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We demonstrate the existence of orbital Coulomb phase as the exact ground state of p-orbital ex-
change Hamiltonian on the diamond lattice. The Coulomb phase is an emergent state characterized
by algebraic dipolar correlations and a gauge structure resulting from local constraints (ice rules) of
the underlying lattice models. For most ice models on the pyrochlore lattice, these local constraints
are a direct consequence of minimizing the energy of each individual tetrahedron. On the contrary,
the orbital ice rules are emergent phenomena resulting from the quantum orbital dynamics. We
show that the orbital ice model exhibits an emergent geometrical frustration by mapping the de-
generate quantum orbital ground states to the spin-ice states obeying the 2-in-2-out constraints on
the pyrochlore lattice. We also discuss possible realization of the orbital ice model in optical lattices
with p-band fermionic cold atoms.

PACS numbers: 03.75.Ss, 05.50.+q, 71.10.Fd, 73.43.Nq

I. INTRODUCTION

Common water ice, a strongly correlated proton sys-
tem, is a canonical example of geometrical frustration [1].
The oxygen ions in ice form a periodic diamond lattice
whereas the protons are disordered due to the frustrated
arrangement of two inequivalent O–H bonds with differ-
ent lengths. This in turn leads to a macroscopic degener-
acy of possible ground states and a finite entropy density
of ice as temperature tends toward zero. Despite being
disordered, the positioning of protons dictated by the so-
called ice rules exhibits a strong short-range correlation
in which each oxygen ion has two-near and two-far pro-
tons. The ice rules also forbid single proton hopping and
only allow for ring-exchange-type motion, reminiscent of
the physics of gauge theory.
A magnetic analogue of ice was discovered in py-

rochlore oxides Dy2Ti2O7 and Ho2Ti2O7 more than a
decade ago [2]. These so-called spin ice compounds are
essentially pyrochlore Ising magnet in which magnetic
moments residing on a network of corner-sharing tetra-
hedra are forced by single-ion anisotropy to point along
the local 〈111〉 axes. It is found that extensively degener-
ate spin configurations obeying the so-called ‘2-in-2-out’
rules have essentially the same energy over a wide range
of temperatures. The measured residual entropy is well
approximated by the Pauling entropy for water ice [3].
These local constraints require that every tetrahedron
has two spins pointing in and two pointing out, in appar-
ent analogy with the ice rules. Reversing a single spin
in the ice state creates one defect tetrahedron with 3-in-
1-out spins and another one with 1-in-3-out spins. As
recently pointed out in Ref. [4], these defect tetrahedra
behave exactly as a gas of magnetic monopoles interact-
ing with each other via Coulomb’s 1/r law.
Artificial versions of spin ice have also been created us-

ing lithographically fabricated arrays of nanoscale mag-
nets [5, 6]. Other proposals of artificial ice systems in-
clude charged colloidals in optical traps and supercon-
ducting vortices in specially fabricated pinning centers

[7, 8]. A valence bond liquid phase with an ice-like degen-
eracy is also shown to be the ground state of a spin-1/2
Klein model on the pyrochlore lattice [9].
In most of these ice systems, the fundamental de-

grees of freedom are doublet variables defined on the py-
rochlore lattice or its two-dimensional counterpart. Their
Hamiltonians can often be cast into the form

Hice = J
∑

⊠

K⊠ + ǫH ′ (1)

where J > 0 is the energy scale of excitations and the
sum is over all tetrahedra. K⊠ is a nonnegative-definite
operator defined for a tetrahedron. The last term denotes
perturbations of energy scale ǫ. The ice rules correspond
to the contraints:

K⊠ = 0, (2)

for all tetrahedra. Take spin ice as an example, the spin
configurations can be specified by a set of Ising variables
{σi} such that Si = σiS êi, where êi denotes the lo-
cal easy axis. The constraint operator is then given by
K⊠ ∝ (Q⊠)

2, where Q⊠ ≡ ∑

m∈⊠
σm is the effective

magnetic charge of a tetrahedron. The six up-up-down-
down Ising configurations selected by constraints (2) cor-
respond to the 2-in-2-out rules. Another example is the
spin-1/2 Klein model for which K⊠ ≡ PS⊠=2 is the pro-
jection operator onto the subspace of maximum total spin
S⊠ = 2 [9]. For temperatures in the regime ǫ ≪ T ≪ J ,
configurations satisfying the ‘ice rules’ (2) for all tetra-
hedra, are effectively degenerate.
The ice model (1) hosts an emergent Coulomb phase

in which the local constraints K⊠ = 0 translate to a
divergence-free flux ∇ · B = 0 in the coarse-grained
approximation. The effective theory for the Coulomb
phase is equivalent to conventional magnetostatics [10].
It follows that both the ‘magnetic’ field B and spins
Si in this disordered yet highly constrained phase ex-
hibit a dipolar-like correlation function 〈Bα(0)Bβ(r)〉 ∝
(δαβ − 3r̂αr̂β) /r

3 at large distances.
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In this paper, we present an ice model in which the
basic degrees of freedom are triplet orbital variables de-
fined on the diamond lattice. Our investigation is partly
motivated by recent progress in orbital-related many-
body phenomena in optical lattices. We show that the
strong directional dependence of orbital exchange com-
bined with the special geometry of diamond lattice gives
rise to a huge degeneracy in the Gutzwiller-type ground
states which are also exact eigenstates of the orbital ex-
change Hamiltonian. We demonstrate the existence of
an orbital Coulomb phase by mapping the degenerate or-
bital manifold to spin-ice states on the medial pyrochlore
lattice. It is worth noting that the orbital ‘ice rules’ are
not constraints imposed by the Hamiltonian. Instead,
they are emergent properties characterizing the short-
range orbital correlations. This is in stark contrast to
pyrochlore ice models (1) in which the ice rules are ex-
plicitly incorporated in the Hamiltonian as the minimum
energy states of individual tetrahedron.

II. ORBITAL EXCHANGE HAMILTONIAN

The ability to precisely control the interaction strength
of cold atoms in optical lattices provides clean realiza-
tions of strongly correlated models without many unde-
sirable complexities usually encountered in material sys-
tems [11, 12]. In particular, since the cold-atom systems
are free of Jahn-Teller distortions, they offer a new op-
portunity to investigate the intrinsic exchange physics
associated with the orbital degrees of freedom [13]. One
of the most interesting directions is the novel frustration
phenomenon originating from the anisotropic orbital in-
teractions.
The exchange physics of p-orbitals in two-dimensional

optical lattices has been extensively discussed in
Refs. [14, 15]. The intricate interplay between lattice
geometry and anisotropic orbital exchange leads to dra-
matically distinct ground states in different lattices. The
orbital exchange on a square lattice is dominated by an
antiferromagnetic Ising-like Hamiltonian, which gives rise
to a Néel-type orbital order. For triangular, honeycomb,
and kagome lattices, the orbital interaction is described
by a novel quantum 120◦ model. Although long-range or-
bital orders occur in the cases of triangular and kagome
lattices, orbital interactions are frustrated on the bipar-
tite honeycomb lattice and a huge degeneracy remains
in the classical ground state. These highly degener-
ate ground states can be mapped to fully packed non-
intersecting loops on the honeycomb lattice. Quantum
fluctuations, on the other hand, select a six-site plaque-
tte ground state through order from disorder mechanism.
The 120◦ model also describes the effective orbital inter-
action in transition metal oxides including honeycomb,
cubic, and pyrochlore lattices [16–18].
Here we consider a p-band Hubbard model with spin-

less fermions on three-dimensional optical lattices. We
assume that each optical site is approximated by an

isotropic harmonic potential. For two particles per site,
one of them fills the inert s-orbital while the other one
occupies one of the three p-orbitals. The kinetic terms
of p-band fermions include a longitudinal t‖ and a trans-
verse t⊥ hopping, corresponding to σ and π-bondings,
respectively. Typically, t‖ ≫ t⊥ [19] and we shall neglect
the transverse hopping as a zeroth-order approximation.
The fermions interact with each other through an on-site

repulsion: Hint = U
∑

i,α6=β niαniβ , where ni α = p†iαpiα
is the fermion number operator. The leading contribu-
tion to U comes from the p-wave scattering for spinless
fermions. The strong correlation regime U ≫ t‖ can be
potentially realized with the aid of the recently proposed
stable optical p-wave Feshbach resonance [20], which has
the advantage of suppressing the high rate of three-body
recombination. It should be noted that recent experi-
mental results have shown some limitations of the opti-
cal s-wave Feshbach scheme [21]. Further experimental
investigations are needed in order to verify the feasibility
of increasing p-wave interaction through optical Feshbach
resonance.
With charge fluctuations suppressed in the Mott-

insulating limit, there still remains a triplet orbital de-
grees of freedom at each site. Exchange interactions
between these localized orbital variables originate from
the second-order virtual hopping of the fermions. Since
we assume a dominating t‖, for a bond parallel to
n̂ = (nx, ny, nz), longitudinal hopping is possible only
when one of the particles occupies the orbital |n̂〉 =
nx|px〉 + ny|py〉 + nz|pz〉, while the other one is in an
orthogonal state. The energy gain of such an antiferro-
orbital alignment is described by the Hamiltonian

Hex = −J
∑

〈ij〉

[

P
n̂ij

i

(

I − P
n̂ij

j

)

+
(

I − P
n̂ij

i

)

P
n̂ij

j

]

. (3)

Here J = t2‖/U sets the exchange energy scale, I is the

identity operator, and P n̂ij = |n̂ij〉〈n̂ij | is the projec-
tion operator of the active orbital on a nearest-neighbor
bond 〈ij〉. Obviously, the nature of the orbital exchange
physics depends critically on the lattice geometry.

III. CUBIC OPTICAL LATTICE

As a warm-up, we first consider the case of cubic lat-
tice [Fig. 1(a)]. Using a basis spanned by |px〉, |py〉, and
|pz〉 states, the orbital projectors along the x, y, and z
bonds can be expressed in terms of Gell-mann matrices
λ(3) = diag(1,−1, 0) and λ(8) = diag(1, 1,−2)/

√
3. By

grouping them into a doublet operator τ = (τx, τy) =

(
√
3/2)(λ(3), λ(8)), the three orbital projectors are

P a = (I + 2 τ · êa) /3, (a = x, y, z), (4)

with êx/y = (±
√
3
2 ,

1
2 ) and êz = (0,−1) [Fig. 1(a)]. The

expectation value of the doublet vector 〈τ 〉 represents the
disparities of on-site orbital occupation numbers. The
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(a) (b)

FIG. 1: (a) Cubic optical lattice. (b) Domain of doublet
vector 〈τ 〉 for the cubic lattice. The three corners correspond
to px, py, and pz orbitals, respectively.

domain of 〈τ 〉 is an equilateral triangle [Fig. 1(b)], whose
three corners, 〈τ 〉 = êx, êy and êz , correspond to states
with pure px, py, and pz orbitals, respectively. Substitut-
ing the projectors P a into Eq. (3), we obtain an effective
Hamiltonian:

Hcubic =
8J

9

∑

a=x,y,z

∑

〈ij〉‖a
(τi · êa) (τj · êa) , (5)

up to an irrelevant constant c0 = −4NJ/3. Although
Eq. (5) has the same form as the well-known 120◦ model,
it is actually a classical Hamiltonian since the three or-
bital projectors P a commute with each other. As a result,
the eigenstates of Hcubic are simultaneous eigenstates of
the orbital occupation operators P a

i whose eigenvalues
are 0 or 1. Since each site has exactly one fermion,
P x + P y + P z = 1, the orbital state at a given site can
be specified by one of the three corners in the triangular
domain of 〈τ 〉. Eq. (5) can then be viewed as a 3-state
Potts model with anisotropic interactions. Take an x-
bond for example, there are 3 different orbital configura-
tions: (px, px), (py/z, py/z), and (px, py/z) whose energies
are 8J/9, 2J/9 and −4J/9, respectively.
To investigate the orbital correlations in the ground

state, we performed classical Monte Carlo simulations
with periodic boundary conditions on systems up to
N = 243 sites. Figs. 2 (a) and (b) show the average
bond energy ǫ, specific heat c, and entropy density s
as functions of temperature T . The bond energy ap-
proaches ǫ0 = −2J/9 as T → 0, implying that 2/3 of the
bonds with an energy ǫ = −4J/9 are in the antiferro-
orbital ground states, while the remaining 1/3 are frus-
trated with an energy of 2J/9. The macroscopic degen-
eracy of the ground states is evidenced by a residual en-
tropy density s0 ≈ 0.599 kB obtained by integrating the
specific-heat curve [Fig. 2(b)]. The orbital correlation
Cτ (r) = 〈τ (r) · τ (0)〉 decays rather fast and is negligible
beyond r ≈ 5, indicating a disordered orbital liquid. At
large separations, the correlation function decays expo-
nentially as shown in Fig. 2 (c).
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FIG. 2: Monte Carlo simulations of the classical Hamilto-
nian (5). (a) and (b) show the temperature dependence of
average bond energy ǫ ≡ 〈Hcubic〉/3N , specific heat c and en-
tropy density s, respectively. The dashed line in (b) indicates
the entropy density ln 3 at the high-temperature para-orbital
phase. The orbital correlation function Cτ (r) = 〈τ (r) · τ (0)〉
is shown in (c) as a function of separation r. (d) shows
lnCτ (L/2) as a function of linear system size L.

The large residual entropy s0 ≈ 0.599 kB also implies
that the ground state is susceptible to nominally small
perturbations present in the system. Indeed, as recently
reported in Ref. [25], inclusion of orbital interactions
which break time-reversal symmetry induces long-range
orbital ordering. As a final remark, it is worth noting
that Eq. (5) is related to but quite different from the
120◦ model with classical O(2) spins, in which orbital-
ordering is shown to be induced via order-from-disorder
mechanism on the cubic lattice [22–24].

IV. DIAMOND OPTICAL LATTICE

We now turn to orbital exchange on the oblique dia-
mond lattice [Fig. 3(a)]. There are four distinct types of
nearest-neighbor bonds pointing along directions n̂0 =
[111], n̂1 = [11̄1̄], n̂2 = [1̄11̄], and n̂3 = [1̄1̄1]. Experi-
mentally, a diamond optical lattice can be generated by
the interference of four laser beams with a suitable ar-
rangement of light polarizations [26]:

V (r) ∝
3

∑

m=1

cos (Km · r)− cos (K0 · r) .

Here Km = (π/2a) n̂m is the laser wave vector, and a
is the nearest-neighbour bond length. To obtain the or-
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(a) (b)

FIG. 3: (a) Diamond optical lattice. (b) Domain of pseu-
dovector 〈µ〉 for the diamond lattice.

bital projectors on the nearest-neighbor bonds, we intro-
duce a pseudovector µ = (µx, µy, µz) = (λ(6), λ(4), λ(1))
whose components are given by the three real-valued off-
diagonal Gell-mann matrices. The operators µa have the
following nonzero elements: 〈py|µx|pz〉 = 〈pz|µy|px〉 =
〈px|µz|py〉 = 1. The orbital projectors along the four
different bonds are

Pm = (I +
√
3µ · n̂m)/3, (m = 0, 1, 2, 3). (6)

Substituting the above expression into Eq. (3) yields an
effective Hamiltonian:

Hdiamond =
2J

3

3
∑

m=0

∑

〈ij〉‖m
(µi · n̂m) (µj · n̂m) . (7)

Since the three matrices µa do not commute with each
other, Eq. (7) defines a quantum ‘tetrahedral’ Hamilto-
nian for pseudovectors µi on the diamond lattice. The
exchange interaction (7) is geometrically frustrated. To
see this, consider a bond 〈ij〉 along [111] direction. Its
energy is minimized by orbital states |ψi〉 = |px + py +

pz〉/
√
3 and |ψj〉 = |px − py〉/

√
2. The corresponding ex-

pectation values of the pseudovector are 〈µi〉 = 2 n̂0/
√
3

and 〈µj〉 = −ẑ, respectively. However, such an antiferro-
orbital alignment can not be achieved simultaneously on
the other three 〈111〉 bonds attached to site i.
In order to understand the ground-state structure,

we first minimize the Hamiltonian using the Gutzwiller
ansatz:

|Ψ〉 =
∏

i

|ψi〉 =
∏

i

|θi, φi〉. (8)

The Gutzwiller wavefunction is a direct product of single-
site orbitals, The orbital wavefunction at a given site is
parameterized by two angles θ and φ:

|ψ〉 = sin θ cosφ|px〉+ sin θ sinφ|py〉+ cos θ|pz〉.

The expectation value of the pseudovector is

〈µ〉 =
(

sin 2θ sinφ, sin 2θ cosφ, sin2 θ sin 2φ
)

. (9)

Fig. 3(b) shows the domain of 〈µ〉 which has a tetrahe-
dral symmetry. We employ the Monte Carlo simulations
to minimize the resulting mean-field energy E {〈µi〉} =
〈Ψ|Hdiamond|Ψ〉, which is a function of the pseudovectors.
Specifically, small changes of θi and φi are generated ran-
domly and Eq. (9) is used to compute the change in 〈µi〉
and the corresponding ∆E. These updates are then ac-
cepted according to detailed balancing. The Monte Carlo
minimization yields many degenerate Gutzwiller ground
states. We find that the pseudovectors in the ground
states point along one of the six cubic directions, i.e.,
〈µi〉 = ±x̂, ±ŷ, or, ±ẑ for all sites [Fig. 4], reminiscent
of the six-vertex model. The corresponding orbital wave-
functions are |±x̂〉 = |py±pz〉/

√
2, and so on. The energy

of each bond is exactly ǫ = −2J/9 in the ground state.
Remarkably, the Gutzwiller ground states are also ex-

act eigenstates of the Hamiltonian (7). To see this, we
define an Ising variable for each of the nearest-neighbor
bonds m attached to site i:

σm
i =

√
3 〈µi〉 · n̂m = ±1, (m = 0, 1, 2, 3). (10)

They satisfy the orbital ‘ice rules’:

σm
i σm

j = −1 (11)

for all nearest neighbors 〈ij〉 in the ground state. Now
consider a given site i, if the Ising variable σm

i = −1 on
m-th bond, |ψi〉 is an eigenstate of the operator µi · n̂m

with eigenvalue −1/
√
3. On the other hand, for bonds

with σm
i = +1, an extra term is generated when acted

by the same operator. Specifically, let |ψi〉 = |+x̂〉. The
Ising variable is positive on [111] and [11̄1̄] bonds; we
have

(µi · n̂m) |ψi〉 = ±
√

2/3 |px〉+
√

1/3 |ψi〉,

with ± sign corresponding to m = 0 and 1, respectively.
Applying the combined bond operator on the Gutzwiller
wavefunction yields

(µi · n̂m) (µj · n̂m) |Ψ〉 = ∓
√
2/3 |px〉i ⊗ |Ψ̃i〉 − 1/3 |Ψ〉,

where |Ψ̃i〉 ≡
∏

k 6=i |ψk〉. Note that the nearest-neighbor

site j = j(m) depends on the bond index m. The two
extra terms with opposite signs cancel each other when
summed over m = 0 and 1. The Gutzwiller state |Ψ〉 is
thus an eigenstate of the sum of the two bond operators
with positive σm

i . Similar results hold for |ψi〉 = | ± ŷ〉
or | ± ẑ〉. Since each site has two bonds with σm

i = +1
attached to it, the extra terms cancel out when summed
over all bonds. Consequently, the Gutzwiller state |Ψ〉
is an exact eigenstate of the full Hamiltonian. We also
performed exact diagonalization of Eq. (7) on a finite
system of 8 sites. With periodic boundary conditions,
we find a huge degeneracy of the ground states which are
indeed described by the Gutzwiller product.
We now employ the fact that pyrochlore is the medial

lattice of diamond to examine the degeneracy and struc-
ture of the quantum ground states. As shown in Fig. 4,
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FIG. 4: A configuration of the pseudovectors on the diamond
lattice and its mapping to the spin-ice state on the medial
pyrochlore lattice. The pseudovector only assumes six dif-
ferent values 〈µi〉 = ±x̂, ±ŷ, and ±ẑ in the ground states,
corresponding to (py ± pz), (pz ± px), and (px ± py) orbitals,
respectively. These six orbital configurations are mapped to
the six 2-in-2-out ice states on a tetrahedron [Eq. (12)].

a pyrochlore magnet can be constructed by placing spins
at the bond midpoints of a diamond lattice. This con-
struction allows us to map the pseudovector field 〈µi〉 to
a spin ice state on the pyrochlore lattice. Specifically, we
label spins on a pyrochlore lattice by bond index 〈ij〉 of
the diamond lattice and use the Ising variables (10) to
define its direction:

S〈ij〉 = +σm
i n̂m = −σm

j n̂m. (12)

Here n̂m is a unit vector pointing from sites i to j. Note
that the diamond-lattice sites are located at centers of
tetrahedra in the pyrochlore lattice, the above mapping
shows that the six distinct values of pseudovectors in the
ground state, i.e. 〈µi〉 = ±x̂, ±ŷ, and ±ẑ, correspond
to the six different 2-in-2-out ice states on a tetrahedron
as demonstrated in Fig. 4. The ground-state degeneracy
of the diamond orbital model can thus be calculated us-
ing the so-called Pauling estimate which gives a residual
entropy per site s0 ≈ kB ln 3/2 ≈ 0.405 kB.

The above mapping also makes it possible to com-
pute orbital correlation functions by performing classical
Monte Carlo simulations on pyrochlore spin ice. Since
single-spin flip violates the ice rules, here we use the
non-local loop moves to navigate the manifold of spin-
ice ground states [27, 28]; the results are shown in Fig. 5.
The correlation function Cµ(r) = 〈µ(r) · µ(0)〉 decays
rather rapidly with the separation of spins. It is inter-
esting to note that the pseudovector is related to the
divergence-free flux via B(ri) ∼ ±〈µi〉, where ± sign
refers to the two sublattices of the diamond lattice. As
discussed in the introduction, the magnetic field B, hence
the pseudovectors, display a dipolar-like correlation func-
tion at long distances, as confirmed by our Monte Carlo
simulations [Fig. 5(b)].
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FIG. 5: (a) Orbital correlation function Cµ(r) = 〈µ(r) ·µ(0)〉
as a function of distance r in the quantum ground state of
Hamiltonian (7). (b) shows lnCµ(L/2) as a function of lnL,
here Cµ(L/2) is the correlation function between sites sep-
arated by half the linear size L along a 〈110〉 chain of the
lattice. The linear dependence in the log-log plot indicates a
power-law decay: Cµ(L/2) ∼ L−3.

V. SUMMARY AND DISCUSSION

To summarize, we have investigated the orbital ex-
change physics of p-band spinless fermions on both cu-
bic and diamond lattices. In both cases we have found
a macroscopic ground state degeneracy. The frustrated
orbital interaction on the cubic lattice is governed by a
classical three-state anisotropic Potts model. The ground
state retains a finite entropy density s0 ≈ 0.599kB per
site. Orbital correlation function decays exponentially at
large distances. We have also derived a novel quantum
‘tetrahedral’ model describing orbital interactions on the
diamond lattice. We have obtained exact quantum many-
body ground states which are extensively degenerate with
a residual entropy density s0 ≈ kB ln 3/2 ≈ 0.405 kB. By
mapping the degenerate quantum ground states to spin-
ice states on a pyrochlore lattice, we have shown that
the fermionic p-band Mott insulators on a diamond lat-
tice can be viewed as an orbital analog of the frustrated
ice phase Ic of water.

The huge degeneracy of orbital ice also helps circum-
vent the entropy obstacle in its experimental realiza-
tion. As noted in Ref. [29], a major challenge in cre-
ating strongly correlated phases in cold-atom systems is
reaching the low level of entropies in such states. In this
respect, the macroscopic residual entropy of the orbital
ice renders the Coulomb phase much easier to realize in
cold-atom optical lattices.

It is worth noting that the orbital ice model presented
in this paper is different in nature from most conventional
ice systems. First, the fundamental degrees of freedom
of orbital ice are orbital triplets defined on the diamond
lattice, whereas those of the conventional ice models are
Ising-like variables on pyrochlore. Second, the pyrochlore
ice models with the ice rules explicitly incorporated into
the Hamiltonian are essentially classical systems. On
the other hand, the orbital ice is an intrinsic quantum
model. The orbital ‘ice rules’ are emergent phenomena
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resulting from the orbital exchange dynamics. This is a
rare example of emergent geometrical frustration in three
dimensions. As usually happens in highly frustrated sys-
tems, the huge orbital degeneracy renders the ice phase
susceptible to nominally small perturbations. Various in-
teresting phases could emerge from the orbital Coulomb

phase. Finally, it is also of great interest to examine the
elementary excitations of the orbital ice model.
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