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We investigate the aggregation kinetics of a simulated telechelic polymer gel. In the hybrid
Molecular Dynamics (MD) / Monte Carlo (MC) algorithm, aggregates of associating end groups
form and break according to MC rules, while the position of the polymers in space is dictated by
MD. As a result, the aggregate sizes change every time step. In order to describe this aggregation
process, we employ master equations. They define changes in the number of aggregates of a certain
size in terms of reaction rates. These reaction rates indicate the likelihood that two aggregates
combine to form a large one, or that a large aggregate splits into two smaller parts. The reaction
rates are obtained from the simulations for a range of temperatures.

Our results indicate that the rates are not only temperature dependent, but also a function of the
sizes of the aggregates involved in the reaction. Using the measured rates, solutions to the master
equations are shown to be stable and in agreement with the aggregate size distribution, as obtained
directly from simulation data. Furthermore, we show how temperature induced variations in these
rates give rise to the observed changes in the aggregate distribution that characterizes the sol-gel
transition.

PACS numbers: 61.41.+e, 82.35.-x, 83.80.Kn, 87.15.nr

I. INTRODUCTION

Applications of polymer gels range from traditional
thickeners for paint [1] to novel precision gels for med-
ical applications [2]. In all cases, their ability to form
reversible cross-links plays a crucial role since it allows
the system to remodel the internal structure under the
application of external stresses. Often these gels con-
sist of triblock copolymers, containing a long hydrophilic
spacer and short hydrophobic end groups [2–5]. In an
aqueous solution, these end groups aggregate. At high
enough concentrations, aggregates form junction points
in a gel network. At lower concentrations, the hydropho-
bic groups still aggregate, but separate micelles form.
The sol-gel transition characterizes the cross-over from
fluid like to solid like behavior. Besides concentration
changes both lowering the temperature or the application
of external stress can also induce such a cross-over. A
unique feature of the material is that the junction points
are not permanent, instead the aggregate size - as well as
its location - changes over time.

Understanding the structure of the gel network as well
as its dynamics due to formation and breakup of aggre-
gating end blocks is crucial to the development of optimal
designed materials. To this end, we have constructed
a computer simulation of a toy system of associating
telechelic polymers, in which end groups can form ag-
gregates. Each polymer chain, 8 units in length, is mod-
eled as a bead-spring chain molecule [6]. By means of a
Monte Carlo step, we allow a chain end group to bind
chemically with another end and hence form reversible
junctions. Aggregates contain end groups that are con-
nected to each other by these junctions. Their size varies
and is set by many factors, such as the diffusion rate, the
temperature of the system, and steric constraints due to

the connection of each end group to a chain molecule.
In previous work, we have calculated the aggregate size
distribution for a range of temperatures [7] and charac-
terized the sol-gel transition. Moreover, we studied the
network topology in detail using graph theoretical con-
cepts [8]. In this work, we report on the kinetics of the
aggregation process and analyze the results in terms of
the reaction rates in the master equations.

Several other groups have studied the sol-gel transition
by means of computer simulations. However, as far as we
are aware, all of them have concentrated on the changes
in structural properties instead of the kinetics underly-
ing the reversible aggregation processes. For instance
Bedrov et. al. [9] performed simulations in which chain
end groups were given a greater affinity to each other
than to all other groups. They find similar aggregate
size distributions as in our work, however since there are
no specific interactions that bind end groups together,
reaction rates cannot be determined in this model. The
same is true for a recent study by Pandmanabhan et. al.

in which they investigate semi flexible polymer gels [10].

This paper is organized as follows. In section II, we
give the background of the simulation model, which is
followed by a discussion of the master equations and re-
action rates in section III. In section IV, we report on
the measured rates and show that they are consistent
with the aggregate distributions. Section V discusses
how changes with temperature in the reaction rates are
related to those in the overall dynamics of the systems
that characterize the sol-gel transition. This is followed
by a conclusion in section VI.
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II. SIMULATION

We employ a hybrid molecular dynamic (MD) / Monte
Carlo (MC) simulation of telechelic polymers. The simu-
lation uses a course-grained model introduced by Kremer
and Grest [6]. Polymers are modeled as a string of beads.
Beads interact with each other through a Lennard-Jones
(LJ) potential
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for r < rc and zero otherwise. To speed up the calcula-
tions the cut-off distance was taken to be rc = 21/6 and
hence only the repulsive component of the potential is
contributing. Beads connected by the chain structure are
bonded through an anharmonic finitely extensible nonlin-
ear elastic (FENE) potential
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for rij < R0 and infinite otherwise. The parameters used
were R0 = 1.5σ and κ = 30εσ−2. It has been observed
within the simulations [7] that the average length of a
FENE bond is 0.97σ and that the chains cannot cross
through each other. The positions of the beads are up-
dated in MD simulations by integrating the equations of
motion using a 5th-order Gear predictor-corrector algo-
rithm with a time step of 0.005τ . Length, energy, and
time are expressed in terms of the parameters (σ, ε, τ) of
the LJ potential.
The simulation system is comprised of 1000 telechelic

polymer chains, each chain being eight beads in length.
The simulation cell has dimensions 24×21×27 and hence
the density is far below that at which the system turns
glassy due to caging effects [7]. Periodic boundary condi-
tions are employed in the first two directions, while solid
surfaces confine the simulation in the third direction. The
beads at the chain ends are functionalized linkers and can
form reversible junctions with multiple other end groups.
Formation and breaking of junctions takes place through
MC moves [11]. Junctions are modeled by a FENE po-
tential with the same parameters as described earlier,
to which a constant negative constant Uassoc is added.
Every 0.1τ , an attempt is made to form and break junc-
tions between all end groups. For the probability of a
formation success a Metropolis algorithm is used which
depends upon a Boltzmann factor exp(−∆U/kT ), where
∆U = UFENE + Uassoc is the energy difference between
the old and the potentially new state. The magnitude of
Uassoc affects the overall dynamics within the simulation
and hence the temperature at which gelation occurs. As
in previous work [7], we choose Uassoc = −22, which im-
plies that the micelle transition temperature is Tm = 0.5.
Note that this algorithm employs a simplification of ne-
glecting the energy barrier EB, between the bonded and
the unbonded states, that is present in an experimental

system. It assumes a two-state system in which chain
ends are either bound or unbound. As has been pointed
out by Hoy et. al. [12], the effect of EB would have been
to slow down the rate of formation and breakage of in-
dividual junctions by a factor exp(−EB/kT ). However
the equilibrium constant, defined as the ratio of these
rates, is independent of barrier height. Hence equilib-
rium properties such as aggregate size distributions are
not influenced by our simplification. It should be kept in
mind that all rates at which aggregates form or break,
reported later in this paper, are dependent on the cho-
sen form of the interaction potential between the chain
end groups (a simple FENE bond to which a constant
negative association energy is added). They are also de-
pendent on the fact that we attempt to break and from
junctions every 0.1τ . In this study we take these set-
tings as given and aim to relate the structural changes
observed when cooling the system to measured changes in
formation and breaking rates. Since most of our results
depend only on the values of the ratio of rates and hence
are independent of the barrier, we believe this study to
be relevant to experimental systems as well.

Finally we emphasize, that in our model there is no
limitation to the number of junctions that an end group
can form, hence detailed balance is observed within our
work. Hoy et. al. [12] adapted the model to perform a
study involving only binary interactions, and therefore in
that case strict detailed balance was lost.

The simulation is analyzed through a range of temper-
atures by thermally cooling from an initially high tem-
perature. The temperature is controlled by coupling the
simulation cell to a heat bath according to the fluctua-
tion dissipation theorem as described by Kremer et. al.

[6]. At each desired temperature, the system is allowed
to equilibrate for at least 5000τ prior to acquiring data.
The spatial locations of each bead within the system,
along with end group junction data is then gathered for
a number of time steps necessary achieve statistically
consistent results. Data at lower temperatures are ob-
tained starting from a well-equilibrated configuration at
T = 1.5. At this temperature, the system is first run with
Uassoc = 0, so no junctions form. Given that each chain
is only eight beads long, equilibrium is reached quickly.
Junctions between chain ends are then introduced and
the system is equilibrated until the number of junctions
and the size distribution of the clusters of end groups
fluctuates around its equilibrium value. The system is
then slowly cooled at a rate of 2.500τ per ∆T = −0.1,
in order to reach the desired temperatures. Data ob-
tained by cooling the system from different initial states
at T = 1.5 are observed to be identical within statistical
fluctuations.

At the temperatures considered in this study the sys-
tem is quite mobile. For instance the diffusion rate of
aggregates equals 3× 10−4 1/τ at T = 0.45 and approx-
imately 10−2 1/τ at T = 1.0. A single junction has an
average lifetime of approximately 103τ at T = 0.45. The
reported data have been obtained from runs that are at



3

least ten times the inverse diffusion rate of the system;
hence the system samples many different configurations
during this computer experiment.
The aggregate size distribution is displayed in Fig 1. pk

is the probability of finding an end group in an aggregate
of size k, where an aggregate contains only end groups
that are connected to each other through the reversible
junctions. It is calculated as:

pk =
Nk

∑

k Nk
=

Nk

Ntot
, (3)

where Nk is the average number of aggregates of size
k and is obtained from the simulation data. Ntot, the
average total number of aggregates, depends on the tem-
perature.
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FIG. 1. (Color online) The time averaged aggregate prob-
ability distribution pk of the polymer system for a range of
temperatures.

At high temperatures pk decreases monotonically with
increasing cluster size. However, at T = 0.6 a shoul-
der has formed, which develops in a pronounced peak
at lower temperatures. The temperature at which the
shoulder first forms (approximately T = 0.61) is called
the onset temperature [7, 9, 14]. At this temperature
the properties of the system first start to deviate from
those of an ordinary liquid. For instance, we have shown
in previous work [7] that below this temperature the de-
pendence of the relaxation time on temperature is not
any longer Arrhenius. When cooled even further the sys-
tem undergoes a micelle transition. The total number of
junctions between end beads Φ grows sharply and as a
result a finite preferred aggregate size exists below the
micelle transition. At this point, the distribution pk ex-
hibits a distinct peak. The micelle transition tempera-
ture is defined as the point at which ∂2Φ/∂T 2 = 0 [15].
The specific heat peaks as well. For the system at hand,
we have calculated [7] that the micelle transition tem-
perature Tm = 0.51. The micelle transition is an equi-
librium transition in the systems structural properties.
In addition at the gel transition the system becomes dy-
namically arrested due to the long times that the end

groups reside within specific aggregates. This nonequi-
librium transition in the dynamics of the system occurs
in our simulations at T = 0.4.
In this paper, we will investigate by how far these tran-

sitions in the properties of a gel forming system can be
explained by the reaction rates at which aggregates of
end groups combine and break up.

III. KINETIC MODEL

Reversible aggregation processes can be described as
two competing effects: particle aggregation and cluster
fragmentation. The traditional starting point [16] for
treating aggregation is a set of equations that describe
how the sizes of the aggregated clusters change over time,
called the master equations. These equations contain the
rates at which aggregates form and break apart. In our
simulations, an aggregate forms when two smaller ag-
gregates closely approach each other and a new junction
between chain end groups connects them. It breaks apart
when all the junctions between two subunits of an aggre-
gate disconnect.
As an example of this process, we refer to a cartoon

describing the breaking of an aggregate. At the center
of Fig. 2A six end groups, shown as red beads (dark
gray) are joined through multiple junctions. These end
groups comprise an aggregate of size six. During the
Monte Carlo step within the simulation, the two green
junctions are broken, resulting in two aggregates of size
three (Fig. 2B). The number of junctions broken, along
with their distribution within the aggregate are deter-
mined according to the rules of the Metropolis algorithm.
Note that aggregation within the system is a reversible
process, therefore the time reverse reaction will also oc-
cur.

FIG. 2. (Color online) A 2D cartoon illustrating the break-
ing of an aggregate of size six (A) into two aggregates of size
three (B). Note all simulations are preformed in 3D.

If we denote an aggregate of size k by (k), a change
in the size of this aggregate can occur by the following
reactions

(ℓ) + (k − ℓ)
qf (k,ℓ)
−−−−⇀↽−−−−
qb(k,ℓ)

(k), (4)

(k + ℓ)
qb(k+ℓ,ℓ)
−−−−−−⇀↽−−−−−−
qf (k+ℓ,ℓ)

(k) + (ℓ). (5)
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In Eq. 4, qf (k, ℓ) is defined as the rate that a given
aggregate of size ℓ combines with one of size k − ℓ to
form an aggregate of size k within a time τ . Similarly for
the reverse reaction, qb(k, ℓ) is defined as the rate that an
aggregate of size k breaks into an aggregate of size ℓ and
one of size k− ℓ. Of course an aggregate of size k is also
formed when an aggregate of size k + ℓ breaks into one
of size k and one of size ℓ. The reverse reaction destroys
an aggregate of size k. Eq. 5 describes the latter two
events.
The master equations describing the aggregation

model can be written as

dNk

dt
=

k−1
∑

ℓ=1

qf (k, ℓ)NℓNk−ℓ −

k−1
∑

ℓ=1

qb(k, ℓ)Nk

+

∞
∑

ℓ=1

qb(k + ℓ, ℓ)Nk+ℓ −

∞
∑

ℓ=1

qf (k + ℓ, ℓ)NkNℓ. (6)

Here, Nk is the number of aggregates of size k. The mas-
ter equations represent a system of coupled differential
equations. The model is finite since there are only 2000
end groups in the simulated system. Due to steric effects
the maximum observed aggregate size is even smaller.
We never observed aggregates that contained more than
approximately 60 end groups.

IV. RESULTS

A. Rates of Reactions

The rates, at which the reactions according to Eq. 4
and Eq. 5 occur, are determined directly from the MD
simulations. This is achieved by tracking the frequency
of size specific reactions in both (k) and (ℓ). For in-
stance, a formation occurrence Of (k, ℓ) is defined as an
event leading to an incremental change in the number of
aggregates of size k in a period of time 0.1τ , caused by
the combination of an aggregate of size ℓ and k− ℓ. The
time averaged reaction rates are then determined as the
ratio of Of (k, ℓ) to the number of aggregates which can
produce (k). Hence, qf (k, ℓ) is determined such that,

qf (k, ℓ) =
Of (k, ℓ)

NℓNk−ℓ
. (7)

The breaking rate qb(k, ℓ) is determined using a similar
procedure.
Fig. 3 A, B, and C display color plots of the formation

rates qf (k, ℓ) at T = 0.45 (A), T = 0.55 (B), and T = 1.0
(C). Rates shown in red (dark gray) are most reactive,
where as white is the least reactive. The breaking rates
qb(k, ℓ) are shown in (D), (E), and (F) for these tempera-
tures respectively. Within the determination of the rates,
it is assumed that (k) is always greater than (ℓ). It is ob-
served that the reaction rates of the polymer system are
not only temperature dependent, but are also a function
of the size of aggregates involved in the reaction.

The equilibrium constant, defined to be the ratio of
the reaction rates Q(k, ℓ) = qf (k, ℓ)/qb(k, ℓ), is related
to the Gibbs free energy of the system and is shown at
T = 0.45 (G), T = 0.55 (H), and T = 1.0 (I). Regions
of large magnitude Q(k, ℓ) mark (k) and (ℓ) values, in
which reactions are more favorable to occur.

FIG. 3. (Color online) Average formation reaction rates
qf (k, ℓ) at a temperature of T = 0.45 (A), T = 0.55 (B), and
T = 1.0 (C). The average breaking rates qb(k, ℓ) are contained
in (D), (E), and (F) respectively for each of the same temper-
atures. The equilibrium constant Q(k, ℓ) = qf (k, ℓ)/qb(k, ℓ)
are displayed in (G), (H) and (I). Red (dark gray) colored
pixels indicate the most reactive (k) and (ℓ), while white pix-
els are the least reactive. Here, (ℓ) is assumed never to be
greater than (k). Average rates have been smoothed for dis-
play purposes.

B. Consistency of the Master Equations with
Aggregate Distribution

The aggregate size distribution (Fig. 1) should result
from the master equations (Eqs. 6) with the calculated
reaction rates shown in Fig. 3. Two different methods
are used to prove that this is indeed the case. The first
consists of an unconstrained minimization of the master
equations. At equilibrium dNk/dt = 0 and the master
equations become

0 =

k−1
∑

ℓ=1

qf (k, ℓ)NℓNk−ℓ −

k−1
∑

ℓ=1

qb(k, ℓ)Nk

+

∞
∑

ℓ=1

qb(k + ℓ, ℓ)Nk+ℓ −

∞
∑

ℓ=1

qf (k + ℓ, ℓ)NkNℓ. (8)

Eqs. 8 can be solved for Nk using Newton-based convex
minimization techniques [17]. Using Eq. 3, pk is obtained
from the solution for Nk. The result at T = 0.55 is shown
as stars in Fig. 4. Note that the solution is in excellent
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agreement with the aggregate distribution obtained di-
rectly from the data (circles).
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FIG. 4. (Color online) Solutions to the master equations
of the kinetic model displaying agreement with the polymer
aggregate distribution (circles) at T = 0.55. The dashed and
dotted lines show the time evolution of the master equations.
Starting from a constant (shown as dashed red), the distri-
bution converges to the solid black line (R2 = 0.999) after
about 20τ . Two intermediate steps are shown: the blue dot-
ted line after 1τ and the green dot-dashed one after 2τ . The
triangles show that when only the (ℓ) = 1 rates are employed
the solution converges to the known aggregate distribution
as well. However, the convergence is slower and occurs after
500τ . The convex optimization solution of Eqs. 8 is shown as
stars. The inset is included so as to display the value of the
solution at low k values.

The secondmethod consists of solving the master equa-
tions in time. As an initial state, we take one in which
each aggregate with k ≤ 20 is equally likely and no ag-
gregates with size over 20 exist. The initial distribution
is shown as a dashed red line in Fig. 4. This distribu-
tion is then updated by the master equations and the
measured rates at T = 0.55 (the dotted blue line shows
the distribution after time 1τ , and the dot-dashed green
line after time 2τ). The aggregate distribution converges
in approximately 20τ to that shown as a solid black line.
As expected, this distribution agrees nicely with the mea-
sured aggregate size distribution (shown as circles). Sim-
ilar agreements were obtained for other initial distribu-
tions and other temperatures.

C. Simplification

The condition of detailed balance [13] can be used to
show that only the rates of reactions, where one end
group joins an aggregate or breaks away from it, com-
pletely determine the aggregate distribution. This con-
dition, if applicable, states that at a steady state the
frequency of a specific reaction in the forward direction
should be equivalent to that of the reverse reaction. In

our case, that implies

qf (k, ℓ)NℓNk−ℓ = qb(k, ℓ)Nk (9)

for all (k) and (ℓ), in which k > ℓ. It would therefore
follow that

Nk =
qf (k, ℓ)

qb(k, ℓ)
Nk−ℓNℓ. (10)

This relationship at equilibrium has been verified within
the simulations to hold (within statistical fluctuations)
for multiple values of ℓ, k, and T .
Eq. 10 has two implications in regards to the kinetic

model. The first is that the first two terms and the last
two terms in Eq. 8 add up to zero independently. The
second is that the right hand side of Eq. 8 adds up to
zero for each value of ℓ independently. In other words,
knowledge of qf (k, 1)N1/qb(k, 1) is sufficient to calculate
the aggregate size distribution by propagating Eq. 10 for
(ℓ) = 1: Nk = [qf (k, 1)N1/qb(k, 1)]Nk−1. The aggregate
distribution pk can then be obtained from Eq. 3. Al-
ternatively, starting from any initial condition, say the
dashed red line in Fig. 4, and updating using only the
(ℓ) = 1 rates should yield the correct aggregate distribu-
tion. This procedure was carried out and indeed yielded
the correct distribution, see Fig. 4 (triangles). The con-
vergence, however, is approximately a factor of 25 slower
than the one attained when all rates are used.
Although the (ℓ) = 1 rates lead to the same correct

distribution, the slow convergence here is due to the fact
that they solely allow for a subset of the entire kinet-
ics provided by the model using the complete range of
rates. We make use of the fact that the (ℓ) = 1 rates by
themselves yield the observed aggregate distribution (see
below) when we discuss how changes in these reaction
rates give rise to the observed changes in the aggregate
distribution that characterizes a micelle transition.
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FIG. 5. (Color online) Magnitudes of the real component of
the eigenvalues λi of the master equations’ Jacobian matrix,
evaluated at the known equilibrium state of the polymer at
T = 0.55. The real eigenvalues are shown as red circles, while
complex eigenvalues are shown in black squares.
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D. Stability of Solutions

To study the stability of the kinetic model under per-
turbations near the actual solution, we analyze the eigen-
values λi of the Jacobian matrix [18]

J =
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, (11)

where yi represents the right hand side of dNi/dt ac-
cording to Eq. 6. The size m of this matrix is deter-
mined such that continuous, non-zero valued rates exist
for 1 ≤ k ≤ m. Above that value of m, the rates are
undetermined within the simulation time. This proce-
dure results e.g. in m = 60 for T = 0.55. Since reaction
rates and the aggregate size distribution are known, the
Jacobian can be evaluated for a given temperature, and
its eigenvalues calculated.
The master equations consist of a multidimensional

manifold. The resulting eigenvalues of Eq. 11 are shown
in Fig 5. They are either complex with negative real parts
(black squares) or real and negative (red circles). This
indicates that the solution is stable and that the singular
point is a focus towards which the solutions are spiraling.
Both the smallest and largest eigenvalues are real. The
eigenvector corresponding to the largest absolute eigen-
value peaks at N1. Hence, the fastest process consists
of establishing the correct number of singles. The eigen-
vector corresponding to the eigenvalue with the smallest
absolute value is very similar to the equilibrium size dis-
tribution. Apparently, the overall normalization of the
solution is the slowest process [19].

V. DISCUSSION

A. Rates of Reactions

Fig. 6A displays qf (k, ℓ) over a range of (k) values at
T = 0.55. A symmetry inversion with respect to (ℓ) is
seen to exist within the formation reaction rates. For
small (k), the largest magnitudes of qf (k, ℓ) are centered
about (ℓ) = (k)/2. This fact indicates, for (k) < 11,
that two approximately equally sized aggregates partic-
ipate in the formation reaction more frequently than an
aggregate of small size ℓ and k−ℓ. The behavior changes
with increasing (k) and is displayed as an inversion of
the symmetry within qf (k, ℓ). For (k) ≥ 11, where
now the smallest magnitude of qf (k, ℓ) is centered about
(ℓ) = (k)/2. Here, aggregates of small size ℓ associate
with k − ℓ sized aggregates more frequently than two
approximately equal sized aggregates. We label the (k)
value, at which the symmetry inversion of qf (k, ℓ) occurs
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FIG. 6. (Color online) The average formation reaction rates
qf (k, ℓ) (A), breaking reaction rates qb(k, ℓ) (B) as a function
of (ℓ) for several values of (k) at a temperature of T = 0.55.
Errors within the data are on the order of the symbol size.

by (k)T . At T = 0.55, (k)T = 11 and increases with de-
creasing temperature. The disassociation reaction rate
qb(k, ℓ), shown in Fig. 6B, does not exhibit such symme-
try inversion. It is always easier to break off single beads
than to split the system into equal parts. Note that the
rates in figure 6A and 6B are symmetric around (k)/2
since a split into aggregates of sizes (ℓ) and (k − ℓ) is
identical to a split into sizes (k − ℓ) and (ℓ).
Fig. 7 compares (k)T values for a range of tempera-

tures with the aggregate size (k)S at which the aggre-
gates are most spherical. The sphericity is calculated
from the eigenvalues of the gyration tensor as described
in [20]. The smallest aggregates do not contain enough
end groups to form a sphere. On the other hand, the
largest aggregates have a long wormlike structure since
steric effects caused by the polymer chains prevent the
formation of a very large sphere. Thus, the most spheri-
cal value appears at a middle aggregate size (k)S . As can
be seen both (k) values in Fig. 7 match, indicating that if
an aggregate has a size larger than (k)S , it is most likely
to grow by addition of single beads or small aggregates
at one of its ends.

B. Dependence of Reaction Rates on Temperature

Fig. 8 displays 〈Q〉 as a function of inverse tempera-
ture. 〈Q〉 is calculated as a weighted average

〈Q〉 =

∑

k,ℓ Q(k, ℓ)n(k, ℓ)
∑

k,ℓ n(k, ℓ)
, (12)

where n(k, ℓ) denotes the number of reactions involving
aggregates of sizes k and ℓ. Two separate cases are con-
sidered: (1) reactions in which only aggregates of size
ℓ = 1 are involved, and (2) all reactions.
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FIG. 7. (Color online) The most spherically symmetric ag-
gregate size (k)S (red circles), and the aggregate size where
in qf (k, ℓ) exhibits an inversion in symmetry (k)T (black
squares) as a function of temperature. Lines are shown as
guides for the eye.
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FIG. 8. (Color online) A semi-log plot of 〈Q〉 as a function
of 1/T , calculated for all (k) and (ℓ) (red circles), and for
(ℓ) = 1 (black squares). The solid lines display an Arrhenius
fit to the data within the high temperatures, while the dashed
lines correspond to a stretched exponential fit within low tem-
peratures. See the text for values of the fitting parameters.

For high temperatures, Arrhenius behavior, as indi-
cated by a linear trend on the semi-log scale, is ob-
served. The rate data is fit by an Arrhenius curve
〈Q〉 = 〈Q〉0exp(C/T ) within the temperature range be-
tween T = 1.2 and 0.7 and is shown as a solid line. In the
case where (ℓ) = 1 (shown as squares), the curve fit re-
sults in parameters of C = 2.65 and 〈Q〉0 = 4.49× 10−5,
whereas when all (k) and (ℓ) rates are used (shown as cir-
cles), C = 3.26 and 〈Q〉0 = 3.29× 10−5. The equilibrium
constant deviates from being described by an Arrhenius
curve as the temperature decreases from T = 0.7. The
low temperature data is fit by a stretched exponential

〈Q〉 = 〈Q〉0exp(C/(T − T0)) and is shown as a dashed
line within the figure. The curve fitting results in pa-
rameters T0 = 0.084, C = 2.78, and 〈Q〉0 = 1.8 × 10−5

for the (ℓ) = 1 case, and T0 = 0.25, C = 1.49, and
〈Q〉0 = 1.3 × 10−4 for the all rates data. The extrap-
olated temperature of T0 = 0.25 is in close agreement
with our earlier published work [7], where the gelation
temperature of T0 = 0.29 for a similar system was deter-
mined from an analysis of relaxation times. The two fits
cross at T = 0.65 for the (ℓ) = 1 case and T = 0.6 when
all (k) and (ℓ) rates are used. This is close to the “onset”
temperature, as was observed in previous work [7].
Again, we note that the (ℓ) = 1 case describes a sub-

set of the kinetics provided by the complete range of q’s
within the model. At T = 0.35 within the figure, the two
cases converge. This is to be expected, since it has been
observed that at this temperature, reactions are primar-
ily composed of a single end group joining an aggregate
or breaking away from it.

C. Relation Between Reaction Rates and Size
Distribution

One of the signatures of a micelle transition is the oc-
currence of a preferred finite aggregate size at low tem-
perature [21] characterized by the peak in the aggregate
size distribution. We now investigate how this feature is
related to the observed reaction rates. The only reactions
considered are those in which one end group is added or
removed from an aggregate. As shown above the rates for
these reactions completely determine the aggregate size
distribution. Fig. 9 shows the aggregate distributions
together with these reaction rates for a range of temper-
atures. Note that qb(k, 1) increases faster with (k) than
qf (k, 1)N1. With decreasing temperature, qf (k, 1)N1 be-
comes less dependent on (k) and ultimately exhibits a
decreasing trend with increasing (k). This feature is nec-
essary for the two rates to cross and provides a range of
(k), where in qf (k, 1)N1 > qb(k, 1). For these (k) val-
ues, it is more favorable for a single end group to join
the aggregate than to break from it. Moreover, at low
temperatures, the minimum and maximum points in the
aggregate size distribution are seen to correspond to the
points where qf (k, 1)N1 = qb(k, 1). This is theoretically
easily verified. An extremum in the aggregate distribu-
tion implies that dp/dk = 0 or pk ≈ pk−1. Using Eq. 3,
Eq. 9 can be rewritten as

qf (k, ℓ)Ntot pℓ pk−ℓ = qb(k, ℓ)pk, (13)

or

pk
pk−ℓ

=
qf (k, ℓ)

qb(k, ℓ)
Ntot pℓ =

qf (k, ℓ)

qb(k, ℓ)
Nℓ, (14)

for every (ℓ). In particular, when ℓ = 1

pk
pk−ℓ

=
qf (k, 1)

qb(k, 1)
Ntot p1 =

qf (k, 1)

qb(k, 1)
N1. (15)
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FIG. 9. (Color online) The probability distribution pk and
the crossing of the rates qf (k, 1)N1 with qb(k, 1) at T = 1.0
(A), T = 0.7 (B), T = 0.625 (C), T = 0.6 (D), T = 0.5
(E), and T = 0.45 (F). At T = 0.625, the rates nearly cross.
This temperature is in agreement with the onset of a shoulder
within pk. For lower temperatures, the crossing of the rates
is in agreement with the extrema of pk. The dashed lines act
as guides for the eye and mark the (k) aggregate at which pk
is at a maximum, in agreement with (k) when qf (k, 1)N1 =
qb(k, 1).

So pk = pk−1 when qf (k, 1)N1 = qb(k, 1). At high tem-
perature qf (k, 1)N1 < qb(k, 1) for all aggregates of size k
and hence the aggregate size distribution has no extreme.
The rates do not cross for T = 0.625 and higher, while
they do for T = 0.6 or lower. The transition tempera-
ture T ≈ 0.61 coincides with the temperature where the
aggregate size distribution first forms a shoulder. This is
expected since a necessary condition for the appearance
of a peak in the aggregate size distribution is that the
curves cross. Below T = 0.61, Arrhenius dependence of
the equilibrium constants and relaxation rates on temper-
ature is lost. Moreover, the area between the qf (k, 1)N1

and qb(k, 1) curves, shown in Fig 10, first increases and
then decreases again when the temperature is lowered
from T = 0.6. The area has an extremum at T = 0.5:
the micelle transition temperature.

Note that the above observation follows from the fact
that both the forming and breaking rates are non mono-
tonic as a function of (k). This fact deserves some fur-
ther explanation. Most importantly, the two rates de-

pend differently on (k), one being concave up and the
other increasing or concave down. We believe that these
differences are due to cooperative effects. In general a
single bead is attached to an aggregate with more than
one junction (see Fig. 2). In order for the bead to
break away from the aggregate, multiple junctions have
to break. The junctions have to break in a short time
interval, since there is a significant chance that the first
junction that broke would reform while the others are
still there. On the other hand, when a bead joins an ag-
gregate it is sufficient that one junction forms. qb(k, 1)
initially decreases with (k) since at small (k) only one
junction has to be broken and the need for two or more
to be broken increases with (k). In contrast, the larger
the aggregate, the more places there are at which an end
group can break off. Hence, at some point the trend re-
verses and the rate starts to increase with (k). On the
other hand, qf (k, 1) initially increases with (k). This is
due to the fact that a single bead can attach at more
points to the aggregate of size (k − 1) as (k) increases.
For this reason, one would expect qf (k, 1) to increase
monotonically. This is indeed the case at high tempera-
ture. However at low temperature the rate starts to drop
again at large (k) values. We believe that this is due to
the much lower diffusion rate of large aggregates at low
temperatures.
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FIG. 10. The area calculated as
∑

k
[qf (k, 1)N1 − qb(k, 1)]

over the range of (k) in which qf (k, 1)N1 > qb(k, 1) as ob-
served in Fig. 9 (D) through (F) as function of temperature.

VI. CONCLUSION

Usually in solution and other dense media one has to
check the validity of transition rate theory, since if fric-
tion is high, solvent dynamics cannot be neglected. This
effect is very nicely demonstrated by Anna et.al. [22],
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who showed experimentally how transition-rates change
in different solvents, in good agreement with Kramers
theory [23]. Kramers theory simulates solvent dynamics
as frictional drag and influence of random forces. For the
sake of simplicity we assumed here that both effects are
small at the temperature range considered, and opted to
use regular rate theory.
We have investigated the kinetics of aggregation and

fragmentation in a simulation of associating polymers.
The process was described in terms of master equations
and rates of reactions were obtained from the simulation.
The master equations were shown to have a solution con-
sistent with the aggregate size distribution as obtained
directly from the simulations. Stability analysis showed
that the aggregate distribution was indeed a stable so-
lution to the master equations. We found that, since
detailed balance holds within the simulation, knowledge
of the (ℓ) = 1 rates provides all the necessary information
to reproduce the complete aggregate size distribution.
It was observed that changes with temperature of the

reaction rates can explain the changes in the aggregate
distribution and dynamics near the sol-gel transition.
The onset temperature of this transition was determined
as the temperature at which there first exist a range of
(k) values for which it is more likely that a single end
group attaches to an aggregate than that one breaks off
(qf (k, ℓ)N1 > qb(k, ℓ)). Near this temperature, 〈Q〉 be-
gins to deviate from the Arrhenius, fluid-like behavior.

In addition a shoulder develops within the distribution.
Below the onset temperature, aggregates have a pre-
ferred size. A symmetry inversion within the formation
rate qf (k, ℓ) occurs at this size and marks a fundamental
change in the aggregate formation process. Aggregates
smaller than the preferred size tend to be formed by join-
ing two equal sized aggregates, whereas larger aggregates
are formed by the addition of one end group. As tempera-
ture continues to decrease, the likelihood that qf (k, ℓ)N1

is larger than qb(k, ℓ) (measured as the area between the
two curves of the rates versus (k)) grows. The maximum
at T = 0.5, is in agreement with the micelle transition
temperature.

In future work, we plan to investigate how the reaction
rates are influenced by uniform and oscillatory shear. It
is well known [24] that the application of external stresses
can influence the aggregate distribution; however its in-
fluence on the kinetic processes in the system has been
studied less. The master equations will be most likely a
valuable tool in such studies as well.
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