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There are a great many proteins that localize to and collectively generate curvature in biological
fluid membranes. We study changes in the topology of fluid membranes due to the presence of highly
anisotropic, curvature-inducing proteins. Generically, we find a surprisingly rich phase diagram
with phases of both positive and negative Gaussian curvature. As a concrete example modeled
on experiments, we find that a lamellar phase in a negative Gaussian curvature regime exhibits a
propensity to form screw dislocations of definite Burgers scalar but of both chirality.

How do cells maintain and control the intricate mor-
phologies observed in their internal membranes? By now,
a number of proteins have been identified that localize to
and collectively induce curvature in fluid membranes [1–
3], but little is understood about connecting the individ-
ual proteins to large-scale membrane morphologies [4]. A
decade of theoretical work has established only the basic
principles of how proteins lead to instabilities in vesicles
[5–8] and how they affect the rigidity of flat membranes
[9]. Determining the resulting membrane morphology,
however, remains the purview of experiment [10–12] and,
sometimes, simulations [13, 14].

Recent experiments have demonstrated the ability of
certain antimicrobial peptides to generate cubic, bicon-
tinuous phases in model, lipid membranes [12]. Struc-
tures with the same symmetry, that of the Schwartz
D surface, have also been observed in starved amoeba
[15]. In this paper, we study changes in membrane
topology due to the presence of anisotropic, curvature-
inducing proteins. Our model is distinguished from much
of the past theoretical work in this area by allowing both
the induced curvatures and the couplings between the
protein and membrane along different directions to be
anisotropic. We find that magnitude and the sign of the
induced Gaussian curvature is determined both by pro-
tein concentration and membrane rigidity. This is quite
unlike the case of isotropic couplings for which the pre-
ferred mean and Gaussian curvatures are uniquely pre-
scribed. Finally, we consider the formation of screw dis-
locations in a lyotropic, lamellar phase due to curvature-
inducing proteins, finding a generic transition from a lay-
ered phase to an achiral defect-laden phase with screw
dislocations.

I. MODEL

We formulate our model for the protein-membrane cou-
pling by first assuming a fixed membrane shape. The
second fundamental form of the neutral surface can be
expressed in terms of two principal curvatures c1 and c2
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as hij = c1e1,ie1,j + c2e2,ie2,j, where the ei are unit vec-
tors along the principal curvature directions. To each
protein we associate a position r on the membrane and a
unit vector u tangent to the surface that points along the
backbone (see Fig. 1). Finally, we define a unit vector
t = u × N, where N is the surface normal, that points
transverse to the protein backbone.
The second fundamental form can be decomposed into

three independent components with respect to the pro-
tein backbone: huu = hiju

iuj , hut = hiju
itj and htt =

hijt
itj . Here, we are using Einstein summation conven-

tion for summing over repeated indices, and indices are
raised and lowered with respect to the induced metric of
the neutral surface, gij [16]. We model the interaction
between membrane and protein as harmonic, allowing us
to decompose the local interaction as

E =
kT
2

(huu − cL)
2
+ kX (hut − cX)

2
+

kT
2

(htt − cT )
2
,

(1)
where cL and cT are the curvatures prescribed along the
longitudinal and transverse directions and cX is related
to the angle the protein backbone makes with respect to
the principal directions of curvature. It is instructive to
consider the case kT = kX = kT ≡ k, for which Eq. (1)
finds a condensed form

E =
k

2
(hij − bij)

(

hij − bij
)

, (2)

where bij = cLuiuj + cXuitj + cT titj . An interaction of
the form of Eq. (2) has been considered by numerous
authors [5, 7].

FIG. 1: Schematic model of proteins binding to a bilayer
membrane, with u and t tangent to the membrane. If proteins
bound to the top layer induce a local curvature +cL along the
midsurface, an identical protein bound to the bottom surface
induces a curvature −cL.
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It will prove convenient to define an angle θ such that
cos θ = u · e1, where the dot product is taken with re-
spect to the surface metric, and dimensionless prescribed
curvatures ξi = ci/|cL|. We further define dimensionless
coupling constants λi = kic

2
L/(kBT ). Eq. (1) now reads

E±(r, θ)

kBT
=

λL

2

(

ξ1 cos
2 θ + ξ2 sin

2 θ ∓ 1
)2

+λX [(ξ1 − ξ2) cos θ sin θ ∓ ξX ]2 (3)

+
λT

2

(

ξ1 sin
2 θ + ξ2 cos

2 θ ∓ ξT
)2

,

where the sign refers to the sign of cL.
We perform our calculations in the Grand canonical

ensemble, assuming the protein binding is controlled by
a chemical potential µ. We can either treat µ as a La-
grange multiplier fixing the density of proteins on the
membrane or allow the proteins to reversibly bind from
solution. In the latter case, µ contains a contribution
from the protein binding energy and the entropy of free
protein in solution. To be as general as possible, we al-
low the proteins to bind to either side of the membrane,
observing that a protein that induces curvatures ξi in the
midsurface when bound to one leaf of a bilayer membrane
induces curvatures −ξi when bound to the opposite leaf.
We introduce different chemical potentials, µ±, associ-
ated with either the positive or negative sign of Eq. (3),
setting them equal when the proteins on one leaf are in
equilibrium with those in the other. The single protein
partition function is

Z± =

∫

dAdθ

A0
exp

{

−
E±[θ, ξ1(r), ξ2(r)]

kBT

}

, (4)

where dA is the area measure on the membrane midsur-
face and we introduce the characteristic protein area A0

so that Z± can be dimensionless. Since the proteins do
not directly interact, the Grand partition function is

Ω =

∞
∑

N=0

∞
∑

M=0

1

N !M !
eNµ+/(kBT )eMµ−/(kBT )ZN

+ ZM
− . (5)

This yields

Ω = exp

{

∑

±

[
∫

dA dθ

A0
exp

(

µ± − E±

kBT

)]

}

, (6)

for proteins bound to either bilayer leaf.
It is straightforward to obtain the average concentra-

tion of the proteins bound to the membrane surfaces from
Eq. (6) by temporarily generalizing the chemical poten-
tials to be position and angle dependent. Then, the func-
tional derivative of lnΩ with respect to µ±(r, θ) yields

〈ρ±〉 = kBT
δ lnΩ

δµ±(r, θ)

= A−1
0 exp [(µ± − E±) /(kBT )] . (7)

Finally, we note that this procedure can be generalized to
multiple curvature-inducing proteins in a straightforward
manner by extending the sum in Eq. (6) over each species
of protein.

To relax the constraint of fixed membrane shape, we
combine Eq. (6) with the Helfrich energy for a mem-
brane, finding

F

kBT
= σA+

∫

dA

[

κ

2
(H −H0)

2
+ κ̄K (8)

−
∑

±

z±
A0

∫

dθ
(

e−E±/(kBT )
)

]

,

where σ is the surface tension, κ the bending modu-
lus, κ̄ the Gaussian curvature modulus, z± = eµ±/(kBT )

the fugacity, H = (c1 + c2)/2 the mean curvature, H0

the spontaneous curvature, K = c1c2 the Gaussian cur-
vature, and A the total membrane area. σ, κ, and κ̄
are in units of kBT . As is usual, we have introduced
a membrane surface tension here. It is useful to in-
troduce the energy of a protein on a flat membrane,
EF

±/(kBT ) ≡ λL/2 + λXξ2X + λT ξ
2
T /2. Adding and sub-

tracting 2πe−EF

±/(kBT ) to Eq. (8) allows us to write

F

kBT
= σ̃A+

∫

dA

[

κ

2
(H −H0)

2
+ κ̄K (9)

−
∑

±

z±
A0

∫

dθ
(

e−E±/(kBT ) − e−EF

±/(kBT )
)

]

,

where σ̃ = σ −
∑

±(2πz±/A0)e
−EF

±/(kBT ). The form
of Eq. (9) can be understood by expanding the en-
ergy in powers of the curvatures ξi. The first term is
already order ξi; thus, we have separated the curvature-
independent effect of the proteins into an effective surface
tension σ̃ < σ. The remaining curvature-dependent con-
tribution to the energy is responsible for selecting a local,
preferred membrane curvature.

In the case we will consider here, we will assume that
membrane area is fixed by treating σ as a Lagrange mul-
tiplier. In that case, it is clear that the protein contribu-
tion to the surface tension is absorbed by the Lagrange
multiplier. Moreover, we will be particularly interested in
proteins added to a lamellar phase, in which the surface
tension term can be absorbed into the layer compression
energy [17]. Since it plays no role, we will suppress it in
the equations that follow to save space.

Before proceeding, it is worth noting what this proce-
dure does not capture: the correlated fluctuations of the
membrane and, by proxy, correlated fluctuations of the
proteins themselves. Hence, protein interactions are only
mediated by equilibrium deformations of the membrane.
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II. INDUCED LOCAL CURVATURE

In order to establish our main points with minimal
algebraic complication, we will mostly specialize to the
extremely anisotropic case λX = λT = 0, with one
species of protein which can bind on either leaf of the
bilayer. Later, we will reintroduce the remaining cou-
plings to see how this basic picture is modified. With
this simplification, EF

± = e−λL/2 and E(r, θ)/(kBT ) =

λL

(

ξ1 cos
2 θ + ξ2 sin

2 θ ∓ 1
)

/2 in Eq. (9).
The bending modulus is shifted by

∆κ =
π(z+ + z−)

A0c2L
e−λL/23(1− λL)λL, (10)

and the Gaussian curvature modulus is shifted by

∆κ̄ =
π(z+ + z−)

2A0c2L
e−λL/2λL (λL − 1) . (11)

There is also a shift in the spontaneous curvature,

∆H0 = 2π
z+ − z−
A0cL

e−λL/2 λL

κ+∆κ
, (12)

which vanishes when the fugacities z+ = z− = z are
balanced. To avoid overcomplicating our analysis, we
assume equal protein binding on both bilayer leaves and
also zero spontaneous curvature so that ∆H0 = H0 = 0.
There are two distinct regimes of behavior to consider.

When λL < 1, the membrane becomes more rigid with
increasing protein concentration. For λL > 1, on the
other hand, the membrane softens with increasing pro-
tein concentration. Qualitatively similar behavior has
been calculated for the case of isotropic couplings [9].
This softening eventually leads to an instability with re-
spect to continuous perturbations at a critical protein
fugacity (z+ + z−)/(A0κc

2
L) > eλL/2/[3πλL(λL − 1)] in

which κ+∆κ < 0.
Topological instabilities occur when either of the two

“topological moduli”, κ+ = κ/2 + κ̄ and κ− = −κ̄, be-
come negative [18, 19]. When κ+ < 0, the membrane
becomes unstable to topological rearrangements that in-
duce positive Gaussian curvature, for example to spheri-
cal vesicles [19]. Similarly, when κ− < 0, the membrane
becomes unstable toward the formation of negative Gaus-
sian curvature, which has been implicated in the transi-
tion from an Lα to an L3 phase in lamellar systems [19].
In terms of the original bare moduli, we find that κ+ < 0
when

z+ + z−
A0c2L

> 4
eλL/2

πλL(λL − 1)

(κ

2
+ κ̄

)

, (13)

and κ− < 0 when

z+ + z−
A0c2L

> 2
eλL/2

πλL(λL − 1)
|κ̄|. (14)

FIG. 2: (color online) [z/(κA0c
2

L), λL] phase diagram for a
single species with equal binding to both leaves and λX =
λT = 0. We’ve chosen κ̄ = −0.05κ. The dashed line is the
stability line of Eq. (11) between the flat phase labelled ξ1 =
ξ2 = 0 (red) and the minimal surface phase labelled ξ1 = −ξ2
(blue). The spherical phase is labelled ξ1 = ξ2 (yellow), with
a transition from the K < 0 phase that is first order. Intensity
of color indicates the magnitude of the Gaussian curvature,
which is nearly constant.

To study the topological phase diagram more con-
cretely, we ask the question: what combinations of mem-
brane curvatures ξ1 and ξ2 minimize the free energy lo-

cally, that is, the free energy density given by the inte-
grand in Eq. 9? A typical local phase diagram as a func-
tion of λL and fugacity z is shown in Fig. 2. We generi-
cally find three phases: a flat membrane with boundary
given by Eq. (14), a saddle phase with ξ1 = −ξ2 ≤ 1,
and a spherical phase with ξ1 = ξ2 ≤ 1 . There is a
weak dependence of the induced curvature on the pro-
tein fugacity. When κ̄ = 0, the transition from flat
to minimal surface phase occurs along the line λL = 1
as predicted by Eq. (11). For κ̄ < −κ/3, the tran-
sition from the flat phase proceeds directly to spheres,
as can also be seen from Eqs. (13) and (14). Why do
anisotropic couplings lead to such rich phase diagrams?
When λX = λT = 0, the protein curvature can be accom-
modated by both K > 0 and K < 0 since they need only
find a single direction in which the membrane curvature
is commensurate with the protein’s prescribed curvature.
However, the orientational entropy of the protein is max-
imized at umbilics (ξ1 = ξ2) while the bending energy is
minimized at minimal surfaces (ξ1 = −ξ2). The depen-
dence on the combination z/κ arises directly from this
competition.
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FIG. 3: (color online) [z/(κA0c
2

L), λT ] phase diagram (κ̄ = 0)
for a single species of protein with λX = λL = 10 and with
equal binding to both bilayer leaves. The solid, black lines
indicate a discontinuous transition while the dashed, black
line is continuous. There is a change of symmetry across each
of these black lines. Cylinders (K = 0) lie on the dotted, red
line. The (gray) color intensity indicates the magnitude of
the Gaussian curvature.

If we introduce the coupling λX 6= 0, the qualitative
phase diagram of Fig. 2 changes only by increasing the
area of stability for flat membranes at the expense of the
K < 0 phase. This holds true even when λX = λL. For
λT 6= 0, however, the phase diagram changes qualita-
tively. For concreteness, assume ξT = 0 so that the pro-
tein induces local cylindrical curvature. A cross-section
of the phase diagram in the (λT , z) plane is shown in the
slice λL = λX = 10 in Fig. 3. We see not only the
saddle and spherical phases but two regions of nearly
cylindrical structures, one with K < 0 and one with
K > 0. The transitions meet at a single critical point
at which ξ1 = ξ2 = 0. When λT = λX = λL = 10,
however, the membrane is cylindrical at nearly all fugac-
ities with only a small deviation toward a saddle at very
low densities. This propensity to form saddles at small
fugacity disappears at smaller values the couplings. At
λL = λX = λT = 3, for example, there is only a flat phase
at low fugacity and a cylindrical phase at high fugacity.

III. SCREW DISLOCATIONS IN LAMELLAR

PHASES

In this section, we use the model of anisotropic pro-
teins to explore the transition from a lamellar phase to

FIG. 4: (color online) [zξ2/(Bd4A0cL), λL] critical line above
which helicoids are energetically favorable for κ̄ = 0. The flat
phase is stable in the region λL < 1. Color (shading) is added
as a guide to the eye.

one with complex topology. We again focus on the proto-
typical case that λX = λT = 0 and κ̄ = 0, for which there
is only a spherical and a saddle phase (when λL > 1) (see
Fig. 2). In the case of the spherical phase, the lowest
energy state is one of monodisperse spherical vesicles of
radius c−1

L .

In the saddle phase, however, the lowest energy state
occurs when H = 0 and K is given by the prescribed
Gaussian curvature (ξ1 = −ξ2 ≈ 1). This is impossi-
ble in a three dimensional Euclidean space; the mem-
brane energy is frustrated by the constraints of geome-
try. However, lamellar phases with a sufficiently strong
preference for negative Gaussian curvature can develop
a variety of complex, but ordered, morphologies [21]. A
layered structure with the same topology as the Schwartz
D surface, the structure most commonly observed with a
variety of negative Gaussian curvature inducing proteins
[12], can be obtained through a lattice of screw dislo-
cations through Schnerk’s first surface [22]. Using it as
a guide, we consider the insertion of a screw dislocation
into a lamellar phase as a prototype of a topological tran-
sition driven by proteins.

In the absence of proteins, a screw dislocation is de-
scribed by a helicoid which has K < 0 everywhere. We
will assume this form is a good description of a screw
dislocation in the presence of proteins as well. In terms
of coordinates (x, y) on a flat reference layer, the multi-



5

valued height function,

h(x, y) =

(

b

2π

)

tan−1
( y

x

)

, (15)

where b = nd is the Burgers scalar, n an integer and d
the layer spacing, is an extremum of both the bending
and compression energies [20]. Screw dislocations have
a large elastic contribution to their line tension, arising
from the deviation from the equilibrium layer spacing
near the core, of the form τ = Bb4/(256π4ξ2), where B
is the bulk modulus and ξ is a microscopic core size [20].
Due to the divergence in τ as ξ → 0, we neglect other
contributions to the core energy.
Since H = 0, this line tension must be balanced with

the contribution from Eq. (9) if screw dislocations are
energetically favorable. We evaluate Eq. (9) numeri-
cally. We find that a screw dislocation becomes energeti-
cally favorable when compared to the flat phase above the
critical line shown in Fig. 4. Increasing fugacity prefers
an increasing Burgers scalar, with both chiralities degen-
erate. Since this surface is not of the optimal curvature
everywhere, this critical line occurs at larger λL than pre-
dicted by the local phase diagram. The transition also
depends strongly on the bulk modulus of the lamellar
phase, though we note that the layer spacing is typically
set by d ∼

√

(κ/d)/B [20]. If we use ξ ∼ d for the core
size we obtain that zξ2/(Bd4A0cL) ∼ zcLd/(κA0c

2
L), so

the horizontal axis of Fig. 4 is roughly comparable to
that of our local phase diagrams when cL ∼ 1/d. Finally,
we note that, once it is energetically favorable to insert a
screw dislocation, screw dislocations will proliferate. The
result will be a defect-laden phase with either an ordered
or disordered arrangement of screw dislocations.

IV. DISCUSSION AND SUMMARY

In this paper, we have studied topological transitions in
membranes induced by anisotropic, curvature-inducing
proteins. It was already anticipated by Fournier [5] that
anisotropic proteins can favor negative Gaussian curva-

ture at certain densities. Indeed, when the three elastic
moduli coupling the proteins to the membrane are equal –
that is, the proteins induce a local, anisotropic membrane
curvature isotropically – we indeed recover this result.
Nevertheless, we have found that, once the three elastic
moduli differ, anisotropic proteins can induce both pos-
itive and negative Gaussian curvatures no matter what
their intrinsic curvatures are. In fact, the curvature in-
duced depends on the protein densities and membrane
moduli, and arise from a competition between protein
entropy and membrane curvature. We also identify the
dimensionless parameters that govern the minimal energy
local curvature, which depend on a combination of mem-
brane rigidity and protein area fraction. Consequently,
should curvature-inducing proteins take advantage of our
mechanism for sculpting membranes, tuning the mem-
brane moduli by adding cosurfactants or changing lipid
mixtures can induce a transition from negative to posi-
tive Gaussian curvature.

Beyond this, we consider large scale re-arrangements of
a fluid membrane due to proteins that favor the formation
of negative Gaussian curvature. The inherent frustration
of surfaces with negative Gaussian curvature – because
they cannot satisfy the local, lowest-energy curvature ev-
erywhere – modifies the location of the transition. At this
slightly higher threshold, we predict a transition from
a lamellar phase to one with screw dislocations. Since
dislocations of both chirality should appear with equal
probability, the resulting phase will be achiral. In fact,
a lattice of parallel, opposite screw dislocations forms a
phase with Pn3m symmetry [22], which have been ob-
served in experiments in which anisotropic proteins have
been added to a lipid mixture [10].

Finally, we have neglected membrane shape fluctua-
tions in our analysis. These fluctuations will induce ad-
ditional correlations in the protein positions. Whether
this will qualitatively change the phase diagram remains
to be seen.

This work was funded by the National Science Foun-
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