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Abstract

It is shown that a uniform electromagnetic plane wave can exert a negative force on a homo-

geneous medium with gain when there is no component of the electric field in that direction. A

physical interpretation for this force is given, along with an estimate of the strength achievable in

an experiment.
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Generally, classical electromagnetic forces can be decomposed into a gradient or dipole

force associated with a spatially varying field, as used in optical tweezers [1], and that

due to radiation pressure involving atomic transitions [2]. Evanescent fields between two

surfaces or waveguides can also result in a dipole force [3]. Experimental evidence suggests

that radiation pressure is related to a change in momentum (between incident and emitted

photons), and that this results in a force in the direction of the incident field momentum

(and in the direction of the Poynting vector) [2]. However, it has been proposed that light

attraction or a negative force is possible in a negative refractive index medium [4–7].

We consider the various contributions to the electromagnetic force from a fundamental

perspective, including the material constitutive parameters and their dispersive properties,

and show that the radiation pressure is positive for propagating waves in homogeneous

passive media, even when the refractive index is negative. We show, however, that the

force can be negative when the medium has gain, and we describe an experiment that

should confirm this force in a medium having gain. This work provides a foundation for the

treatment of forces in dispersive inhomogeneous material systems, such as objects in some

background material, and the further study of the influence of the background material

properties.

We arrive at the force for the electromagnetic-kinetic system, starting with Maxwell’s

equations, written as

∇×E+ µ0
∂H

∂t
= −µ0

∂M

∂t
(1a)

∇×H− ǫ0
∂E

∂t
=

∂P

∂t
+ J (1b)

ǫ0∇ · E = −∇ ·P+ ρ (1c)

∇ ·H = −∇ ·M, (1d)

with E the electric field intensity, H the magnetic field intensity, P the polarization, M the

magnetization, J the electric current density, ρ the free electric charge density, ǫ0 the free

space permittivity, and µ0 the free space permeability. Taking the cross product of ǫ0E with

(1a) and µ0H with (1b), and adding the resulting equations, gives

ǫ0E× (∇×E) + µ0H× (∇×H) + µ0ǫ0E× ∂H

∂t
− µ0ǫ0H× ∂E

∂t

= −µ0ǫ0E× ∂M

∂t
+ µ0H× ∂P

∂t
+ µ0H× J. (2)
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In terms of the momentum-flow tensor of the electromagnetic field [8], defined as Te =

1
2
(ǫ0E

2 + µ0H
2) I− ǫ0EE− µ0HH, where I is the identity matrix, we write

ǫ0E× (∇× E) + µ0H× (∇×H) = ∇ ·Te + ǫ0 (∇ · E)E+ µ0 (∇ ·H)H, (3)

where (∇ ·T)i = ∂Tji/∂xj and the tensor outer product ab has components (ab)ij = aibj .

With the momentum density associated with the electromagnetic field defined as Ge =

µ0ǫ0E×H [8], we obtain

∂Ge

∂t
= µ0ǫ0E× ∂H

∂t
− µ0ǫ0H× ∂E

∂t
. (4)

Using (3) and (4), (2) can be re-written as

∇ ·Te + ǫ0 (∇ ·E)E+ µ0 (∇ ·H)H+
∂Ge

∂t
= −µ0ǫ0E× ∂M

∂t
+ µ0H× ∂P

∂t
+ µ0H× J.(5)

The kinetic force density is f = −∇ ·Te − ∂Ge/∂t (N m−3 in SI units) [8], and from (5),

f = µ0ǫ0E× ∂M

∂t
− µ0H× ∂P

∂t
+ ǫ0 (∇ · E)E+ µ0 (∇ ·H)H− µ0H× J. (6)

Maxwell’s equations (1) were written in the form of fields, on the left, due to all sources,

including free and bound charge, on the right. Equation (6) describes the Lorentz force on all

charges (free and bound), and on sources, and is a special case of the relativistic treatment

of Penfield and Haus [8, 9], based on the principle of virtual power and multiple systems.

We note that the form in (6), while consistent with other previous treatments [8–11], has

important distinctions from some earlier work on forces in negative index materials [5].

We restrict our attention to plane waves, which results in ∇ · E = ∇ · H = 0, and to

source-free regions (J = 0), so that the force density in (6) becomes

f =
∂P

∂t
× µ0H− ∂µ0M

∂t
× ǫ0E. (7)

Enforcing reality and assuming linear, isotropic materials,

P(t) =
ǫ0
4π

∫

χE(ω)E(ω)e
−iωtdω + c.c. (8)

M(t) =
1

4π

∫

χH(ω)H(ω)e−iωtdω + c.c., (9)

with χE the complex electric susceptibility and χH the complex magnetic susceptibility.

Note that the influence of the free charge motion on f is captured by P in (7), through the

imaginary part of χE(ω).
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We consider the modulated field case

E(t) = ê E(t) = ê e(t)cos(ω0t) (10)

H(t) = ĥH(t) =
ĥ

4π

∫

u(ω)E(ω)e−iωtdω + c.c., (11)

f = ê× ĥf, f = µ0H
∂P

∂t
+ µ0ǫ0E

∂M

∂t
(12)

where e(t) is a modulation signal and u = η−1 =
(

η0
√

µ/ǫ
)

−1

, with η0 the free space wave

impedance. The scalar form of f in (12) is used hence forth to describe the instantaneous

force density and the time-averaged force density, 〈f〉, the average value over the carrier

period t0 = 2π/ω0.

Assuming a slowly varying e(t) (small bandwidth) in (10) and a sufficiently slowly varying

χE(ω), a two-term Taylor expansion of ωχE(ω), with χE = χ′

E + iχ′′

E , can be used to give

[12]

∂P

∂t
≈ ω0ǫ0e(t) [χ

′′

E(ω0)cos(ω0t)− χ′

E(ω0)sin(ω0t)] + ǫ0
∂e(t)

∂t

[

∂(ωχ′

E)

∂ω

∣

∣

∣

∣

ω=ω0

cos(ω0t)

+
∂(ωχ′′

E)

∂ω

∣

∣

∣

∣

ω=ω0

sin(ω0t)

]

. (13)

With a Taylor series expansion of u(ω), from (11),

H ≈ e(t) [u′(ω0) cos(ω0t) + u′′(ω0) sin(ω0t)]

+
∂e(t)

∂t

[

∂u′

∂ω

∣

∣

∣

∣

ω0

sin(ω0t)−
∂u′′

∂ω

∣

∣

∣

∣

ω0

cos(ω0t)

]

. (14)

Using (13) and (14),

〈H∂P

∂t
〉 ≈ ǫ0C1e

2(t) + ǫ0C2e(t)
∂e(t)

∂t
+ ǫ0C3

[

∂e(t)

∂t

]2

, (15)

with

C1 ≡ ω0

2
[u′(ω0)χ

′′

E(ω0)− u′′(ω0)χ
′

E(ω0)]

C2 ≡ 1

2

[

u′(ω0)
∂(ωχ′

E)

∂ω

∣

∣

∣

∣

ω0

+ u′′(ω0)
∂(ωχ′′

E)

∂ω

∣

∣

∣

∣

ω0

− ω0χ
′

E(ω0)
∂u′

∂ω

∣

∣

∣

∣

ω0

− ω0χ
′′

E(ω0)
∂u′′

∂ω

∣

∣

∣

∣

ω0

]

C3 ≡ 1

2

[

∂u′

∂ω

∣

∣

∣

∣

ω0

∂(ωχ′′

E)

∂ω

∣

∣

∣

∣

ω0

− ∂u′′

∂ω

∣

∣

∣

∣

ω0

∂(ωχ′

E)

∂ω

∣

∣

∣

∣

ω0

]

. (16)
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We write the scalar form of the magnetization in terms of the electric field, M(t) =

(4π)−1
∫

v(ω)E(ω) exp(−iωt)dω + c.c., with v = χHη
−1. Noting that M(t) is of the form of

P (t) with χE → v, and following a similar procedure as that used to obtain (13), we find

∂M

∂t
≈ ω0e(t) [v

′′(ω0)cos(ω0t)− v′(ω0)sin(ω0t)] +
∂e(t)

∂t

[

∂(ωv′)

∂ω

∣

∣

∣

∣

ω=ω0

cos(ω0t)

+
∂(ωv′′)

∂ω

∣

∣

∣

∣

ω=ω0

sin(ω0t)

]

. (17)

Using (10) and (17), we obtain

〈E∂M

∂t
〉 ≈ e2(t)D1 + e(t)

∂e(t)

∂t
D2, (18)

with

D1 ≡ ω0

2
v′′ =

ω0

2
[u′(ω0)χ

′′

H(ω0) + u′′(ω0)χ
′

H(ω0)]

D2 ≡ 1

2

∂(ωv′)

∂ω

∣

∣

∣

∣

ω0

=
1

2

[

u′(ω0)
∂(ωχ′

H)

∂ω

∣

∣

∣

∣

ω0

− u′′(ω0)
∂(ωχ′′

H)

∂ω

∣

∣

∣

∣

ω0

+ ω0χ
′

H(ω0)
∂u′

∂ω

∣

∣

∣

∣

ω0

− ω0χ
′′

H(ω0)
∂u′′

∂ω

∣

∣

∣

∣

ω0

]

. (19)

Note that the form of (15) and (18) differ because we use the electric field as the basis. We

use the normalized time-averaged force density 〈fn〉 ≡ 〈f〉c2, with c the speed of light in

vacuum. From the (12), and using (15) and (18)

〈fn〉 = (C1 +D1) e
2(t) + (C2 +D2) e(t)

∂e(t)

∂t
+ C3

[

∂e(t)

∂t

]2

, (20)

For sinusoidal steady state, from (20) with e(t) = E0, the exact normalized force density

becomes

〈fn〉 =
E2

0ω0

2|η|2 [η′ (ǫ′′ + µ′′) + η′′ (ǫ′ − µ′)] . (21)

The establishment of the signs for the complex wave impedance, η, is dictated by the phase

constant k = k′ + ik′′ = ±(ω/c)
√

(µ′ǫ′ − µ′′ǫ′′) + i(µ′′ǫ′ + µ′ǫ′′), with k′′ > 0 for a passive,

lossy medium (with ǫ′′ > 0 and µ′′ > 0), and k′′ < 0 for an active medium having gain (with

ǫ′′ < 0 and/or µ′′ < 0): exp(ikz) = exp(ik′z − k′′z). Without loss of generality, we choose

the TE case with η = ωµ0µ/k to provide the sign choices. From (21),

〈fn〉 =
E2

0

2µ0|µ|2
[

k′ (µ′′ǫ′ + µ′ǫ′′) + k′′
(

µ′2 − µ′ǫ′ + µ′′2 + µ′′ǫ′′
)]

. (22)
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Enforcing the signs for a doubly passive (lossy dielectric constant and permeability) medium

(〈fn〉p) and a doubly active medium with gain (〈fn〉a) in (22), we have

〈fn〉p =
E2

0f
rs
n

2µ0|µ|2
= −〈fn〉a, (23)

with f rs
n = k′ (|µ′′|ǫ′ + µ′|ǫ′′|) + |k′′| (|µ|2 + |µ′′ǫ′′| − µ′ǫ′), where {r, s} ∈ {p, n}, with r refer-

ring to the sign of µ′ (p for positive and n for negative) and s indicating the sign of ǫ′. We

are primarily concerned with the sign of the force, and this is dictated by the sign of f rs
n .

Expanding k2 and equating the imaginary parts gives sgn(k′) sgn(k′′) = sgn(µ′′ǫ′ + µ′ǫ′′),

which provides the sign relationships for k′ and k′′ for all cases but when µ′′ = ǫ′′ = 0 or

µ′ = ǫ′ = 0. For either a doubly passive medium (µ′′ > 0 and ǫ′′ > 0) or a doubly active

medium (µ′′ < 0 and ǫ′′ < 0), we have sgn(k′) = sgn(|µ′′|ǫ′ + µ′|ǫ′′|). Enforcing the correct

signs for the constitutive parameters, we find

f pp
n = fnn

n = |k′| (|µ′′ǫ′|+ |µ′ǫ′′|) + |k′′|
(

|µ|2 + |µ′′ǫ′′| − |µ′ǫ′|
)

f pn
n = fnp

n =











|k′| (|µ′′ǫ′| − |µ′ǫ′′|) + |k′′| (|µ|2 + |µ′′ǫ′′|+ |µ′ǫ′|) if |µ′′ǫ′| > |µ′ǫ′′|

−|k′| (|µ′′ǫ′| − |µ′ǫ′′|) + |k′′| (|µ|2 + |µ′′ǫ′′|+ |µ′ǫ′|) if |µ′′ǫ′| < |µ′ǫ′′|.

Because f rs
n remains positive, we conclude from (23) that for a propagating plane wave in a

passive medium, the force is always positive. We also note that this is the case for passive

materials with a negative refractive index. On the other hand, in an active medium with

net gain, the force is negative.

Consider the special case of the force on a gain medium with µ = 1, which is of practical

importance at optical frequencies. The phase constant is then k = k′+ ik′′ = ±ω
√
ǫ′ + iǫ′′/c,

giving ǫ′ + iǫ′′ = (k′2 + k′′2 +2ik′k′′)c2/ω2. From (22), the normalized force density becomes

〈fn〉(µ=1) =
E2

0k
′′

2µ2
0

c2

ω2

[

k′2 + k′′2 +
ω2

c2

]

. (24)

The sign of the force in (24) is dictated by the sign of k′′, and the force is negative for a

material offering gain.

To evaluate the significance of the force in a gain medium, consider a Gaussian modulation

signal given by eg(t) ≡ e(t) = exp
[

−t2 (2σ2)
−1
]

, where we use σ = 28π, ω0 = 1 in (10), and

N = 220 sample points over a temporal support of 213π. A numerical simulation was carried

out by first evaluating the electric field in (10). The magnetic field was obtained from (11)

using a discrete Fourier transform and by incorporating the frequency-dependent material
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parameters. Subsequently, the total instantaneous plane wave force was obtained using (12),

and this was numerically integrated over time to form 〈f〉. We describe this evaluation as

exact because the accuracy is subject only to numerical precision. The time-average force

was also calculated using the analytical model given in (20). To evaluate the coefficients C2,

C3, and D2, we used numerical derivatives of µ(ω) and ǫ(ω).

Figures 1(a) and (b) show the time-averaged normalized electromagnetic plane wave

force density calculated using the exact numerical procedure (solid line) and the analytical

expression in (20) (circles) for a non-magnetic material with µ = 1 and having overall

(a) loss, with permittivity ǫloss, and (b) gain, with permittivity ǫgain. We set ǫloss ≡ ǫ =

1 + 2 (0.952 − ω2 − i0.2ω)
−1

for a passive and lossy two-level system and ǫgain ≡ ǫ = 1 −
0.6 (1.052 − ω2 − i0.2ω)

−1
for an active system having overall gain. From Fig. 1, 〈fn〉 is

positive for the lossy material and negative for the material with gain, throughout the pulse.

Notice that the analytical result is in excellent agreement with the numerical data.

In a physical demonstration of a negative force, the gain medium would be excited to

create a population inversion, and this system would be illuminated with a probe electro-

magnetic wave. The force will be in a direction opposite to the Poynting vector for this

probe wave. To evaluate the significance of the negative plane wave force in media with

gain, we compare the expected positive force for a metal, which has been measured [2], with

the estimated negative force in an excited quantum dot medium. We assume an unmodu-

lated plane wave with E0 V m−1 and silver (Ag) at λ = 633 nm having ǫAg = −15.89+ i1.08

[13]. Using (21), we find 〈fn〉 for Ag to be 2.67× 1014E2
0 N m−1 s−2. For the gain medium,

we assume a mixture of CdSe quantum dots (dot radius of 1.6 nm and ~γ = 0.0469 eV )

in a SiO2 background, and that some fraction of the quantum dots are excited to provide

gain for a signal applied during the lifetime of the excited exciton state. Using ǫQD de-

fined in Ref. 14, we find ǫQDl = 17.08 + i1.41 and ǫQDg = 1.96 − i2.07 for lossy dots (with

~ωex = 2.17 eV) and excited gain dots (~ωex = 2.13 eV), respectively. With Maxwell Garnett

mixing [14], and fill fractions of xg = 0.1 and xl = 0.2 for gain and loss dots, respectively,

we find the homogenized dielectric constant of the CdSe/SiO2 mixture to be 3.51 − i0.25

at a wavelength of λ = 633 nm. This results in 〈fn〉 for this gain medium, using (21), of

−1.17 × 1012E2
0 N m−1 s−2, two orders of magnitude smaller than that for Ag. We note

that the force range for optical tweezers is fN through nN [15], suggesting that a negative

force in a medium with gain will be easily measurable with use of common laser sources.
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Electromagnetic plane wave forces in homogeneous passive materials, even those having a

negative refractive index, appear to be positive and in the direction of the incident Poynting

vector. However, we find that the force on a material with gain can be negative and in the

direction opposite to the Poynting vector. Although we considered simple material models,

there appears no reason to believe that other physical material responses will modify this

general understanding. The ensemble gain material we considered, with ǫ′′ < 0, could be

achieved with either spontaneous or stimulated emission. While spontaneous emission from

an atom would occur with random wave vector direction, suggesting that the recoil force

[16] from a collection of atoms is zero, it is the gain experienced by a incident wave that

results in the negative force on the ensemble.
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FIG. 1: The time-averaged normalized electromagnetic plane wave force density calculated using

the exact numerical procedure, shown by solid lines, and the analytical expression in (20), shown

by circles, for a non-magnetic material with µ = 1 and having overall (a) loss, with permittivity

ǫloss and (b) gain, with permittivity ǫgain. The electric field modulation is given by eg(t), and the

carrier frequency is ω0 = 1.
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