Reducing memory cost of exact diagonalization using singular value decomposition
Marvin Weinstein, Assa Auerbach, and V. Ravi Chandra
Phys. Rev. E 84, 056701 — Published 9 November 2011
DOI: 10.1103/PhysRevE.84.056701
Reducing Memory Cost of Exact Diagonalization using Singular Value Decomposition

Marvin Weinstein\(^1\), Assa Auerbach\(^2,3\), and V. Ravi Chandra\(^3\)

\(^1\)SLAC National Accelerator Laboratory, Stanford, 2575 Sand Hill Road, CA 94025, USA.
\(^2\)Department of Physics, Stanford University, Stanford CA 94306, USA. and
\(^3\)Physics Department, Technion, Haifa, 32000, Israel

We present a modified Lanczos algorithm to diagonalize lattice Hamiltonians with dramatically reduced memory requirements, without restricting to variational ansätze. The lattice of size \(N\) is partitioned into two subclusters. At each iteration the Lanczos vector is projected into two sets of \(n_{\text{svd}}\) smaller subcluster vectors using singular value decomposition. For low entanglement entropy \(S_{\text{ee}}\), (satisfied by short range Hamiltonians), the truncation error is expected to vanish as \(\exp(-n_{\text{svd}}^{1/2})\). Convergence is tested for the Heisenberg model on Kagomé clusters of 24, 30 and 36 sites, with no lattice symmetries exploited, using less than 15GB of dynamical memory. Generalization of the Lanczos-SVD algorithm to multiple partitioning is discussed, and comparisons to other techniques are given.

I. INTRODUCTION

Numerical ("exact") diagonalizations (ED) of quantum many-body Hamiltonians on finite clusters are often used to advance our understanding of larger lattices. For example, Contractor Renormalization \[1–3\] uses ED to compute the short range interactions of the effective hamiltonian. ED on various size clusters \[4\] are indispensable as unbiased tests of mean field theories and variational wavefunctions. They are also used to obtain short wavelength dynamical correlations \[5\] and Chern numbers of Hall conductivity \[6\].

ED commonly use Lanczos algorithms \[7, 8\], to efficiently converge to the low eigenstates. However, for a lattice of size \(N\), with \(m\) states per site, the dimension of the Lanczos vectors (which are stored in the dynamical memory) increases as \(m^N\). Therefore, ED on larger lattices are prevented primarily by memory limitations, rather than processor speed.

The central idea of this paper is to significantly reduce the memory cost, in order to enable ED of larger lattice sizes. We use singular value decomposition (SVD) to compress all Lanczos vectors into sets of \(2n_{\text{svd}}\) vectors of size \(m^{N/2}\).

As long as entanglement entropy of the target eigenstates obeys \(S_{\text{ee}} \ll N/2 \log(m)\) \[9\], one can greatly economize on memory while maintaining high numerical accuracy. Many of the important many body Hamiltonians of condensed matter (e.g. Hubbard and Heisenberg models) have short range interactions. As a consequence, their ground states possess low entanglement entropy \[10–13\].

The idea of exploiting low entanglement entropy to compress wave functions by SVD, is not new. This is the key to the remarkable success of density matrix renormalization group (DMRG) \[14\] which has been used extensively to obtain low energy state correlations of a large variety of Hamiltonians. DMRG is equivalent to variational minimization in the space of matrix product states \[10, 15, 16\]. Extensions to wavefunctions with longer range correlations were given by multiscale entanglement renormalization \[17\]. Nevertheless, sequential minimization may sometimes get "stuck" in false minima and not converge to the ground state. Therefore Lanczos methods are often called for to independently test the variational results.

The paper is organized as follows. We begin by defining the SVD for a bipartite split of the lattice, and proceed to explain in practice how perform a single Lanczos step followed by an SVD projection which prevents the expansion of the memory cost. We describe the intermediate matrix manipulations needed for orthonormalizations and diagonalizations. In Section III, we estimate the SVD truncation error after projection, as a function of \(n_{\text{svd}}\). We relate the error estimation to the bipartite entanglement entropy \(S_{\text{ee}}\), using a generic asymptotic form for the entanglement spectrum which is based on a classical gas model. We test in detail, the convergence of the Lanczos-SVD algorithm for the spin half Heisenberg antiferromagnet on Kagomé clusters of up to 36 sites. The entanglement spectrum asymptotics are verified for a partitioning of a 30 site cluster, Fig. 3. The ground state energy of 36 sites with Lanczos-SVD converges to relative errors of \(6 \times 10^{-8}\) for the three star line, Fig. 2, and \(1.3 \times 10^{-4}\) for the three star triangle, Fig. 4. Here we use a desktop computer with less than 15GB of memory and no lattice symmetries. The results

\[\text{PACS numbers: 05.30.-d, 02.70.-c, 03.67.Mn, 05.50.+q}\]

\[^{\ast}\text{This work was supported by the U. S. DOE, Contract No. DE-AC02-76SF00515.}\]
II. THE LANCZOS-SVD STEP

A. Bipartite Singular Value Decomposition

Any state $|\psi\rangle$ of the full cluster (see as an example Fig. 1) can be represented in a unique SVD form as

$$|\psi\rangle = \sum_{\alpha} \lambda_{\alpha} |\alpha\rangle_1 |\alpha\rangle_2,$$

$$\sum_{\alpha} \lambda_{\alpha}^2 = 1, \quad \langle \alpha | \alpha' \rangle_i = \delta_{\alpha \alpha'},$$

where the λ_{α} are positive, and $|\alpha\rangle_i$ are "small" basis vectors of subclusters $i = 1, 2$ (the subclusters on the two sides of the partitioning). Truncating the sum into

FIG. 1: Partitioning 24 sites Kagomé cluster for application of the Lanczos-SVD algorithm. The ground state entanglement entropy is $S_{ee} = 1.51$.

FIG. 2: Partitioning 36 sites for three stars in a line. Ground state entanglement entropy is $S_{ee} \approx 1.12$.

FIG. 3: Partitioning of 30 sites containing 5 hexagons. Ground state entanglement entropy is $S_{ee} \approx 1.27$.

FIG. 4: Partitioning 36 sites. Ground state entanglement entropy is $S_{ee} \approx 2.59$.

agree with our analytical estimate of the truncation error. In Section VI we discuss a possible extension of this approach to multi-partitioning, and estimate the optimal reduction in memory cost that could be achieved. We conclude by a discussion which elaborates on the relative advantages and disadvantages of Lanczos-SVD, standard Lanczos and DMRG.
the largest n_{svd} terms defines the SVD projector,

$$P_{\text{svd}}|\psi\rangle = \sum_{\alpha=1}^{n_{\text{svd}}} \lambda_{\alpha} |\alpha\rangle_1 |\alpha\rangle_2,$$

(2)

which introduces a wavefunction error $\epsilon = \sum_{\alpha>n_{\text{svd}}} \lambda_{\alpha}^2$.

B. Application of $P_{\text{svd}}H$

Lanczos-SVD economizes on the storage space by applying an SVD projection after each application of the Hamiltonian on the Lanczos vector,

$$|\psi\rangle' = P_{\text{svd}}H|\psi\rangle.$$

(3)

The projection entails the following computational steps. H can be written as a sum of products of the two subcluster operators,

$$H = H_i^0 \otimes I_2 + I_1 \otimes H_2^0 + \sum_{\mu=3}^{M} H_i^\mu \otimes H_2^\mu.$$

(4)

where H_i^0 includes all internal interactions of subcluster i. $H_i^\mu \otimes H_2^\mu$ is a product of operators residing on both subclusters. For example, a nearest neighbor Heisenberg model ($\sum_{ij} J_{ij} S_i \cdot S_j$) with K bonds connecting the two subclusters has $M = 2 + 3K$ terms. For example in Fig. 4, $K = 7$ and $M = 23$.

Acting with H on $|\psi\rangle$ produces a new state,

$$H|\psi\rangle = \sum_{\nu=1}^{n_{\text{svd}}M} |\nu\rangle_1 |\nu\rangle_2,$$

(5)

where the new (non orthonormal) small vectors are labeled by the fused index $\nu = (\mu, \alpha)$, i.e. $|\nu\rangle_i = H_i^\mu |\alpha\rangle_i$.

The state (5) lies outside the n_{svd} subspace, and we need to project it back using P_{svd} in order not to further expand the memory cost. We first orthonormalize $|\nu\rangle_i$ by diagonalizing the Hermitian overlap matrices (of row dimensions $n_{\text{svd}}M$)

$$\langle \nu | \nu \rangle_i = \left(V_i^\dagger D_i V_i\right)_{\nu \nu}, \ i = 1, 2$$

$$|\beta\rangle_i = \sum_{\nu} \left(D_i^{-\frac{1}{2}} V_i\right)_{\beta \nu} |\nu\rangle,$$

(6)

where D_i are diagonal and positive semidefinite, and V_i are unitary. $|\beta\rangle_i$, $i = 1, 2$ are orthonormal sets in their respective spaces. Thus, the new vector is given by

$$H|\psi\rangle = \sum_{\beta \beta'} C_{\beta \beta'} |\beta\rangle_1 |\beta'\rangle_2,$$

(7)

$$C = \sqrt{D_1 V_1^\dagger V_2^\dagger D_2}.$$

Now we perform an SVD on the matrix C,

$$C = \nu_c^2 U_1^\dagger \Lambda U_2,$$

(8)

where ν_c is the normalization. U_1^\dagger, U_2^\dagger are unitary matrices which diagonalize the Hermitian products $C C^\dagger$ and $C^\dagger C$ respectively. After computing Λ, U_1, U_2 we obtain the SVD form of the new state. Λ is diagonal and normalized to $\text{Tr} \Lambda^2 = 1$ with positive eigenvalues λ_{α}. We keep only the n_{svd} largest λ_{α} and obtain

$$P_{\text{svd}}H|\psi\rangle = \sum_{\alpha=1}^{n_{\text{svd}}} \lambda_{\alpha} |\alpha\rangle_1' |\alpha\rangle_2',$$

(9)

where the new small vectors of $i = 1, 2$ are,

$$|\alpha\rangle_i' = \sum_{\nu=1}^{n_{\text{svd}}} \left(U_i D^{-\frac{1}{2}} V_i\right)_{\alpha \nu} |\nu\rangle_i.$$

(10)

III. ENTANGLEMENT SPECTRUM AND SVD TRUNCATION ERROR

The Lanczos algorithm rotates a set of basis states $|\psi_n\rangle$ into the lowest energy eigenstates with which the basis has a finite overlap. If we choose ϵ to be much smaller than the lowest relative energy gap, the Lanczos-SVD vectors converge to states which are within ϵ distance from the SVD projection of the corresponding exact eigenstate.

To get an idea of how $\epsilon(n_{\text{svd}})$ converges, we must know the "entanglement spectrum" $\{s_n\}$ defined by $\lambda_n^2 = e^{-s_n}$. s_n are pseudo-energies of the entanglement spectrum. A generic density of states can be modeled by a power law form

$$\rho_p(s) = \sum_{\alpha} \delta(s - s_{\alpha}) = \frac{s^p}{\Gamma(p+1)}, \ p > -1, \ (11)$$

which describes the many-body density of states of a classical gas with constant (Dulong-Petit) specific heat [18]. p counts with the number of entangled degrees of freedom. The corresponding entanglement entropy is easy to evaluate,

$$S_{ee} = - \sum_{\alpha} \lambda_n^2 \log(\lambda_n^2) = \int_0^\infty ds s \rho_p(s) e^{-s} = p + 1. \ (12)$$

Choosing a high cut-off exponent s_c such that

$$n_{\text{svd}} = \int_0^{s_c} ds \rho_p(s) \sim \frac{s_c^{p+1}}{(p+1)(p+1)}, \ (13)$$

we arrive at the error estimate

$$\epsilon = \int_{s_c}^\infty ds \rho_p(s) e^{-s} \approx \frac{s_c^p e^{-s_c}}{(p+1)} \ (14)$$

Combining Eqs. (13) and (14), yields for $S_{ee} >> 1$, the asymptotic expression

$$\epsilon \sim n_{\text{svd}} S_{ee} e^{-S_{ee} (n_{\text{svd}}) \frac{1}{\epsilon_{\text{ee}}}} \ (15)$$

Hence by choosing the ratio $n_{\text{svd}}/\epsilon S_{ee} >> 1$ one ensures an exponentially small truncation error.
The Lanczos-SVD routine proceeds as follows: We initialize $|\psi(0)\rangle$ as a direct product of the two subcluster states. We compute $(P_{svd}H)^n|\psi(0)\rangle = |\psi(n)\rangle$ as described above. Since our method is economical in memory, we can afford to retain L sequential Lanczos vectors $|\psi(n)\rangle, |\psi(n+1)\rangle, \ldots, |\psi(n+L)\rangle$, which speeds up the convergence with iteration number considerably. (If memory is scarce, one could use the slower method of keeping only two Lanczos vectors).

Now, we compute the overlap matrix and orthonormalize this set of Lanczos vectors. This produces a "rotating basis" of dimension L

$$|\varphi(i)\rangle = \sum_{n'=n}^{n+L} A_{in'}|\psi(n')\rangle, \quad \langle \varphi(i)|\varphi(j)\rangle = \delta_{ij}, \quad (16)$$

where A are the coefficients determined by diagonalizing the overlap matrix (see e.g. Eq. (6)).

Subsequently, we compute the matrix elements of the reduced Hamiltonian,

$$H_{ij} = \langle \varphi(i)|H|\varphi(j)\rangle, \quad i, j = 1, \ldots, L. \quad (17)$$

The reduced Hamiltonian matrix is diagonalized. Its lowest eigenvalue and eigenvector yield the best approximation to the ground state at this level of iteration [19]. We bring the resulting wavefunction to the SVD form, again truncated into n_{svd} terms. It becomes the new initial state $|\psi(n+L+1)\rangle$ for the next Lanczos iteration. Excited states can be calculated by starting with an initial state orthogonal to the converged lower energy states.

V. NUMERICAL TESTS

For the spin-half Heisenberg antiferromagnet

$$H = \sum_{\langle ij \rangle} S_i \cdot S_j, \quad (18)$$

we tested the convergence of the Lanczos-SVD algorithm on Kagomé clusters depicted in Figs. 1, 2, 3 and 4.

In Fig. 6, we plot the Lanczos-SVD truncation error for the ground state wave function and energy, as a function of n_{svd}. The errors decrease rapidly on the logarithmic
scale as expected by Eq. (15), arriving at $\approx 10^{-13}$ for $n_{s_vd} = 200$.

For the 30 site Kagomé cluster depicted in Fig 3, the energies of the four lowest $S=0$ eigenstates, and the first triplet $S=1$ state, converged to a very high accuracy of 10^{-11} using $n_{s_vd} = 200$.

In Fig. 7 we show the convergence of ground state energy of Lanczos-SVD versus iteration for clusters of 36 sites. We use $n_{s_vd} = 200$, and $L = 4$. For the three star triangle, the exact ground state energy as determined by standard Lanczos is $E_0(36\text{sites}) = -14.8599397$ [20]. The entanglement entropy is $S_{ee} \approx 2.5$. The calculation converges to relative energy accuracy of 1.3×10^{-4}, and an SVD truncation error of similar magnitude.

In the inset of Fig. 7 we show a much smaller error for the three star line of Fig. 2, which converged to a relative error of 6.3×10^{-8}. This is to be expected since the entanglement entropy of the linear arrangement of the three stars is only $S_{ee} \approx 1.12$.

The numerical tests were therefore consistent with Eq (15).

All the above calculations were performed using multicore workstations. The maximum memory usage was kept under 15 GB of memory, even though no lattice symmetries were implemented in the computations. The time required for the most intensive calculations (36 sites, symmetries were implemented in the computations. The time required for the most intensive calculations (36 sites, $n_{s_vd} = 200$) on using parallelisation with 16 cores was a little more than 70 minutes per iteration Fig 4 and about 35 minutes for Fig. 2. A serial MAPLE 15 implementation used in the computations for the 30 site case took about one day for each eigenstate for the same n_{s_vd}.

VI. EXTENSION TO MULTIPLE PARTITIONING OF LARGE LATTICES.

The Lanczos-SVD compresses the memory requirement by a single division of the cluster into two subclusters $i = 1, 2$. This idea could be extended to recursive partitioning [17]. For the sake of crude memory estimation, each small vector (e.g. $|\alpha\rangle_i$ in Eq. (1) can be decomposed into n_{s_vd} products of even smaller subcluster vectors. If the SVD is thus iterated p times, one obtains a representation in terms of small vectors of $P = 2^p$ subclusters. $|\psi\rangle$ is thus stored in terms of a set of the smallest vectors. The memory cost after applying a Lanczos step is as follows.

For concreteness, let us consider a two dimensional disk of radius $R >> 1$, containing $N \approx \pi R^2$ sites of spin half, divided into P equal sections as shown in Fig.8. The sections are labeled by a binary number $i = (i_1, i_2, \ldots, i_p)$, $t_k = 0, 1$. The recursive SVD decomposition yields the expression

$$|\psi\rangle = \sum_{\alpha_1, \alpha_2, \ldots, \alpha_p} \lambda_{\alpha_1}^{i_1} \lambda_{\alpha_2}^{i_2} \ldots \lambda_{\alpha_p}^{i_p-1} \prod_i |\alpha_1, \ldots, \alpha_p\rangle_i.$$

The SVD weights λ are labeled according to the boundaries they describe, as shown in Fig. (8). Each α_i runs over n_{s_vd} numbers, which means that each section i is represented by $n_{s_vd}^p$ vectors of dimension 2^{NP}. By the “area law” $S_{ee} \propto R$ on each boundary. As shown before, we must retain $n_{s_vd} \approx e R$ terms in each SVD, where $c(\epsilon) > 1$ in order to achieve a desired truncation error ϵ.

After applying H to $|\psi\rangle$, we generate a factor of $M \approx 6P n_{s_vd}$ small vectors. Thus we should store $6P R n_{s_vd}^p$ small vectors. Thus the memory cost is

$$M_e \approx 6PR \exp \left(cR \log(P) + \frac{\pi R^2 \log(2)}{P} \right).$$

Minimizing $M_e(P)$ one finds the optimal partitioning P^{opt}, and the optimal memory cost M^{opt} at large N to
scale as

$$P_c^{\text{opt}} \approx \frac{\pi \log(2)}{c} R, \quad M_c^{\text{opt}} \sim N_c e^{-\frac{\sqrt{N/\pi \log(N/\pi) - 2}}{N}}.$$

(21)

This would amount to a significant compression of memory as compared to standard Lanczos $M \sim 2^N$. The remaining challenge is to speed up the significantly larger computational time needed to orthonormalize and SVD large sets of small vectors.

VII. DISCUSSION

In this paper we have exploited the SVD to expand the lattice sizes which can be treated by the Lanczos algorithm for ED. Relative to standard Lanczos, Lanczos-SVD demands longer computation time due to additional matrix manipulations.

Does the SVD projection interfere with the Lanczos convergence? The SVD projection introduces a truncation error in the rotating vector. However, the Lanczos vector is rotated toward the ground state (or some other target state) when the relative energy splitting to neighboring eigenstates is larger than the truncation error. This rotation ceases once the energy has converged within the SVD error. Increasing n_{svd} will allow further convergence. It is simplest to think about the SVD projection in the same footing as an additional floating point error which limits the numerical convergence of standard Lanczos algorithms. In computing Fig. 7 we have indeed verified that the implementation of SVD projection in each iteration, does not slow down the energy convergence per each Lanczos step.

Computing time of Lanczos-SVD may be significantly reduced by using multiple cores and by parallelizing the code. In particular the overlap calculations, which are currently the most time-consuming, are easily parallelizable. In standard Lanczos, memory reduction can be achieved by exploiting lattice and spin symmetries, which demands special boundary conditions and extensive programming. Lanczos-SVD is therefore simpler to implement, and can address arbitrary boundary conditions.

It is often asked what advantage a Lanczos based ED has over DMRG and related variational methods? The answer of course depends on the purpose of the calculation. DMRG has proven very efficient (especially for ground state correlations) for larger lattices than Lanczos methods can address. However, in practical applications, DMRG advances toward the ground state by sequential minimizations, e.g. "sweeping" the parameters of the wave function in real space. In cases of high frustration and competing phases (e.g. near a phase transition), sweeping methods can get stuck in metastable states [21]. (Consider e.g. the difficulty of getting rid of defects in a phase separated system by sweeping methods).

The Lanczos step, on the other hand, does not necessarily move the state in the direction of maximal slope. Instead, if numerical accuracy is sufficient, it steadily rotates the Lanczos vector toward the true ground state (or some other target eigenstate). This said, it is important to note that Lanczos algorithms also may have convergence problems, if the initial state is orthogonal to the target state, and as in DMRG, when the target state is degenerate or nearly degenerate. Then, satisfactory convergence of the wave function requires special tricks which are well explored in the literature.

Under these caveats, Lanczos-SVD can be used to determine the ground state and low excitations of limited size clusters with well controlled accuracy."It could be used to check DMRG convergence and test variational ansatzes. As mentioned in the introduction, a primary purpose for using ED on small clusters is to derive an effective Hamiltonian by the CORE method[22]. The CORE effective Hamiltonian can then be studied on the coarse grained lattice by iterating CORE, or by variational methods.

Acknowledgments

We thank Dan Arovas, Yosi Avron, Sylvain Capponi, Steve Kivelson, Israel Klich, Netanel Lindner and Steve White for insightful conversations. AA acknowledges support from Israel Science Foundation, and US-Israel Binational Science Foundation, and the hospitality of Aspen Center For Physics.
[20] S. Capponi, Private communication