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Abstract

We independently determine the bulk modulus of compressed microgel suspensions and of indi-

vidual microgel particles and find that the elastic behavior of the suspension reflects the degree of

compression of the particles. This feature, which is distinct from other soft materials like emulsions

or foams, gives rise to an unusually large difference between the bulk and shear moduli of the sus-

pension. Our results extend our understanding of soft materials to systems based on compressible

objects, opening up possibilities for engineering materials with drastically different responses to

shear and compression.
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Shearing is typically easier to achieve than compression. For example, the speed of sound

in solids is larger for longitudinal waves than it is for transverse waves reflecting the larger

bulk modulus of a solid material compared to its shear modulus. The ratio between these

speeds, however, is generally small, ∼ 2 [1]. Alternatively, consider solid-solid friction. From

experience, we know that the friction force, f , is proportional to the normal force, N , via

the so called friction coefficient, µ, which is typically within the range 0.1 < µ < 1 [2]. As a

result, f is at most about an order of magnitude smaller than N , reflecting in large measure

the difference between shearing or compressing the springs mediating the interaction between

the atoms in the two solids in contact.

Disordered soft materials, like emulsions and foams, also reflect this difference. These

systems are comprised of drops or bubbles, which, above random close packing, are no longer

spherical but rather have flat areas in the contact region between neighbors; this flattening

increases with volume fraction, φ, leading to an increased surface area and thus to an

increased interfacial energy, which in turn leads to elastic behavior [3, 4]. As for most other

elastic solids, compressed emulsions and foams are easier to shear than to compress. For

emulsions, the bulk modulus, K, and the shear modulus, G′, have similar φ-dependencies,

with G′/K ≈ 0.1 for 0.62 . φ . 0.85 [3]. For dry and wet foams, recent experimental and

modeling results show that G′/K ≈ 0.7 [5, 6]. Interestingly, the drops and bubbles in these

disordered solids do not change volume as φ increases. The elasticity then results from how

the shapes of the drops and bubbles changes with φ. This is beautifully recasted by modeling

the contact region between neighbors with springs [7]. Depending on the degree of packing,

these hypothetical springs are more or less compressed, resulting in comparable shear and

bulk moduli. In the case of emulsions, there is a threshold φ value for this. When φ & 0.85,

the osmotic pressure, and consequently K, increases faster than G′ to eventually diverge at

φ → 1; this simply result arising from the incompressibility of liquids [8, 9]. Remarkably,

when the constituent elements making the system are compressible, the relevant microscopic

measure determining the macroscopic mechanical behavior is not so well understood [10].

This is the case for suspensions based on microgel particles, which are cross-linked polymer

networks in the colloidal-size domain. Within a narrow φ-range, the elasticity of these

suspensions is reminiscent to the elasticity of emulsions, provided the Laplace pressure in

the latter is replaced by a contact modulus related to the Young’s modulus of the particle

[11]. This analogy, however, breaks down as soon as the particle number density forces the

shrinkage of the microgel particles. In this regime, it has been proposed that the elasticity
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FIG. 1: Osmotic pressure versus ζ for microgel suspensions comprised of particles with (�) 0.5 wt%

DVB and (#) 1.3 wt% DVB. The inset shows the corresponding bulk modulus of the suspension

calculated using K = ζ dΠ
dζ .

of the suspension is controlled by some local elasticity obtained by measuring the mean-

square displacement of colloids embedded in the microgel suspension [12], by the individual

particle bulk [13] or shear modulus [14], or by the cross-link density [15]; this indicates that

the relevant elastic measure of these systems remains unknown.

In this article, we show that the microgel bulk modulus determines the φ-dependence of

the bulk and shear modulus of the suspension. Interestingly, we find that K is three orders

of magnitude larger than G′, in contrast to what is generally observed for most materials.

Our results elucidate the role of single particle compressibility. This will enable a more

complete picture of how soft materials respond to external stresses, ultimately enabling the

use of this parameter to design materials that can exhibit different responses to shear and

compression.

We use microgel particles comprised of vinylpyridine (VP), a weak base that ionizes at

pH below ∼ 4, and divinylbenzene (DVB), a cross-linker [16]. We make two set of particles

with different DVB concentrations, 0.5 wt% and 1.3 wt%, to explore the influence of particle

stiffness. Suspensions are kept at pH=3 through addition of HCl. At this pH, the particles

are fully swollen; their radii are a = 510 nm, for 0.5 wt% DVB, and a = 350 nm, for 1.3
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FIG. 2: (a) Dextran osmotic pressure and (b) bulk modulus of individual microgels versus the

volume of the particles. (�) 0.5 wt% DVB and (#) 1.3 wt% DVB.

wt% DVB. Noteworthy, since these particles can change volume for sufficiently high particle

concentrations, we use a generalized volume fraction, ζ , to characterize the state of the

system [17]: ζ = nVo, with n the particle number density and Vo the volume of a particle

measured at low concentration. We note that random organizations of microgels can have ζ

values much larger than 0.64. In this concentration region, the value of ζ reflects the degree

of deformation of the particles with respect to the preferred low concentration, swollen state.

We measure the osmotic pressure, Π, of both microgel suspensions as a function of ζ using

a membrane osmometer and find that Π increases with ζ . In addition, Π is larger for the

suspension made of the more cross-linked microgels, as shown in Fig. 1; since the particle

size decreases with cross-link amount, a larger number of particles is required to attain a

certain value of ζ . From these measurements, we obtain the suspension bulk modulus or

inverse compressibility: K = ζ dΠ
dζ
. Reminiscent of the osmotic pressure behavior, we find

that K increases with ζ and that K is larger for the suspension comprised of the more cross-

linked microgels, as shown in the inset of Fig. 1. This suggests that at least for ζ & 1, where

the particles must be compressed by their neighbors, the bulk modulus of the suspension

is determined by the bulk modulus of the individual microgels, consistent with previous

suggestions [13].

To test this hypothesis, we mix a dilute suspension of microgel particles with a dextran

solution of known osmotic pressure, Πd, and quantify how the microgels deswell with in-

cresing osmotic pressure using dynamic light scattering [18]. This allows the determination
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of the bulk modulus of individual microgels, Kp. For low dextran osmotic pressure, the

microgel volume, V , remains essentially constant, indicating that the imposed osmotic pres-

sure is smaller than the particle bulk modulus. Deswelling begins when Πd ≈ Kp [19]. In

this region, V decreases with increasing Πd, as shown in Fig. 2(a). We obtain Kp from the

slopes of the Πd-V curves using: Kp = −V (dΠd

dV
). We find Kp = (1.6 ± 0.1) kPa, for the

stiffer microgels, and Kp = (0.40 ± 0.02) kPa, for the softer microgels, in their respective

swollen states. As the particles shrink, Kp concomitantly increases, as shown in Fig. 2(b).

We then normalize both the suspension osmotic pressure and bulk modulus with Kp. For

ζ ≤ 1, we use the bulk modulus of swollen microgels. For ζ > 1, however, we model the

required microgel shrinkage by assuming that V ∼ 1/ζ , and use the Kp-V data of Fig. 2(b)

to obtain the individual particle bulk modulus. Remarkably, after doing this, the suspension

data of Fig. 1 scales onto a single curve, as shown in Fig. 3 and confirming our hypothesis.

Furthermore, the normalized Π and K remain constant for generalized volume fractions

where particle deformation is expected, reflecting that the compression of the suspension

is determined by the individual bulk modulus of the particles. As a result, Kp sets the

relevant elastic scale and the ζ-behavior for the suspension at these high ζ . We also note

that Π/Kp ≈ 1 when ζ ≈ 1 and not at smaller ζ . This indicates that the osmotic pressure

exerted by the microgel suspension on each individual microgel is only comparable to the

bulk modulus of the particle around a packing fraction that requires the microgels to be

physically in contact with each other. As a result, particle deswelling cannot take place for

our microgel suspensions for lower ζ , consistent with recent observations [20].

To further characterize the mechanical properties of our microgel suspensions, we perform

oscillatory rheology in the linear regime and determine the viscous and elastic moduli, G′

and G′′, as a function of frequency, ω, for different ζ . At low ζ , the suspension exhibits the

terminal behavior expected for a Maxwell fluid: G′′(ω) ∼ ω and G′(ω) ∼ ω2, with G′′ > G′

[21]. By contrast, for ζ ≥ 1, G′ develops a plateau and is larger than G′′, as shown in Fig. 4.

This reflects a transition from liquid-like to solid-like behavior at ζ ≈ 1. Consistent with this,

the suspension also develops a yield stress for ζ & 1. In addition, visual inspection of the

samples reveal lack of Bragg reflections and thus of crystal formation, consistent with what

is observed for other microgel suspensions [12, 20, 22]. Instead, the samples are optically

isotropic, as shown by the images in Fig. 4. For ζ > 1, the system is thus a disordered,

elastic solid. Remarkably, at high frequencies, G′′(ω) ∼ ω1/2, which is a hallmark exhibited

by a variety of systems above the jamming transition [23–28].
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FIG. 3: Bulk modulus (�, ), osmotic pressure (�,#), plateau shear modulus (�) and G”m (♦),

normalized by the bulk modulus of individual microgels, versus ζ. (�, �) 0.5 wt% DVB, ( ,#;

�,♦) 1.3 wt% DVB.

We quantify the resistance to shear of our suspensions with the plateau shear modulus,

G′

0
, which we define as G′(ω = 1 rad s−1), and with the value of the viscous modulus at

the minimum, G′′

m, which is a measure of the structural relaxation of the suspension [3].

Remarkably, when normalized by Kp, both G′

0
and G′′

m remain constant with ζ , as shown in

Fig.3. This emphasizes once more the crucial role played by the single-particle bulk modulus,

which not only determines Π and K, but also G′

0
, further emphasizing that the degree of

particle compression determines the interparticle forces, which ultimately determine the

shear modulus of the suspension. This is analogous to how the normal force determines

solid-solid friction through the friction coefficient, but very different to what sets-up the

relevant elastic scale in emulsions and foams. In these systems, it is the storage of energy at

the interfaces separating neighboring drops or bubbles what matters. These facets can be

thought of as anharmonic springs, whose compression is related to the deformation of the

particles [7]. For our compressible microgel particles, it is the state of compression of the

whole particle what determines the resulting elastic scale of the whole suspension. Only in a

very narrow range in ζ , at most above random close packing and below 1, is the behavior of

emulsions and microgel suspensions analogous, provided the Laplace pressure in the former

is replaced by a contact modulus dependent on the particle Young’s modulus [11]. For larger
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FIG. 4: (Color online) Elastic (solid symbols) and viscous (open symbols) moduli as a function of

angular frequency for microgel suspensions with (�,�) ζ = 0.75, ( ,#) ζ = 0.99, (N,△) ζ = 2.32,

(H, ▽) ζ = 9.3. The images at the top are samples with ζ above and below 1. The absence of Bragg

reflections indicates that the solid-like behavior of the samples for ζ > 1 corresponds to formation

of a disordered arrested state.

ζ , where the microgels must shrink, this analogy breaks down [13, 14].

Remarkably, we find that K is almost three orders of magnitude larger than G′

0
and that

the ratio between them remains up to the highest ζ we probe, spanning more than an order

of magnitude in ζ . This is in stark contrast to emulsions and foams, where this difference

is about an order of magnitude [3, 5, 6], except for φ & 0.85, with Π → ∞ as φ → 1

while G′

0
remains finite. Since for our compressed microgel suspensions this difference is

maintained for a much larger concentration range within which K and G′

0
exhibit the same

ζ-dependence, the small G′

0
/K ratio we observe cannot be related to a divergence in Π.

Instead, our results suggest that the origin of this behavior is the intrinsic elasticity of these

suspensions. The large difference between the shear and the bulk modulus of our suspensions
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could be related to an inhomogeneous localization of the strain within our particles, with

regions that are much more compressed than others. Depending on whether the suspension

is sheared or compressed, both the shape and number of these regions could vary, resulting

in a different response to either deformation. However, detailed theoretical calculations are

required to address the large difference we observe between K and G′

o.

We have shown that both the bulk and shear moduli of compressed microgel suspensions

is controlled by the bulk modulus of individual microgel particles, in contrast to emulsions

and foams, whose elasticity arises from the interfacial energy stored in the interfaces formed

between neighboring drops or bubbles. This markedly different origin can result in a dra-

matic difference between the shear and the bulk moduli of these suspensions, which in our

experiments is as large as three orders of magnitude. This is significantly larger than the

corresponding ratio for most materials. Our results emphasize the relevance of being made

of compressible building blocks, which can give rise to materials with an unusually large

difference in their response to shear an compression.
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