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Effect of viscoelasticity on the collective behavior of swimming microorganisms
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Hydrodynamic interactions of swimming microorganisms can lead to coordinated behaviors of
large groups. Using a mean-field theory and the Oldroyd-B constitutive equation, we show how
linear viscoelasticity of the suspending fluid alters the hydrodynamic interactions and therefore the
ability of the group to coordinate. We quantify the ability to coordinate by the initial growth rate
of a small disturbance from the uniform isotropic state. For small wavenumbers the response is
qualitatively similar to a Newtonian fluid but the Deborah number affects an effective viscosity of
the suspension. At higher wavenumber, the response of the fluid to small amplitude oscillatory shear
flow leads to a maximal growth rate at a particular wavelength unlike the Newtonian result.

PACS numbers: 87.17.Jj, 47.15.G-, 83.60.Wc

In this Letter, we consider the collective behavior of a
large group of swimming microorganisms. There is a long
history of studying how microorganisms move through
fluids including non-Newtonian fluids. Mucus is an im-
portant coating on surfaces, often as a barrier to infec-
tion [1–3]. Infections of H. pylori in the intestines occur
when the bacterium is able to move through the mucus
and not be flushed [4–6]. H. pylori are able to change the
rheological properties of the mucus by changing the local
pH [7]. The properties of saliva are also known to play a
role in the process of biofilm formation on teeth [8].

Most models have shown that the presence of viscoelas-
ticity usually reduces the swimming speed [9–14]. How-
ever, the swimming speed of some bacteria varies with
viscosity and viscoelasticity [15–19]. It is particularly in-
teresting that swimming speed is not a monotonic func-
tion of viscosity. For a large class of organisms, as the
viscosity increases, the swimming speed first increases,
reaches a maximum, then decreases [20, 21]. It has been
speculated that this results from the non-Newtonian na-
ture of the polymer solutions used. Although the influ-
ence of viscosity and viscoelasticity on a single organism
is not completely understood, the focus of this Letter is
the collective behavior of large groups.

As an organism swims through a fluid, it causes a long-
ranged disturbance that moves and rotates the other or-
ganisms. This hydrodynamic interaction (HI) plays an
important role in the collective behavior of the group.
Previous results in a Newtonian solvent have shown that
hydrodynamic interactions lead to long-ranged orienta-
tional correlations between organisms and coordination
in communities of bacteria [22–31]. Using a linear sta-
bility analysis of a mean-field theory, it has been shown
that the uniform isotropic state is stable if the organisms
pull themselves forward (pullers) while it is unstable if
they push themselves forward (pushers).

To understand how a non-Newtonian fluid can alter the
stability (or instability) of the uniform isotropic state, we
will couple the dynamics of the swimming microorgan-
isms with a non-Newtonian constitutive equation. We

have chosen the Oldroyd-B constitutive equation, which
consists of a Newtonian solvent with viscosity ηs and
a polymer stress which satisfies a single mode upper-
convected Maxwell model [32]. The two parameters in
the Maxwell model are the polymer contribution to the
viscosity ηp and the relaxation time λ. This model has
been used previously to understand single organisms in
biofluids [12]. It represents the generic changes to the
linear stability due to viscoelasticity, and therefore the
long-ranged correlations of the group. Note that in the
linear stability analysis, the nonlinear terms of the con-
stitutive model do not contribute.
Our model consists of Ψ(x,n, t), the probability den-

sity of an organism with position x and unit vector ori-
entation n at time t, which satisfies the equation

∂Ψ

∂t
= −∇x · (ẋΨ)−∇n · (ṅΨ), (1)

where ẋ is the effective velocity of the organism and ṅ

is the effective angular velocity. We model the effective
velocity as the isolated swimming speed vis in the di-
rection of its orientation plus the fluid velocity u plus a
contribution to model diffusion of the center of mass

ẋ = visn+ u−D∇x(lnΨ), (2)

whereD is the translational diffusivity. As a model of the
effective angular velocity we will use Jeffery’s equation for
the rotation of a rigid ellipsoid in a linear flow to write

ṅ = (δ − nn) · [(γΓ + Ω) · n−Dr∇n(lnΨ)] , (3)

where Dr is the rotational diffusivity, Γ = (∇u+∇u†)/2
is the rate of strain tensor, Ω = (∇u − ∇u†)/2 is the
vorticity tensor, and γ = (A2 − 1)/(A2 + 1) where A
is the aspect ratio of the ellipsoid. Most bacteria with
long flagellar bundles have a large enough aspect ratio
including the body and bundle such that γ is near one.
The fluid velocity u is generated by the motion of the

other organisms. At low Reynolds number conservation
of mass and momentum in the fluid give ∇x · u = 0 and

−ηs∇
2
x
u+∇xq +∇x · τp = ∇x ·Σ, (4)
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where q is the pressure,Σ is the stress from the organisms
pushing on the fluid and τp is the stress due to the “poly-
mers” which give rise to the non-Newtonian behavior of
the fluid. In the mean-field approximation, the stress
Σ is the orientational average over the other organisms
using the distribution Ψ in a self-consistent model

Σ = dN

∫

S

Ψ

(

nn−
1

3
δ

)

dn, (5)

where S is the surface of a unit sphere, d is the dipole
moment exerted by a swimmer, and N is the number of
organisms in the domain of volume V . In this mean-field
approximation, the stress Σ accounts for the HI between
organisms which leads to the instability and collective
behavior. We assume that d is constant and not affected
by the flow due to the other organisms. The stress τp is
assumed to follow the upper-convected Maxwell model
τp + λτ̂p = −2ηpΓ, where τ̂p is the upper convected
derivative τ̂p = ∂τp/∂t+ u · ∇τp − (∇u† · τp + τp · ∇u).
Equations 1 to 5 form a closed system, for which the
uniform isotropic state is a steady state solution. Other
than the inclusion of the polymer stress, this system is
the same as that used by previous researchers [27, 29–
31]. Using our knowledge of the Newtonian problem,
we non-dimensionalize the system using a characteristic
time scale tc = ηs/(|d|c), where we have used the ab-
solute value of the dipole moment d and the concentra-
tion c = N/V . This time scale represents the charac-
teristic time needed for HI between organisms to rotate
the orientation of an organism. We choose a characteris-
tic length scale lc = vistc and characteristic stress scale
ηs/tc = |d|c. We will also rescale Ψ such that the uni-
form isotropic state corresponds to Ψ = 1/(4π). Unless
otherwise stated, for the remainder of the Letter, we will
use dimensionless variables with these scales.
We will neglect both translational diffusion and ro-

tational diffusion for simplicity. It is known for New-
tonian fluids that translational diffusion stabilizes high
wavenumber perturbations but does not affect the sta-
bility of low wavenumber perturbations. Rotational dif-
fusion is known to stabilize all perturbations. We expect
both to be true for non-Newtonian fluids. In our linear
stability analysis, primed variables represent the devia-
tion of the variable from the steady state solution.
To leading order, the primed variables satisfy

∂Ψ′

∂t
= −n · ∇xΨ

′ + 3γnn : Γ′, (6)

∇x · u′ = 0, (7)

−∇2
x
u
′ +∇xq

′ +∇x · τ ′
p = ∇x ·Σ′, (8)

Σ
′ =

p

4π

∫

S

Ψ′

(

nn−
1

3
δ

)

dn, (9)
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FIG. 1: Dispersion relation for pushers showing the real part
of σ (a) and the imaginary part of σ (b) versus wavenumber
k. The dimensionless parameters in the constitutive equation
are H = 2 and De = 1.

τ
′
p + 5De

∂τ ′
p

∂t
= −2HΓ′, (10)

where p denotes the sign of the dipole moment (p = −1
for pushers and p = 1 for pullers), the ratio of the poly-
mer viscosity to the solvent viscosity is H = ηp/ηs, and
the Deborah number is De = λ|d|c/(5ηs). We can solve
these equations by postulating a plane wave solution with
dependence exp(ık ·x+σt) and determine the dispersion
relation for σ. The dispersion relation is the solution to

3ıpγ

4k
(

1 + H
1+5Deσ

)

[

2a3 −
4

3
a+ (a4 − a2)ln

(

a− 1

a+ 1

)]

= 1

(11)
where a = −ıσ/k.
Figure 1 shows the dispersion relation for a suspen-

sion of pushers (p = −1) with γ = 1 for a weakly non-
Newtonian fluid for which H = 2 and De = 1. The
result is qualitatively similar to a Newtonian fluid. For
k < k0, σ is real with three possible values, one posi-
tive value that approaches a finite value as k → 0, one
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FIG. 2: (Color online) Contour plot and level curves of the
positive σ for pushers as k → 0 from equation 12 when γ = 1.

positive value that approaches zero as k → 0, and one
negative value that approaches a finite value as k → 0
(not shown). The negative value does not occur in the
Newtonian case and results from a stable decay of the
polymer stress with time because of the relaxation time.
The limit De → 0 is a singular limit in which this neg-
ative root scales as De−1. By expanding as a → ∞ we
find that as k → 0 the finite values of σ solve

De =
H

−pγ − 5σ
−

1

5σ
. (12)

Although this expression can be solved easily for both σ
roots, the form of equation 12 illustrates a key feature;
the level curves of σ are straight lines.
Figure 2 shows level curves for the positive root for

pushers with γ = 1. The values of H and De can vary
widely for biofluids. For saliva, H ranges from near zero
to ∼ 10 [33, 34]. De is proportional to λ and c. The re-
laxation time typically lies between 5ms and 1s, though
has been reported as high as 76s. Relevant concentra-
tions to expect possible collective behavior are from 109

to 1011 cells/mL. Using 1s as the maximum relaxation
time and the dipole moment for E. coli (∼ 2× 10−18J),
De can range from near zero to ∼ 40. For gastric mucus,
the properties depend strongly on pH. Near neutral pH,
it is fit well using H = 32 and λ = 50ms [7]. Therefore
De can range from near zero to ∼ 2. At low pH, gastric
mucus forms a gel with much higher viscosity and relax-
ation time. H can be in the thousands and De in the
hundreds, though gels are typically not modeled using
the Oldroyd-B constitutive equation.
In the limit H → 0, the level curves approach σ = 1/5

which is the Newtonian result. This corresponds to a
dimensional growth rate of |d|c/(5ηs). When De = 0, we
obtain σ = 1/(5(1+H)). In this limit, the polymer is able
to relax fully during the growth process and therefore the
fluid acts as an effective Newtonian fluid with viscosity
ηs + ηp. Since the growth rate for a Newtonian fluid is
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FIG. 3: (Color online) Scaled dispersion relation for pushers
for γ = 1 and H = 40. The curves represent De = 0 (solid
black), De = 14 (solid orange (gray)), De = 20 (dashed blue),
De = 30 (dot-dashed red), De = 50 (dotted magenta), and
De = 100 (solid green (lighter gray)). The scaling collapses
the curves for De = 0 and De = ∞.

inversely proportional to the viscosity, the growth rate is
scaled down by a factor 1 +H . Finally, for any non-zero
value of H , as the Deborah number is increased from
zero, the polymer cannot relax fully during the growth
process and contributes less to the instability. Therefore,
for any finite H as De → ∞ the value of σ approaches
the Newtonian solvent result.

We can better understand the behavior near small k by
calculating the small k expansion for each branch. Us-
ing these expansions, we find that if we scale σ by σ0

(the positive root as k → 0) we can almost collapse the
data by also scaling k by σ0. Figure 3 plots the scaled
dispersion relation. The scaling collapses the curves ex-
actly when De = 0 and De = ∞. For intermediate De,
the curves do not collapse exactly but retain the same
qualitative structure for k < k0.

This qualitative collapse for k < k0 in Figure 3 suggests
that the dominant change in this region is a rescaling by
an effective viscosity that depends on De and H . In the
limit De → ∞, the polymer does not have time to relax
during the growth process and therefore has no impact
on the growth rate of the unstable mode. When De → 0
the polymer fully relaxes and therefore acts as an effec-
tive Newtonian fluid with a new viscosity. Therefore the
growth rate is scaled down by a factor of 1 + H and is
shifted to smaller k by a factor of 1 +H .

At intermediate De, the dispersion relation for k0 <
k < k1 is qualitatively different for a non-Newtonian fluid
than for a Newtonian fluid. At large enough H and in-
termediate De the growth rate exhibits a maximum at a
particular k. This is in sharp contrast to the Newtonian
result in which the largest growth rate occurs for k → 0
and is thought to lead to large scale coordination in sus-
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pensions of microorganisms. This peak occurs because of
the competition of two effects. As k increases towards k1
for a Newtonian fluid, the real part of σ decreases as the
imaginary part of σ increases. However, as k increases,
the flow becomes dominated by oscillations (similar to
small amplitude oscillatory shear (SAOS)) and the fre-
quency of oscillation increases as k increases. As the fre-
quency increases, the effective viscosity η′(ω) decreases,
leading to an increase in the growth rate. The competi-
tion of these two phenomena leads to a peak.
This peak occurs for “large” H and intermediate De.

H must be large enough that the low and high frequency
values of η′ differ significantly. The constitutive equa-
tion considered here does not “shear-thin” in steady shear
flow, and any shear-thinning would not alter the results
of the linear stability analysis. However, in the region
k0 < k < k1 the relevant viscosity is η′ which does de-
crease with increasing frequency. Even for large enough
H , the peak does not occur for all De since for De → ∞
the polymer does not contribute to the dynamics and for
De → 0 the polymer acts as a Newtonian fluid. The
scale of De for which the peak does occur is approxi-
mately De ∝ H for large H . A predictive theory of the
peak height and k at the peak is left for future work.
For Fig. 3 using De = 30 and σ0 from equation 12,

the value of k at the peak corresponds to a length scale
approximately equal to 20lc. The value of lc is inversely
proportional to cell concentration. Using parameters for
E. coli and c ranging from 109 to 1011 cells/mL gives a
range of the lengthscale associated with the peak from
3µm to 300µm. This lengthscale is larger than the typi-
cal separation between organisms, which represents large-
scale collective behavior, although we expect these num-
bers would be altered slightly by fluctuations not in the
mean-field assumption and nonlinear effects.
In conclusion, we have used a mean-field theory and

viscoelastic constitutive equation to better understand
how a non-Newtonian fluid alters the hydrodynamic in-
teractions of swimming organisms and therefore their
ability to form large scale structures. This naturally leads
to the question of whether one role of non-Newtonian bi-
ological fluid barriers is to interrupt the HI of microor-
ganisms. It also leads to the possibility that microor-
ganisms could alter the properties of those barriers to
enhance their ability to interact using HI. We hope this
work helps in efforts to start addressing these questions.
We gratefully acknowledge support from NSF Grant
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