In summary, we studied the dynamics of the cascading fail- fo = G7°(1 - ¢(1- faa). 1= ¢(1- fa).
ures process and the steady solutions of failures of the gian When all degree distributions of inter and intra netwokks
components in coupled networks, when both interdependeraindB are Poissonian distributed, all the functions can be more
and interconnected links exist, using a percolation apggroa simple. Assumd, andkg are the average intra-links degrees
Although our detailed analysis is for ER networks, the the+n networksA andB andkag, kg are the average inter-links
ory can be applied to any network systems topology. We ﬁ”QJIegrees betweeh andB (allowing the cas&ag # Kga, Since

that the existence of _inter-conneqtivity Iin_ks _bet_weerenint the network sizes oA andB can be diferent), then we have
dependent networks, introduces rich and intriguing phgnomGAA(XA) — dataD) GAB(xg) = dholio-D) GBA(x,) = gRealia—1),
ena through the process of cascading failures. Increasagt © - 0 0

i ina li iqnifi GPB(xg) = et~V and
strength of interconnecting links can significantly chattoge o \"B
transition behavior and often brings up some counterirtuit (17)
phenomena, such as changing the transition from second or: 4 _ _AB A AA AB
der to first order (as seen in Figo2 We also find an unusual G1"(%a. X8) = G1 (Xa. X8) = Go(Xa, X8) = Go(Xa)Go ™ (Xe)
abrupt jump in the boundary between first and second ordeGE2(xa, Xg) = Go(Xa, Xg) = G5(Xa, Xg) = G5 (Xa) G5B (xs)
phase transitions at the criticality. Moreover, when onthef
networks strongly depends on the other network, unusual h
brid phase transitions are observed.

We thank Amir Bashan for helpful discussions. This work  9a(¢.9) = 1 - exg{—KaXga(¢. ¢) — Kasys(¢. #)}.  (18)
is partially supported by ONR, DFG, DTRA, EU project Epi- : = =
work and the Israel Science Foundation. Y. Hu is supported 98(v.9) = 1~ exp[—kBAng@p, ¢) — keygs(e, ¢)}'

y§ubmitting the above equations into systems (15) and (1), w
get
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