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During collective locomotion, beating flagella of spermatozoa interact hydrodynamically, and are
observed experimentally to synchronize. G. I. Taylor used a small-amplitude two-dimensional sheet
model to show that the rate at which swimmers do work against the fluid is minimal for in-phase
beating. We use a semi-analytical approach based on hydrodynamic reflections to extend these
results to the small-amplitude three-dimensional beating of infinite flagellar filaments. We first
consider a configuration of two parallel filaments. In the case where the beating of both flagella
occurs in the same plane as that defined by their axis, in-phase beating is found to lead to an
overall minimum of energy dissipation, while opposite-phase leads to a maximum. If we allow
the orientation of the beating planes to vary, we find that the minimum of energy dissipation is
obtained for either the in-phase or opposite-phase conformation, in a manner which depends on
the flagella orientation, and their relative distance. We further characterize numerically the set of
optimal relative orientations. Quantitatively analogous results are obtained using a simple model
based on the beating of two spheres interacting hydrodynamically in the far field. Exploiting the
linearity of Stokes equation, we then extend our results to the case of three beating flagella in an
aligned and triangular conformation. Consistent with Taylor’s two-dimensional work, our results
suggest that, from a hydrodynamic standpoint, it is more energetically favorable for spermatozoa
with three-dimensional flagella to swim close to each other and with synchronized, parallel, in-phase
beating.

I. INTRODUCTION

The diversity and complexity of life has long been a
source of inquiry for scientists as living creatures have de-
veloped specific structural and behavioral characteristics
to survive in their environment. In particular, efficient
locomotion is often an important criteria for survival as it
permits an organism to find food, escape predators, and
reproduce. Organisms have thus evolved different modes
of locomotion, many of which have been studied by the
biomechanics community [1, 2]. On very small scales in
particular, the study of microorganism locomotion is the
object of renewed interest [3–5]. These organisms play
important roles in many biological processes, including
reproduction [6], bacterial infections [7], and the ma-
rine life ecosystem [8, 9]. Their study has also lead to
a number of bio-inspired engineering applications, such
as synthetic locomotion [10–16], mixing [17], pumping
[18], transport [19] and harnessing biological organisms
to perform work [20].

The physics of propulsion at a microscopic scale can
be counter-intuitive. The Reynolds number, which is the
ratio of inertial to viscous forces on a moving organism, is
typically small, so propulsion is entirely governed by vis-
cosity [5, 21]. Consequently the equations governing the
dynamics of the fluid (Stokes equations) are linear and
time reversible [22]. Therefore, no locomotion is possi-
ble for a time-reversible actuation – a constraint known
as the scallop theorem [21] – and as a result, computing
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the locomotion kinematics for a low Reynolds number
swimmer can be reduced to a geometrical problem [23].
Most of the propulsion strategies employed by individual
single cell or multicellular microorganisms have been ex-
tensively studied, both theoretically and experimentally,
and have been reviewed in Refs. [4, 5, 24–30].

The individual locomotion of spermatozoa was first
studied by G. I. Taylor in a landmark paper [31]. Sper-
matozoa propel themselves by actuating a single slender
flagellum in a periodic wave-like fashion [32]. The beating
is actively induced by the sliding of polymeric filaments
located inside the flagellum in a structure called the ax-
oneme, and this sliding is generated by the collective ac-
tion of molecular motors [33, 34]. Taylor first modeled
flagella dynamics in two dimensions using a waving sheet
model [31], and later extended his work to three dimen-
sional cylindrical flagella [35]. In both cases, he showed
that the swimming velocity is nonzero at second order in
the beating amplitude. Since Taylor’s work, analytical
and computational modeling of individual spermatozoon
swimming has been the center of many studies, as re-
viewed in Refs. [4, 5].

Beyond the locomotion of individual cells, an interest-
ing biophysical topic is the collective dynamics of sper-
matozoa, which is particularly important in reproductive
processes [4]. As observed experimentally, mammalian
spermatozoa do not travel individually but in large pop-
ulations [6]. Their collective motion presents character-
istics of group dynamics such as bundle formation and
cooperation, resulting in an increased efficiency of col-
lective swimming compared to individual cells [36–38].
The collective locomotion of other biological organisms
was also extensively studied experimentally [39–42], and
was the focus of several simplified modeling approaches
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[43–50].

At the center of the group dynamics of spermato-
zoa is the issue of hydrodynamic interactions between
periodically-beating flagella, and their possible synchro-
nization [51]. Synchronization was first modeled by Tay-
lor who showed that, when the shapes of the flagella
are prescribed to be a simple traveling wave, the rate
of energy dissipation between two waving sheets (equal
to the rate at which the sheets are doing work) was min-
imum when they were beating in phase [31]. Building on
numerical work using free-swimming interacting sheets
[52, 53], this synchronization was recently shown the-
oretically to arise as a geometrical symmetry-breaking
mechanism [54–56]. In this paper, we propose a semi-
analytical method to extend Taylor’s results to the small-
amplitude beating of infinite three-dimensional flagella.
Specifically, we characterize the dependance of the rate
of energy dissipation in the fluid on the relative position,
orientation, and phase of two or three nearby flagella,
and we derive the configurations leading to swimming
with minimum rate of working.

Our paper and our results can be summarized as fol-
lows. We first present our method and setup in §II. We
solve the Stokes equations using the method of reflec-
tions in cylindrical coordinates for the problem of small-
amplitude beating of periodic cylindrical flagella. We
thus are able to obtain the full three-dimensional flow
field at leading order in the beating amplitude, as well
as the rate of viscous dissipation. In §III, we analyze
the case of two beating flagella. After validating numer-
ically our method, we first consider the case of beating
in the plane of the two flagella, thereby directly extend-
ing Taylor’s work to three dimensions. We obtain that
in three dimensions, the rate of energy dissipation is still
minimum for in-phase beating, and maximum for out-
of-phase beating. In addition, the ratio of in-plane to
out-of-plane dissipation is shown to decrease when the
flagella are located closer to each other. We then explore
the out-of-plane beating for several orientations. We find
that the minimum rate of viscous dissipation is always ei-
ther the in-phase or the out-phase beating depending on
the orientations between the two beating planes of the
flagella, and their relative distance. We compute the set
of orientation pairs minimizing the rate of energy dissi-
pation. In-phase planar beating is found to be the case
where the rate of energy dissipation is an overall mini-
mum. We then illustrate these results using a simplified
far-field hydrodynamic interactions between two periodi-
cally translating spheres, a model which displays striking
similarities with our two-flagella results. In §IV we ex-
ploit the linearity of Stokes equations to address the case
of three flagella and present examples of the flow field
and energetics for both a planar and a triangular config-
uration. We finish with a summary and a discussion of
our results in §V.

II. SETUP AND CALCULATION METHOD

Geometrical problems such as low Reynolds number
swimming are usually solved using adequate coordinate
system allowing to express easily the boundary condi-
tions, and matching them with a solution of the Stokes
equations in this coordinate system. In the case of two
flagella, the natural coordinate system would be the bipo-
lar cylindrical coordinate. However the three dimensional
Helmoltz equation for the pressure is not separable in this
coordinate system [57], and to our knowledge no solution
of the Stokes equations can thus be found analytically.
In order to be able to compute a semi-analytical solu-
tion, we thus use in this paper a reflection method [22]
using cylindrical coordinates in which a general solution
of the Stokes equations is known [35]. This method was
previously implemented to address sedimentation [58].
We first derive below the general solution of the Stokes

equation (IIA) and express the no-slip boundary condi-
tion in cylindrical coordinates (II B). We then detail how
the reflection method is implemented (II C), and explain
how we obtain our solution by solving a linear system
(IID). We finally derive the formula for the rate of vis-
cous dissipation during the motion of the flagella (II E).

A. General solution of the Stokes equations

Our setup is illustrated in Fig. 1. We model the flagella
as identical infinite cylinders of radius R separated by a
distance a, and immersed in a fluid of shear viscosity
µ. The periodic beating of the flagella is assumed to be
described by a sinusoidal wave of vertical displacement
of amplitude b, wave number k, phase velocity U , and
phase φi propagating toward the negative z direction.
The wave motion of each flagellum is assumed to occur
in a plane that makes an angle βi with the (x, z) plane.
Without loss of generality, we can choose the phases of
the two flagella to be φ2 = −φ1 = −φ, so that the phase
difference ∆φ = φ2−φ1 = 2φ is characterized by a single
parameter φ ∈ [0, π/2] (if the phases are not equal and
opposite, they can be made to be by a simple shift of
the origin of the coordinate system). We designate the
two flagellar filaments by C1 and C2 and use the C1 and
C2 cylindrical coordinate systems from the center of each
cylinder. We aim at deriving the flow field asymptotically
for small amplitude deformation kb ≪ 1.
For the sake of simplicity, we will work using the fol-

lowing natural dimensionless variables

r∗ = kr, z∗ = kz, u
∗ =

u

Ukb
, (1)

p∗ =
p

µbk2U
, σ

∗ =
σ

µbk2U
, W ∗ =

W

µRb2k3U2
, (2)

where u designates the fluid velocity, p its pressure, σ the
stress tensor in the fluid, and W the rate of energy dissi-
pation. As the amplitude of the beating b only appears
as a factor in our variables, we impose it to be b = 1,
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FIG. 1: Modeling the beating of two nearby flagella by two infinite cylinders deformed by a planar wave of the form
b sin (kz + kUt+ φi) propagating in the −z direction, and at an angle βi with respect to the (x, z) plane (see text for no-
tation). (a): Cross section in the two cylindrical flagella in the (x, y) plane. (b): Cross section of the (x, z) plane for the special
case β1 = β2 = 0.

choosing then adequate values of k such that kb ≪ 1.
Omitting in the rest of the paper the ∗ symbols for the
sake of simplicity, the dimensionless Stokes equations are
given by

∇p = ∇2
u, ∇ · u = 0. (3)

Taking the divergence of Eq. (3) leads to ∇2p = 0. A
solution of the harmonic equation for the pressure is, at
the first order in kb, p = p1(r, θ) (A cos s+B sin s) with
s = z + kUt, so that

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
− 1

)

p1 = 0. (4)

Separating p1 = f(r)g(θ) we get

r2

f

∂2f

∂r2
+

r

f

∂f

∂r
− r2 = −

1

g

∂2g

∂θ2
= n2. (5)

Solutions that are decreasing at infinity are [59]

f(r) = f1Kn(r), (6)

g(θ) = g1 cosnθ + g2 sinnθ, (7)

where Kn are the modified Bessel functions of the second
kind of order n, and f1, g1, g2 are constants. The general
form of the pressure can therefore be expressed as

p =
∑

n

(An cosnθ +Bn sinnθ)Kn(r) cos(s)

+ (an cosnθ + bn sinnθ)Kn(r) sin(s). (8)

We will here solve the velocity equations associated with
the cos s part of the pressure, as the resolution for the
sin s part is similar. The momentum and continuity equa-

tions in cylindrical coordinates are given by

∂p

∂r
= ∇2u−

u

r2
−

2

r2
∂v

∂θ
, (9)

1

r

∂p

∂θ
= ∇2v −

v

r2
+

2

r2
∂u

∂θ
, (10)

∂p

∂z
= ∇2w, (11)

∂u

∂r
+

u

r
+

1

r

∂v

∂θ
+

∂w

∂z
= 0. (12)

By the form of Eq. (8), we expect the velocity compo-
nents to be of the form

u =
∑

n

(un
1 cosnθ + un

2 sinnθ) cos s, (13)

v =
∑

n

(vn1 cosnθ + vn2 sinnθ) cos s, (14)

w =
∑

n

(wn
1 cosnθ + wn

2 sinnθ) sin s (15)

where un
i ,v

n
i ,w

n
i are functions of r only. Inserting

Eq. (13)-(15) into equations Eq. (9) and Eq. (10), sep-
arating the terms in cos θ and sin θ, then adding and
subtracting them we get for un

1 and vn2
[

∂2

∂r2
+

1

r

∂

∂r
−

(

1 +
(n+ 1)

2

r2

)]

(un
1 + vn2 )

= An

(

K
′

n −
n

r
Kn

)

, (16)
[

∂2

∂r2
+

1

r

∂

∂r
−

(

1 +
(n− 1)

2

r2

)]

(un
1 − vn2 )

= An

(

K
′

n +
n

r
Kn

)

, (17)

Equations (16) and Eq. (17) were solved by Taylor in his
paper on single three-dimensional flagellum [35]. We get
equivalent equations on un

2 and −vn1 so that un
2 and vn1

follow the same dependence on r as respectively un
1 and
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vn2 with different constants. Using Taylor’s work we thus
get

2un
1 = CnKn+1(r) +DnKn−1(r) +AnrKn(r), (18)

2vn2 = CnKn+1(r)−DnKn−1(r), (19)

2un
2 = EnKn+1(r) + FnKn−1(r) +BnrKn(r), (20)

2vn1 = FnKn−1(r) − EnKn+1(r). (21)

The w component can be computed from u and v using
the continuity equation, Eq. (12), leading to

−wn
1 =

∂un
1

∂r
+

un
1 + nvn2

r
, −wn

2 =
∂un

2

∂r
+

un
2 − nvn1

r
·(22)

Using recurrence formulas for Bessel functions [59] we
finally obtain

2wn
1 = (Cn +Dn)Kn +An (rKn−1 + (n− 2)Kn) , (23)

2wn
2 = (En + Fn)Kn +Bn (rKn−1 + (n− 2)Kn) . (24)

The complete solution of the Stokes equations in cylindri-
cal coordinates to the first order in kb is therefore finally
given by

2u =
∑

n

(Un
1 (r) cosnθ + Un

2 (r) sinnθ) cos s

+(un
1 (r) cosnθ + un

2 (r) sinnθ) sin s, (25)

2v =
∑

n

(V n
1 (r) cosnθ + V n

2 (r) sinnθ) cos s

+(vn1 (r) cosnθ + vn2 (r) sinnθ) sin s, (26)

2w =
∑

n

(wn
1 (r) cosnθ + wn

2 (r) sinnθ) cos s

+(Wn
1 (r) cosnθ +Wn

2 (r) sinnθ) sin s, (27)

with

Un
1 (r) = CnKn+1 +DnKn−1 + AnrKn, (28)

Un
2 (r) = EnKn+1 + FnKn−1 +BnrKn, (29)

V n
1 (r) = FnKn−1 − EnKn+1, (30)

V n
2 (r) = CnKn+1 −DnKn−1, (31)

Wn
1 (r) = (Cn +Dn)Kn +An (rKn−1 + (n− 2)Kn) ,(32)

Wn
2 (r) = (En + Fn)Kn +Bn(rKn−1 + (n− 2)Kn).(33)

From the symmetry of the equations it is not surpris-
ing that the fn

k functions have the same dependence on
r as the corresponding Fn

k functions but with different
constants.

B. Boundary conditions

We will voluntarily keep the notation general in this
subsection as the boundary conditions are the same on
both flagella provided that we use the adequate index.
Since we are interested in the leading-order flow problem,
the surface of the cylindrical filament is characterized by

the dimensionless shape r = kR for all z, with O(kb)
flow boundary conditions arising from the flagellum mo-
tion. We assume that the cross section of the cylinders
remain circular while moving as rigid laminae parallel to
the plane (x, y). Given the notation used for the flagella
beating plane as shown in Fig. 1, the velocity of each
point at the surface of the cylindrical filament can be
written, noting (xi, yi) their instantaneous dimensional
position, as

xi = x0 + b cosβ sin (s+ φ) , (34)

yi = y0 + b sinβ sin (s+ φ) . (35)

The O(bk) dimensionless velocity at the surface of the
flagellum is therefore given by

u =
∂xi

∂t
ex +

∂yi
∂t

ey, (36)

= [cosβ cos (s+ φ) ex + sinβ cos (s+ φ) ey] .(37)

The no-slip condition imposes the fluid velocity u to
be equal to the velocity of the flagellum on its surface,
so that to the first order in the beating amplitude the
boundary conditions are given by

ur |r=kR= cos (s+ φ) [cosβ cos θ + sinβ sin θ] , (38)

uθ |r=kR= cos (s+ φ) [sinβ cos θ − cosβ sin θ] , (39)

uz |r=kR= 0. (40)

(Note that Eq. (40) is a consequence of the fact that by
symmetry no swimming is expected at leading order).
These relations can be expressed in terms of the first
mode of the general solution, Eqs. (25-27), with

2U1
1 = cosφ cosβ, 2V 1

2 = − cosφ cosβ, (41)

2U1
2 = cosφ sinβ, 2V 1

1 = cosφ sinβ. (42)

and the w components being equal to zero. With r = kR
and Kn ≡ Kn(r) and defining

Φ(r) ≡ rK1

(

1

2
+

1

2

K0

K2

−

[

K0

K1

]2
)

+K0, (43)

and

fa ≡
2

Φ(r)
, fc ≡

rK1

K2Φ(r)
, fd ≡

2

K0

(

1−
1

2

rK1

Φ(r)

)

,(44)

the linear system, Eq. (41) and Eq. (42), can be inverted
using Taylor’s results [35], leading to the set of coeffi-
cients given by

A1 = fa cosφ cosβ,C1 = fc cosφ cosβ, (45)

D1 = fd cosφ cosβ,B1 = fa cosφ sinβ, (46)

E1 = fc cosφ sinβ, F1 = fd cosφ sinβ. (47)

Using this set of coefficients we will designate by U1 and
U2 the velocity fields defined respectively on the flag-
ella C1 and C2. They correspond to the velocity fields
induced by each individual flagellum so that U1 verifies
the appropriate boundary condition on C1, and U2 ver-
ifies the one on C2 .
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C. Reflection method

We detail here the basic principles of the reflection
method as presented in Ref. [22]. The linearity of the
Stokes equations allows us to decompose our solution
{u, p} as the linear superposition of two flows: one due
to the motion of C1 and another due to the motion of C2,
respectively indexed 1 and 2, each one being a solution
of the Stokes equations and vanishing at infinity, i.e.

u = u1 + u2, p = p1 + p2, (48)

u |C1
= U1, u |C2

= U2. (49)

In order for u to be the solution of our problem, u1 and
u2 must verify the boundary conditions

u1|C1
= U1, u1|C2

= 0, (50)

u2|C2
= U2, u2|C1

= 0. (51)

We detail below the procedure to compute u1 which,
by symmetry, is the same as the one used to compute
u2. We decompose u1 as a sum of reflections, each one
being a solution of the Stokes equations and vanishing at
infinity

u1 =

∞
∑

i=0

u
1,i. (52)

The sum of the reflections must verify the boundary con-
ditions

∞
∑

i=0

u
1,i

|C1

= U1,
∞
∑

i=0

u
1,i

|C2

= 0. (53)

The previous relations are verified provided that

u
1,0

|C1

= U1, u
1,2i

|C1

= −u
1,2i−1

|C1

, u
1,2i+1

|C2

= −u
1,2i

|C2

,(54)

where the velocities u
1,2i are solutions defined from C1

in C1 coordinates, while the velocities u1,2i+1are defined
from C2 in C2 coordinates, so that each new reflection is
defined by the boundary condition imposed by the former
one. A similar expansion is made for u2 according to
Eq. (51). Convergence and validation of the method will
be demonstrated in §III.

D. Linear system

In order to apply the boundary conditions defined by
equation Eq. (54), we truncate all our expansions in
Eqs. (13)-(15) onto M+1 angular (θ) modes defined by
6M+3 constants (the zeroth mode only adds 3 constants).
Starting with a reflection U defined from one of the flag-
ellum Ci−1, we compute the velocity boundary conditions
onto the other flagellum Ci which defines the new reflec-
tion u. In order to match those two functions, we do a
modal projection using the angular modes of the coordi-
nate system in which the boundary condition is trivially

defined by r = kR. Each projection on one mode gives
us a (6× 6) linear system (except for the 0 mode that
only adds 3 equations) such that MX = Y , with noting
T the transpose

M =

















∫

Ci
u(ri, θi) cosnθidS

∫

Ci

v(ri, θi) sinnθidS
∫

Ci
w(ri, θi) cosnθidS

∫

Ci
u(ri, θi) sinnθidS

∫

Ci

v(ri, θi) cosnθidS
∫

Ci

w(ri, θi) sinnθidS

















, (55)

Y =

















∫

Ci

U(ri−1, θi−1) · eri cosnθidS
∫

Ci
V(ri−1, θi−1) · eθi sinnθidS

∫

Ci

W(ri−1, θi−1) · ezi cosnθidS
∫

Ci

U(ri−1, θi−1) · eri sinnθidS
∫

Ci
V(ri−1, θi−1) · eθi cosnθidS

∫

Ci
W(ri−1, θi−1) · ezi sinnθidS

















, (56)

and

X = (An, Cn, Dn, Bn, En, Fn)
T (57)

Projecting onto the M+1 angular modes (n ranges thus
from 0 to M in Eqs. 55-57) we obtain a linear system
of size (6M + 3) × (6M + 3). The matrix M can be in-
verted analytically as we compute the new reflection in
the basis in which it is defined. However, the boundary
condition Y is not trivial to derive analytically, and we
evaluate it in Matlab using adequate geometrical formu-
lae for the change of coordinate systems from one cylin-
drical flagellum to the next. Once the new reflection has
been computed, we proceed the same way on the other
flagellum. We chose M = 10 angular modes in all our
simulations, which appeared to be sufficient to approxi-
mate our boundary conditions, and leave our results un-
changed upon a change of the number of modes.

E. Rate of energy dissipation

Once the linear system is solved, we have access to the
pressure and velocity fields. The dimensionless rate of
energy dissipation per unit length per second is given by

W =
1

2π

∫

s

∫

θ

σ · u · (−n)dθds. (58)

That is, noting u = Uer + V eθ, we get

W =
1

2π

∫

s

∫

θ

−σrrU − σrθV dθds, (59)

σrr = −p+
∂u

∂r
, (60)

σrθ =
∂v

∂r
−

v

r
+

1

r

∂u

∂θ
· (61)
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On each of our flagella, the velocity components at order
(bk) are given for all θ by Eqs. (38)-(40), so that we have
on the flagellum

−
v

r
+

1

r

∂u

∂θ
= 0. (62)

Furthermore, using the continuity equation, Eq. (12),
combined with our boundary condition on w, we get

∂w

∂z
=

∂u

∂r
+

u

r
+

1

r

∂v

∂θ
=

∂u

∂r
= 0. (63)

The stress tensor on the cylindrical filaments reduces thus
to

σrr = −p, (64)

σrθ =
∂v

∂r
, (65)

so that

2πW = cosφ cos β

∫

s

∫

θ

p cos θ cos s

+cosφ sinβ

∫

s

∫

θ

p sin θ cos s

+cosφ cosβ

∫

s

∫

θ

∂v

∂r
sin θ cos s

− cosφ sinβ

∫

s

∫

θ

∂v

∂r
cos θ cos s. (66)

Note that since the leading order flow is at order (kb), the
leading order viscous dissipation occurs at order (kb)2.
To evaluate the portion of Eq. (66) on each flagellum,
we have to express the terms defined from the other flag-
ellum into the current coordinate system. This is sim-
ply done using crossed derivative formulas. Interestingly
enough, only the first mode defined from the current flag-
ellum will play a role in the computation of the rate of
energy dissipation on this flagellum.

III. TWO BEATING FLAGELLAS

We consider in this section the beating of two cylindri-
cal flagella. After validating our implementation of the
reflection method, we address the situation where both
flagella beat in their plane of separation, and show that
in this case the results are similar to Taylor’s previous
work in two dimensions. We next investigate out-of-plane
beating and compute the sets of orientations minimizing
the rate of energy dissipation. Our results are then illus-
trated using a simple model of two periodically translat-
ing spheres interacting hydrodynamically in the far field.

A. Setup and validation

In order to validate our reflection method, we first ver-
ify that we do indeed match the boundary conditions
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FIG. 2: (a): Matching on the cylinder C1 of the prescribed
(Ur, Uθ) and computed (ur, uθ) radial and tangential compo-
nents of the velocity for the parameters: a = 5R, kR = 10−2,
s = 0, and φ = π/4. The w component is found to be equal
to zero within Matlab’s precision. (b): Angular dependence
of the dimensionless relative error, (U − u)/U , between the
prescribed and computed velocity components (blue dashed
line, ur; green solid line, uθ).

on each of the two flagella. The matching is illustrated
in Fig. 2 where we plot the angular dependence of both
components of the the prescribed (U) and computed (u)
on the cylinder C1, as well as the dimensionless relative
error, (U − u)/U , between the two.

We then analyze the convergence of the reflection
method with the distance between the two flagella. We
observe uniform convergence of the reflections toward
zero. Numerically, we stop implementing new reflections
when adding one improves the matching of the three com-
ponents of the boundary conditions by less then 1%. The
dependance of the number of necessary reflections as a
function of the average distance between the beating flag-
ella is shown in Fig. 3a. As expected, the further the
flagella, the weaker the hydrodynamic interactions, and
the faster the reflection method is converging. Our rate
of convergence is well fitted by a power-law.

Since the interactions between the two flagella disap-
pear in the limit where their separation distance becomes
infinite, we verify that Taylor’s result for the individual
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4
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beating of three dimensional flagella [35] is recovered in
this limit. This matching is shown in Fig. 3b for the
pressure field on the cylinder C1, and the rate of energy
dissipation. As expected, the rate of energy dissipation
is independent of the phase difference ∆φ between the
flagella in this limit.

B. In-plane beating

In order to extend Taylor’s work, we first analyze the
case of in-plane beating corresponding to β1 = β2 = 0.
Instantaneous snapshots of the pressure, flow and vortic-
ity fields are shown in Fig. 4 for representative values of
our main geometrical parameters (the value of s is chosen
so that the flow field is not zero in the three examples
shown), and three values of the phase difference ∆φ: 0,
π/2 and π.

The dependence of the rate of energy dissipation on the
phase difference is displayed in Fig. 5 (top) for various

values of the dimensionless distance between the flagella,
a/R. We observe that the minimum Wmin corresponds
to the case where the two flagella beat in phase (∆φ =
0 [2π]), similar to Taylor’s two dimensional results. The
maximum Wmax occurs when the two flagella beat in
opposition of phase (∆φ = π [2π]).
In addition, we note that Wmin decreases when the

distance between the flagellar filaments decreases, mean-
ing that the optimal situation from an energy standpoint
is close in-phase swimming. The dependence of the ratio
of Wmin/Wmax with the distance between the flagella
is displayed in Fig. 5 (bottom), together with Taylor’s
qualitatively similar results in two dimensions [31].

C. Out-of-plane beating

We now consider the more general case where the beat-
ing of the flagella does not take place in the plane defined
by their axis, and thus β1 and β2 can take non-zero val-
ues. Given all possible phase differences between the flag-
ella, by symmetry it is sufficient to consider orientations
in the interval β1 ∈ [0, π] to recover all possible cases.
To obtain the optimal phase configuration, we first fix

the value of the beating orientation β1 of C1, and com-
pute the rate of energy dissipation for all possible values
of β2 and ∆φ. We then determine numerically, for each
value of β2, the optimal phase difference ∆φ leading to
the smallest and largest values of W . The map of the
optimal phase difference ∆φ as a function of the set of
orientations (β1, β2) is displayed in Fig. 6.
Our main result is that, for all configurations, the

phase difference ∆φ leading to the minimum of the rate
of energy dissipation is always either 0 or π (modulo 2π),
while the one leading to a maximum is always either π
or 0. In Fig. 6 we plot an empirical curve, obtained nu-
merically, separating these two optimal domains for dif-
ferent values of the distance between the flagella. Not
that, surprisingly, for the case β1 = π/2 and β2 = 0 (and
inversely) we find that the energy dissipation rate is inde-
pendent of the phase difference between the flagella (not
shown).
For a given value of β1, we can then define the optimal

β2 as the one that minimizes the energy dissipation rate,
namely

W opt
(

βopt
2 ,∆φopt

)

|β1
= min

β2,∆φ
W (β2,∆φ) |β1

.(67)

The results are displayed in Fig. 7 where we plot the opti-
mal value βopt

2 as a function of β1 (Fig. 7a) and the corre-
sponding values of the energy dissipation rate (Fig. 7b).
Our main result here is that the overall optimal beating
from an energy standpoint is always the in-plane beat-
ing, and any other orientation systematically lead to an
increase of the viscous dissipation. We also obtain that,
the closer the flagella, the lower the minimum rate of
energy dissipation. As a difference, the worst case from
an energy (minimum) standpoint is when the swimmers
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(a) (b)

(c) (d)

(e) (f)

FIG. 4: Instantaneous velocity and pressure fields (left) and z component of the vorticity (right) for the in-plane beating of
two flagella, with ka = kb = 0.05, R = 1, s = 1 and the following values of the phase differences: ∆φ = 0 (a, b), ∆φ = π/2 (c,
d) and ∆φ = π (e, f).

swim parallel to each other, both being perpendicular to
their separation plane.

For the particular cases β1 = 0 or β1 = π/2, the op-
timal orientation for the second flagellum is given by
β2 = β1. For the other orientations, we observe that
the optimal case is close to β2 ≈ β1 when the flagella
are close to each other, indicating that parallel beating is
always preferable in this case; this is no longer the case
as the flagella get further apart.

D. Simple model: Far field interactions between

two beating spheres

In order to further illustrate the dependency shown in
Fig. 7a, we put forward in this section a simple model
consisting of two beating spheres. Assuming the spheres
to be far from each other, we use the far-field approxi-
mation for hydrodynamic interactions in Stokes flow to
compute the rate of energy dissipation as a function of
the phase difference and orientations of the spheres.

We consider two periodically translating spheres (ra-
dius, R), beating with orientations β1 and β2, and sepa-
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FIG. 5: Top: Dependence of the rate of energy dissipation,
W , on the phase difference between the two flagella, ∆φ, for
different values of the flagellum-flagellum distance a/R, and
kR = 0.01. Bottom: Variation of the ratio of the minimum to
the maximum of the rate of energy dissipation with ka (sym-
bols). The solid line displays Taylor’s waving sheet results
[31].

rated by distance a. The sphere motion is governed by a
sinusoidal motion with the same geometrical parameters
as the one previously defined for our flagella (see Fig. 1).
In cartesian coordinates, the dimensionless velocities on
the spheres are thus given by

US1
= cos (kUt+ φ) (cosβ1ex + sinβ1ey) , (68)

US2
= cos (kUt− φ) (cosβ2ex + sinβ2ey) . (69)

We compute the rate of energy dissipation per unit pe-
riod, WS1

, on the sphere S1; the formula for the sphere S2

is obtained using symmetry by a 1 ↔ 2 permutation on
the indices. In the case of two flagella, we integrate along
the z axis so as to take into account the motion over a
whole period. The equivalent here consists in integrating

π
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!

FIG. 6: Map of the optimal phase difference between the
flagella in the orientation space for kR = 0.01 and different
dimensionless distances a/R. Each solid line splits the figure
into two parts; In the upper part the rate of energy dissipation
is found to be minimum for ∆φ = π and maximum for ∆φ =
0, whereas in the lower part the minimum is obtained for
∆φ = 0 and the maximum for ∆φ = π.

over a period of time T . We therefore have

WS1
=

1

T

∫ T

0

∫

S1

σ ·US1
· (−n) dSdt. (70)

Since the spheres undergo rigid-body motion, we have
∫

S1

σ ·US1
· (−n) dS = −US1

· FS1
, (71)

where FS1
is the force exerted by the fluid on the sphere

S1.
In the far-field limit (R/a ≪ 1), we can approximate

the velocity fields using the first order monopole (Stok-
leslet) expansion [22, 60]

FS1
= F

0
S1

+ F
1
S1

, (72)

F
0
S1

= −6πUS1
, (73)

F
1
S1

= F
0
S2

[

−
3R

2a
dd−

3R

4a
(δ − dd)

]

, (74)

where d is the vector joining S1 to S2, and δ the identity
tensor. To the first order in the beating amplitude the
spheres are immobile so that we have

d =
x2 − x1

|x2 − x1|
= ex, (75)

F
1
S1

= −
3R

2a
F

0
S2

· exex −
3R

4a
F

0
S2

· eyey, (76)

where x1 and x2 are the position of the centers of respec-
tively S1 and S2. The total rate of energy dissipation
between the two spheres is given by

W = −

∫ 1

0

(US1
· FS1

+US2
· FS2

) dt, (77)
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In both figures, we have kR = 0.01

so that

W

6π
=

∫ 1

0

[

|US1
|2 + |US2

|2 −
3R

a
(US1

· ex)(US2
· ex)

−
3R

2a
(US1

· ey)(US2
· ey)

]

dt. (78)

After some algebra we get

W

6π
= 1−

3R

2a
cos 2φ

[

cosβ1 cosβ2 +
1

2
sinβ1 sinβ2

]

.(79)

Equation (79) shows several properties similar to our
flagella results. First, we recover that for β1 = π/2 and
β2 = 0 (or vice-versa), the rate of energy dissipation does
not depend on the phase difference between the spheres.
Second, for fixed orientations, the optimal phase differ-
ence is obtained for ∂W/∂φ = 0 which is achieved for

sin 2φ

[

cosβ1 cosβ2 +
1

2
sinβ1 sinβ2

]

= 0. (80)
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FIG. 8: Flagella orientations pairs leading to the minimum
rate of energy dissipation. The data from Fig. 7a are re-
plotted using the tangent function. We recover an almost
linear relationship, similarly to the case of two spheres in the
far field (Eq. 83). kR = 0.01

The extremum are thus found to be ∆φ = 2φ = 0 and π,
similarly to our results for two flagella. Third, for a given
orientation of S1, the optimal orientation β2 is such that

∂W

∂β2

|β1
= 0, (81)

leading to

2 cosβ1 sinβ
opt
2 = sinβ1 cosβ

opt
2 . (82)

From Eq. (82) we get that the extremum is βopt
2 = β1 in

the particular cases β1 = 0 and β1 =
π

2
, while for any

other value of β1 we obtain an optimal value analytically
as

tanβopt
2 =

1

2
tanβ1. (83)

Inspired by the analytical result of Eq. (83), we re-
plot the data of Fig. 7a using, not the orientation angles
themselves, but the tangent of the angles, and the result
is shown in Fig. 8. Seemingly for all values of the dimen-
sionless distance between the flagella a/R, we obtain a

near linear relationship between tanβopt
2 and tanβ1. For

our value of kR (0.01), the slope of the linear relation is
only a function of a/R. All of the essential physics of the
energetics for synchronized states of a pair of flagella is
thus recovered by this simple problem of two spheres.

IV. THREE BEATING FLAGELLA

Since the Stokes equations are linear, it is straightfor-
ward to extend our reflection method to study a situation
with more than two flagella. We address in this section
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FIG. 9: Two configurations of three beating flagella, with
notations. Top: Aligned case; Bottom: Triangular case. In
both configurations we assume in-plane beating.

the three-flagella case. We first detail the parametriza-
tion of the problem, the implementation of the reflection
method, and its validation. We then present examples
of the flow field and of the rate of energy dissipation for
two configurations.

A. Procedure and numerical validation

We use the same parametrization as the one used in
the two flagella case and designate our three cylinders by
C1, C2, and C3. The flagella are deformed by a sinusoidal
wave, similarly to §II. We assume for simplicity that all
three flagella beat in the same direction with β1 = β2 =
β3 = 0, and we take kR = 0.01.

Since we have a third flagellum, we now have to take
into account two relative phase differences, namely the
difference between C1 and C2, and the difference between
C1 and C3. To do so, we impose without loss of generality
φ1 = 0 and take independently (φ2, φ3) in [0, π]

2
. The

boundary conditions are the same as the ones previously
derived provided that we use the adequate parameters
and indices for each cylinder. We propose here to study
two specific configurations, one where all three flagella
are aligned, and one where they are located at the edge
of an equilateral triangle, as shown in Fig. 9.

We implement the reflection method iteratively as fol-
lows. We start by summing up all the reflection terms
defined from C1 that have not yet been matched, and
compute the associated reflections on the other two flag-
ella. We then repeat for the flagella C2 and C3, and iter-
ate until additional iterations only improves the match-
ing of each boundary conditions by less then 1%. Our
method essentially involves thus an iterative calculation
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FIG. 10: Numerical validation of the reflection method in the
case of three aligned flagella for a12/R = 5, a23/R = 104,
and kR = 0.01; (a): Pressure distribution around each cylin-
der; (b): Rate of viscous dissipation. Numerical results using
the three-flagella reflection method are shown using symbols,
while the expected results are shown using lines.

of two-flagella interactions for each of the three flagella
pairs.
After matching the boundary conditions on our flag-

ella, we choose the aligned case to validate the method
and its implementation. We put C1 and C2 at a dis-
tance a12/R = 5 from each other, and C3 to a distance
a23/R = 104 from C2. We then check that we recover
both our former two-flagella results for the pressure and
rate of energy dissipation on C1 and C2, and Taylor’s
results for individual swimmer on C3. This validation is
shown in Fig. 10.

B. Aligned and triangular configurations

We present here examples of the flow field and rate of
energy dissipation for the two particular configurations
depicted in Fig. 9. The first configuration corresponds to
the case were the three flagella beat in the same plane,
each at a dimensionless distance a/R = 5 from their near-
est neighbor, and the second one to the case where the
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(a)
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(e)(b)
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FIG. 11: Instantaneous velocity and pressure fields for the in-plane beating of three aligned flagella (left) and triangular
configuration (right). The relative phase differences are (a, d): φ2 = φ3 = 0; (b, e): φ2 = π, φ3 = 0; (c, f): φ2 = π/4, φ3 = π/2,
and the plots are displayed for s = 0, and kR = 0.01.

three flagella form an equilateral triangular configuration
of dimensionless edge length a/R = 5. Instantaneous
snapshots of the velocity and pressure fields are shown
in Fig. 11 (left, aligned configuration; right, triangular
case).

The variation of the rate of viscous dissipation with
the two relative phase differences is displayed in Fig. 12
for these two configurations. In both cases, the mini-
mum is still obtained for in-phase beating of all three
flagella. Aligned in-phase swimming is found to be more
efficient then triangular swimming. In the aligned con-
figuration, the dissipated energy is found to be maximum
for φ2 = π, φ3 = 0, whereas for the triangular configura-
tion the maximum is obtained for φ2 = 0, φ3 = π. Our

numerical results for the minimum energy are summa-
rized in Table I, where we also compare the relative re-
duction of minimum dissipated energy compared to the
individual swimming case in order to quantify the effi-
ciency of collective swimming. This is quantified by the
dimensionless difference between the rate of work of n
individual flagella, nW1, and that of a n-flagella con-
figuration, Wn. The dimensionless reduction of work is
observed to be larger for three flagella than two, indicat-
ing an increased efficiency of collective beating with the
number of flagella.
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for different values of φ2. (a): Aligned configuration. (b):
Triangular configuration.

V. CONCLUSION

The flow field and energetics induced by the small-
amplitude beating of two or three infinite flagella of cylin-
drical cross section was studied using a semi-analytical
method based on the method of reflections. In the case of
two flagella, we first extended Taylor’s work [31] to three
dimensions and showed that the rate of energy dissipa-
tion is still minimum for in-phase beating and maximum
for out-of-phase beating when the flagella are beating in
the same plane as the one defined by their axis. The
dependence of the ratio between the minimum and the
maximum rate of energy dissipation with the distance
between the flagella was found to be qualitatively similar
to the one computed by Taylor in his two-dimensional
model [31], and the larger energetic gain is obtained for
in-phase beating of nearby flagella.

When allowing the flagellar filaments to beat in any
direction, we found that the minimum energy dissipation
rate occurs either for in-phase or opposite-phase beating,
depending on the beating orientations, β1 and β2, and
the distance between the flagella. We then characterized
the optimal orientation pairs by searching, for each value
of β1, the β2 minimizing the energy dissipation rate over
all possible phase differences.

For the particular cases β1 = 0 or π/2, the minimum
is reached for β2 = β1. For an orthogonal conformation,
the rate of energy dissipation was observed to be indepen-
dent of the phase difference between the two flagella. For
all other cases, the variation of the optimal orientation
pairs follows a law of the form tanβ2 = A tanβ1 where A
is a constant that depends on the distance between the
flagella and which tends to one when the flagella are lo-
cated near one another (so that the optimal orientations
beating in close proximity are the parallel ones). The
overall lowest rate of energy dissipation is obtained for
in-plane in-phase beating.

We then illustrated our flagella results using a simple
model of two beating spheres interacting hydrodynami-
cally in the far field. The dissipation rate, which, with
this model, can be computed analytically, gives essen-
tially the same results as the ones obtained for the beat-
ing flagella, thereby providing us with a simple physical
model for three-dimensional flagella beating.

Exploiting the linearity of the Stokes equations, we
then used an extension of our method to address the
case of three beating flagella, in two configurations: one
aligned, and one where the flagella are located at the
edges of a triangle. Here again the beating modes leading
to the minimum rate of energy dissipation were obtained
to be in-phase waving motion for all three flagella. In ad-
dition, a comparison between the beating of one, two and
three flagella showed an increased efficiency of collective
beating with the number of nearby filaments.

As was observed experimentally, swimming spermato-
zoa have a tendency to form bundle, their beating fila-
ments synchronizing with the beating of their neighbors,
resulting in an increased efficiency of swimming com-
pared to individual cells [36–38]. Our results, in line
with Taylor’s seminal work in two dimensions, suggest
that from an hydrodynamic point of view, it is more ener-
getically efficient for spermatozoa with three-dimensional
flagella to swim close to each other and with synchronized
in-phase beating.

The major modeling assumptions in our paper were
the restriction to the small-amplitude beating of infinite
filaments. Our group recently devised a method to ex-
tend Taylor’s small-amplitude perturbation expansion to
large wave amplitudes, and this method could in theory
be applicable here [61]. Computationally, large ampli-
tude waves on sheets were addressed in Ref. [52], with
results very similar to Taylor’s, and therefore our results
will probably remain valid in the large-amplitude limit.
The case of finite swimmers was addressed in Ref. [53]
which computed the synchronization dynamics for two-
dimensional sheet-like swimmers displaying about one
and a half wavelengths (compared to Taylor’s infinite
wave geometry). Here again, the rate of working by the
swimmers is minimum for in-phase swimming, and end
effects do not change Taylor’s results qualitatively pro-
vided the swimmers are parallel to each other.

In regards to biological modeling, the logical next step
in our approach would consist, instead of prescribing the
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shapes of the flagellar waves, in specifying the internal
molecular forcing at the level of the axoneme [62, 63],
and then computing the resulting flagellar shapes and
dynamics. A preliminary two-dimensional model shows
that flow-induced deformations will always dynamically
lead to a synchronized in-phase conformation of two flex-
ible internally-forced sheets [56]. The extension of these
results to three dimensions would provide further model-
ing insight in the collective dynamics of flagellated cells.
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Individual 2 flagella 3 flagella, aligned 3 flagella, triangle

Wn W1 = 90.257 W2 = 102.29 W3 = 112.562 W3 = 114.994

(nW1 −Wn)/nW1 43.3% 58.4% 57.5%

TABLE I: Relative variation of the minimum rate of energy dissipation; n corresponds to the number of flagella considered,
and Wj (with j = 1, n) the rate of work for j filaments.


