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Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly
conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in
the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of
the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the
magnetic helicity flux in the system. Such fluxes are known to alleviate so-called catastrophic quenching of
theα effect in astrophysical applications. A stronger field reversal can be obtained if there is also a significant
kineticα effect. Application to the reversed field pinch in plasma confinement devices is discussed.

PACS numbers: 52.55.Lf, 52.55.Wq, 52.65.Kj, 96.60.qd

I. INTRODUCTION

The interaction between a conducting medium moving at
speedU through a magnetic fieldB is generally referred
to as a dynamo effect. This effect plays important roles
in astrophysics [1, 2], magnetospheric physics [3], as well
as laboratory plasma physics [4]. It modifies the electric
field in the rest frame, so that Ohm’s law takes the form
J = σ (E +U ×B), whereJ is the current density,E is
the electric field, andσ is the conductivity. Of particular in-
terest for the present paper is the case where an electric field
Eext is induced through a transformer with a time-varying
external magnetic field,Bext, as is the case in many plasma
confinement experiments. Faraday’s law gives∂Bext/∂t =
−∇×Eext, but unlikeEext, the magnetic fieldBext is non-
vanishing only within the transformer, i.e. outside the plasma.
With such an externally induced electric field included, Ohm’s
law for the plasma becomes

J = σ
(

E +Eext +U ×B
)

. (1)

In a turbulent medium, often only averaged quantities (indi-
cated below by overbars) are accessible. The averaged form
of Ohm’s law reads

J = σ
(

E +E
ext

+U ×B + E

)

, (2)

whereE = u× b is referred to as the mean turbulent electro-
motive force, andu = U−U andb = B−B are fluctuations
of velocity and magnetic field, respectively.

It has been known for some time that the averaged profiles,
J andσE

ext
do not agree with each other in actual experi-

ments. This disagreement cannot be explained by theU ×B

term either, leaving thereforeE as the only remaining term.
Examples include the recent dynamo experiment in Cadarache
[5] and in particular the reversed field pinch (RFP) [4, 6, 7],
which is one of the configurations studied in connection with
fusion plasmas. The name of this device derives from the fact
that the toroidal (or axial, in a cylindrical geometry) magnetic
field reverses sign near the periphery. Furthermore, in the

astrophysical context it is well-known that theE term is re-
sponsible for the amplification and maintenance of large-scale
magnetic fields [1, 2].

The analogy among the various examples of theE term
has motivated comparative research between astrophysics and
plasma physics applications [8]. In these cases,E is found
to have a component proportional to the mean field (αB, re-
ferred to as theα effect) and a component proportional to the
mean current density (ηtJ , whereηt is the turbulent diffusiv-
ity). Sinceα is a pseudoscalar, one expects it to depend on
the helicity of the flow, which is also a pseudoscalar. Deci-
sive in developing the analogy between theα effects in astro-
physics and laboratory plasma physics is the realization that
α is caused not only by helicity in the flow (kineticα effect),
but also by that of the magnetic field itself [9]. This magnetic
contribution to theα effect has received increased astrophysi-
cal interest, because there are strong indications that such dy-
namos saturate by building up small-scale helical fields that
lead to a magneticα effect which, in turn, counteracts the
kineticα effect [10–12]. This process can be described quan-
titatively by taking magnetic helicity evolution into account,
which leads to what is known as the dynamicalα quench-
ing formalism that goes back to early work of Kleeorin &
Ruzmaikin [13]. However, it is now also believed that such
quenching would lead to a catastrophically low saturation field
strength [14], unless there are magnetic helicity fluxes inside
or out of the domain. The divergence of such fluxes would
limit the excessive build-up of small-scale helical fields [15].
This would reduce the magneticα effect and thus allow the
production of mean fields whose energy density is compara-
ble to that of the kinetic energy of the turbulence [16].

These recent developments are purely theoretical, so the
hope is that more can be learnt by applying the recently gained
knowledge to experiments like the RFP [6, 7]. Unlike toka-
maks, the RFP is a relatively slender torus, so it makes sense
to study its properties in a local model where one ignores cur-
vature effects and considers a cylindrical piece of the torus.
Along the axis of this cylinder there is a field-aligned current
that makes the field helical. This field is susceptible to kink
and tearing instabilities that lead to turbulence. It is generally
believed that the resulting mean turbulent electromotive force
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E is responsible for the field reversal [4, 17]. The turbulence
is also believed to help driving the system toward a minimum
energy state [18]. This state is nearly force-free and main-
tained byE

ext
. This adds to the notion that the RFP must

be sustained by some kind of dynamo process [19]. In Carte-
sian geometry such a slow-down has previously already been
modeled using the dynamical quenching formalism [20].

The RFP has been studied extensively using three-
dimensional simulations [19, 21–23], which confirm the con-
jecture of J. B. Taylor [18] that the system approaches a min-
imum energy state. Additional understanding has been ob-
tained using mean-field considerations [24, 25]. Both here
and in astrophysical dynamos there is anα effect that quan-
tifies the correlation of the fluctuating parts of velocity and
magnetic field. However, a major difference lies in the fact
that in the RFP theα effect is caused by instabilities of the
initially large-scale magnetic field while in the astrophysical
case one is concerned with the problem of explaining the ori-
gin of large-scale fields by theα effect [1, 2]. However, this
distinction may be too simplistic and there is indeed evidence
that in the RFP theα effect exists in close relation with a finite
magnetic helicity flux [26], supporting the idea that so-called
catastrophic quenching is avoided by helicity transport.

The purpose of this paper is to apply modern mean-field dy-
namo theory with dynamical quenching to a cylindrical con-
figuration to allow a more meaningful comparison between
theα effect in astrophysics and the one occurring in RFP ex-
periments.

II. THE MODEL

To model the evolution of the magnetic field in a cylinder
with imposed axial magnetic and electric fields, we employ
mean-field theory, where the evolution of the mean fieldB

is governed by turbulent magnetic diffusivity and anα effect.
Unlike the astrophysical case whereα depends primarily on
the kinetic helicity of the plasma, in turbulence from current-
driven instabilities theα effect is likely to depend primarily
on the current helicity of the small-scale field [9]. The cur-
rent density is given byJ = ∇ × B/µ0, whereµ0 is the
vacuum permeability, and the fluctuating current density is
j = ∇ × b/µ0. The mean current helicity density of the
small-scale field is then given byj · b. To a good approxima-
tion, thej · b term is proportional to the small-scale magnetic
helicity density,a · b, wherea = A−A is the vector poten-
tial of the fluctuating field. The generation ofa · b is coupled
to the decay ofA ·B through the magnetic helicity evolution
equation [10, 11, 13, 27] such thatA ·B+a · b evolves only
resistively in the absence of magnetic helicity fluxes.

Note thata · b is in general gauge-dependent and might
therefore not be a physically meaningful quantity. However, if
there is sufficient scale separation, the mean magnetic helicity
density of the fluctuating field can be expressed in terms of
the density of field line linkages, which does not involve the
magnetic vector potential and is therefore gauge-independent
[28]. For the large-scale field, on the other hand, the magnetic
helicity density does remain in general gauge-dependent [29],

but our final model will not be affected by this, because the
magnetic helicity of the large-scale magnetic field does not
enter in the mean-field model.

We model an induced electric field by an externally applied
electric fieldEext. In the absence of any other induction ef-
fects this leads to a current densityJ = σEext. Furthermore,
we ignore a mean flow (U = 0), and assume that the velocity
field has only a turbulent componentu. For simplicity we as-
sume thatE

ext
has no fluctuating part, i.e.Eext = E

ext
. The

decay ofB is accelerated by turbulent magnetic diffusivityηt,
which is expected to occur as a result of the turbulence con-
nected with kink and tearing instabilities inherent to the RFP.
This mean turbulent electromotive force has two components
corresponding to theα effect and turbulent diffusion with

E = αB − ηtµ0J , (3)

where we have ignored the fact thatα effect and turbulent
diffusion are really tensors. The evolution equation forB is
then given by the mean-field induction equation,

∂B

∂t
= ∇×

(

αB − ηTµ0J +E
ext

)

, (4)

whereηT = ηt + η is the sum of turbulent and microscopic
(Spitzer) magnetic diffusivities (not to be confused with the
resistivityηµ0, which is also often calledη). Note that only
non-uniform and non-potential contributions toE

ext
can have

an effect.
As a starting point, we assume that the rms velocityurms

and the typical wavenumberkf of the turbulence are constant,
although it is clear that these values should really depend on
the level of the actual magnetic field. We estimate the value
of ηt using a standard formula for isotropic turbulence,

ηt =
1
3
τu2, (5)

whereτ = (urmskf)
−1 is the correlation time of the turbu-

lence andurms = (u2)1/2 is its rms velocity. Thus, we can
also writeηt = urms/3kf . The validity of Eq. (5) might
be challenged by the fact that in simulations of hydromag-
netic Taylor-Couette flows, measurements ofηt have sug-
gested rather small values [30]. However, for helical mag-
netic fields, the roles of theα effect and turbulent magnetic
diffusivity are difficult to disentangle [11], and it is known
that this can result in an apparent reduction ofηt [20].

For the α effect we assume that it is given by the sum
of a kinetic part, αK = − 1

3
τω · u, where ω = ∇ × u

is the vorticity, and a magnetic part, αM = 1
3
τj · b/ρ0,

whereρ0 is the mean density of the plasma. Given that the
turbulence is magnetically driven, our expectation is that
α is determined entirely by the αM term. Therefore we
neglect this term in most cases, except for§ III C, where it
will be included. Thus, we write [9]

α = αK + 1
3
τj · b/ρ0, (6)

and use the fact thatj · b and a · b are proportional
to each other. For homogeneous turbulence we have
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j · b = k2f a · b/µ0, although for inhomogeneous turbulence,
k2f a · b/µ0 has been found to be smaller thanj · b by a fac-
tor of two [31]. We compute the evolution ofa · b by con-
sidering first the evolution equation forA ·B. Note that
A ·B evolves only resistively, unless there is material motion
through the domain boundaries [29], so we have

d

dt
A ·B = 2E

ext ·B − 2ηµ0J ·B −∇ ·F , (7)

whereF is the mean magnetic helicity flux. WhileB evolves
subject to the mean field equation (4), the magnetic helicityof
the mean field will change subject to the equation

d

dt

(

A ·B
)

= 2Etot ·B − 2ηµ0J ·B −∇ ·Fm, (8)

whereEtot = E+E
ext

andFm = E×A+ΦB is the mean
magnetic helicity flux from the mean magnetic field, andΦ
is the mean electrostatic potential. Here,E = ηµ0J − Etot

is the mean electric field. Subtracting (8) from (7), we find a
similar evolution equation fora · b,

d

dt
a · b = −2E ·B − 2ηµ0j · b−∇ ·F f , (9)

whereF f = F−Fm is the mean magnetic helicity flux from
the fluctuating magnetic field. Note thatEext does not enter
in Eq. (9), becauseEext = E

ext
has no fluctuations. This

equation can readily be formulated as an evolution equation
for α by writingα = (τk2f /3ρ0µ0)a · b, i.e.,

∂α

∂t
= −2ηtk

2
f E ·B/B2

eq − 2ηk2f α−∇ ·Fα, (10)

whereFα = (τk2f /3ρ0µ0)F f , which is a rescaled mag-
netic helicity flux of the small-scale field andBeq is the field
strength for which magnetic and kinetic energy densities are
equal, i.e.,

B2
eq = µ0ρ0u

2
rms = (3ρ0µ0/τ) ηt. (11)

We recall that in the astrophysical context, equation (10) is
referred to as the dynamical quenching model [13, 27]. In a
first set of models we assumeFα = 0, but later we shall
allow for the fluxes to obey a Fickian diffusion law,

Fα = −κα∇α, (12)

whereκα is a diffusion coefficient that is known to be compa-
rable to or somewhat below the value ofηt [29, 31].

We solve the governing one-dimensional equations (4)
and (10) using the PENCIL CODE in cylindrical coordinates,
(r, φ, z), assuming axisymmetry and homogeneity along thez
direction,∂/∂φ = ∂/∂z = 0, in a one-dimensional domain
0 ≤ r ≤ R. On r = 0 regularity of all functions is obeyed,
while onr = R we assume perfect conductor boundary con-
ditions, which implies that̂n × E = n̂ × J = 0, and thus
n̂× ∂A/∂t = 0, i.e.,n̂×A = const. Furthermore, we have
α(R) = 0, because on an impenetrable perfectly conducting
boundary both kinetic and current helicities vanish.

As initial condition, we choose a uniform magnetic fieldB0

in thez direction. In terms of the vector potential, this implies

A(r, 0) = (0, B0r/2, 0) (13)

for the initial value ofA(r, t). For the aforementioned per-
fect conductor boundary conditions, Eq. (13) impliesAφ =

B0R/2 andAz = 0 onr = R.
Following earlier work [32, 33], we drive the system

through the externally applied mean electromotive force inthe
z direction. Here, we choose

E
ext

z (r) = E
ext

0 J0(k1r), (14)

whereE
ext

0 is the value of the mean electromotive force on
the axis andk1R ≈ 2.4048256 is the rescaled cylindrical
wavenumber for whichE

ext

z (R) = 0, which corresponds to
the first zero of the Bessel function of order zero, and thus
satisfies the perfect conductor boundary condition onr = R.
An important control parameter of our model is the non-
dimensional ratio

Q = E
ext

0 /ηtkfB0, (15)

which determines the degree of magnetic helicity injection.
Other control parameters include the normalized strength of
the imposed field,

B = B0/Beq, (16)

and the value of Lundquist number,

L = vA/ηkf , (17)

which is a nondimensional measure of the inverse microscopic
magnetic diffusivity, wherevA = B0/

√
µ0ρ0 is the Alfvén

speed associated with the imposed field. The Lundquist num-
ber also characterizes the ratio of turbulent to microscopic
magnetic diffusivity, i.e.,

R ≡ ηt/η = urms/3ηkf = L/3B, (18)

which we refer to as the magnetic Reynolds number. Note
that, if we were to define the magnetic Reynolds number as
Rm = urms/ηkf , as is often done, thenR = Rm/3 would be
three times smaller. Finally, the wavenumber of the energy-
carrying turbulent eddies is expressed in terms of the dimen-
sionless value ofkfR. We treatkf as an adjustable parameter
that characterizes the degree of scale separation, i.e., the ra-
tio of the scale of the domain to the characteristic scale of the
turbulence. In most of the cases we considerkfR = 10. In
summary, our model is characterized by four parameters:Q,
B, L, andkfR. In models with magnetic helicity flux we also
have the parameter̃κα ≡ κα/ηt, where the tilde indicates
nondimensionalization. In models with kineticα effect, there
is yet another coefficient that will be specified later.

In addition to plotting the resulting profiles of magnetic
field and current density, we also determine mean-field mag-
netic energy and helicity, as well as mean-field current helic-
ity, i.e.,

Mm = 〈B2
/2µ0〉, Hm = 〈A ·B〉, Cm = 〈J ·B〉, (19)
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where〈.〉 =
∫ R

0
. r dr/(1

2
R2) denotes a volume average and

the subscript m refers to mean-field quantities. Following sim-
ilar practice of earlier work [11, 34], we characterize the so-
lutions further by computing the effective wavenumber of the
mean field,km, and the degreeǫm to which it is helical, via

k2m = µ0Cm/Hm, ǫm = Cm/2kmMm. (20)

In the following we shall refer toǫm as the relative mag-
netic helicity. We recall that, even thoughA · B is gauge-
dependent, for perfect conductor boundary conditions, thein-
tegral

∫

A ·B dV is gauge-invariant, and so is thenkm. Simi-
lar definitions also apply to the fluctuating field, whose current
helicity is given by

Cf = 〈α〉B2
eq/µ0ηt. (21)

The magnetic helicity of the fluctuating field is thenHf =
µ0Cf/k

2
f . The magnetic energy of the fluctuating field can be

estimated under the assumption that the field is fully helical,
i.e.,〈b2〉 = kf |〈a · b〉|, so thatMf = |Cf |/2kf . We study both
the steady state case whereQ andB are non-vanishing, and
the decaying case whereQ = B = 0. In the latter case, we
monitor the decay rates of the magnetic field.

III. RESULTS

A. Driven field-aligned currents

We begin by considering the case without magnetic helicity
fluxes and takeB = 1,L = 1000 (corresponding toR = 333)
andkfR = 10. The resulting values ofkm andǫm are given
in Table I and the mean magnetic field profiles are compared
in Fig. 1 for different values ofQ. It turns out that, as we in-
crease the value ofQ, the magnetic helicity of the mean field
increases, i.e. the productǫmkm increases, but therelativehe-
licity of the mean magnetic field decreases slightly, i.e.,ǫm
decreases. The value ofkm increases withQ, which means
that the mean field will be confined to a progressively thinner
core around the axis. Furthermore, the anti-correlation be-
tweenǫm andkm is also found when varyingB (see Table II),
L, or R. This is demonstrated in Fig. 2, where we show that
ǫm is in fact proportional to(km/k1)−1/4 and that the prod-
uct ǫm(km/k1)

1/4 is approximately constant, even thoughQ,
B, or L are varied. This scaling is unexpected and there is
currently no theoretical interpretation for this behavior.

It is interesting to note thatkm does not vary significantly
with B, providedR is held fixed. However, for weak fields,
e.g., forB = 0.1, the dynamics of the mean field is no longer

TABLE I: Q dependence ofkm andǫm for B = 1, L = 1000, and
kfR = 10.

Q 0.01 0.03 0.10 0.20 0.50 1.00

kmR 2.76 3.44 4.63 5.26 6.49 7.20

ǫm 0.95 0.91 0.84 0.82 0.78 0.73

FIG. 1: Equilibrium profiles for three different driving strengths for
B = 1, L = 1000, andkfR = 10.

controlled by magnetic helicity evolution, and the value of
kmR has then dropped suddenly by nearly a factor of 2, and
ǫm is in that case no longer anti-correlated withkm. This data
point falls outside the plot range of Fig. 2, and is thereforenot
included. Also, if onlyL is held fixed, so thatR varies with
B, thenkm is no longer weakly varying withB, and varies
more strongly in that case.

We must ask ourselves why the axial field component does
not show a reversal in radius, as is the case in the RFP. Ex-
perimental studies of the RFP provide direct evidence for a
reversal. By comparing radial profiles of the axial current,
J‖/σ, with those of the axial electric field,E‖, one concludes
that the mismatch between the two must come from theE‖

term [17, 35]. These studies show thatE‖ < J‖/σ near the
axis andE‖ > J‖/σ away from it (assumingB‖ > 0 on the
axis). Comparing with Eq. (2), it is therefore clear thatE‖

must then be negative near the axis and positive near the outer
rim. Turning now to dynamo theory, it should be emphasized
that there are two contributions toE‖, one fromαB and one

TABLE II: B dependence ofkm andǫm for Q = 0.1, R = 100, and
kfR = 10.

B 0.1 0.2 0.5 1 2 5 10

kmR 1.80 3.33 3.50 3.99 3.42 3.31 3.25

ǫm 0.51 0.91 0.89 0.84 0.89 0.89 0.89
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from −ηtµ0J ; see Eq. (3). Let us therefore discuss in the
following the expected sign ofE‖. Given thatQ is positive,
J · B must also be positive, and therefore we expectα to be
positive. If the mean magnetic field were to correspond to that
of a growing dynamo, theα term would dominate over the
ηt term, but this is likely not the case here where the field is
either statistically steady or decaying. Indeed, by manipulat-
ing Eq. (10) we see that, in the steady state without magnetic
helicity fluxes, the equation forα takes the form

α =
Rηtµ0J ·B/B2

eq

1 +RB
2
/B2

eq

; (22)

see, e.g., Ref. [11]. However, as alluded to above, the relevant

term enteringE is the combinationαred = α−ηtµ0J ·B/B
2
,

which is the reducedα. Inserting Eq. (22) yields

αred = −ηtµ0J ·B/B
2

1 +RB
2
/B2

eq

, (23)

with a minus sign in front. The important point here is that
αred is indeed negative ifJ · B is positive. This means that
we can only expectE‖ < J‖/σ, which is the situation in the
RFP near the axis [35]. In order to reverse the ordering and to
produce a reversal of the axial field, one would need to have
anα effect that dominates over turbulent diffusion. Note also
that for strong mean fields,αred is of the order of the micro-
scopic magnetic diffusivity. (This situation is well-known for
nonlinear dynamos, because thereαred and the microscopic
diffusion termηkm have to balance each other in a steady state
[36].)

We note in passing thatkf enters neither in Eq. (22) nor
in Eq. (23). This is the reason why we have not performed
a detailed parameter study with respect tokfR. However,kf
does enter if there is a magnetic helicity flux and it affects
the time-dependent case, as is also clear from Eq. (10). Both
cases will be considered below.

B. Effect of magnetic helicity flux

Next, we study cases where a diffusive magnetic helic-
ity flux is included. In our model with perfectly conducting
boundaries, the magnetic helicity flux vanishes on the bound-
aries, so no magnetic helicity is exported from the domain,
but the divergence of the flux is finite and can thus modify
the magneticα effect. The same is true of periodic bound-
aries, where no magnetic helicity is exported, but the flux di-
vergence is finite and can alleviate catastrophic quenchingin
dynamos driven by the kineticα effect [37].

In Fig. 3 we compare profiles ofBz with and without mag-
netic helicity flux. It turns out that theκα term has the effect
of making the resulting profile ofBz less steep. More inter-
estingly, it can lead to a reversal ofBz at intermediate radii.
For our reference run withQ = 0.1 (upper panel), the rever-
sal is virtually absent at the rim of the cylinder. This is mainly
because the pinch is so narrow; see Table III. However, when

FIG. 2: (Color online) Dependence ofǫm on km for different sets
of runs where eitherQ is varied (filled symbols),B is varied while
keepingR = 100 (red diamonds),B is varied while keepingL =
100 (orange triangles), orL is varied (blue squares).

decreasingQ to 0.03, there is a clear reversal also at the outer
rim (lower panel). On the other hand, decreasingQ to 0.01
does not increase the extent of the reversal. In none of these
cases the field reversal is connected with a change of sign of
αred. Instead,αred is always found to be negative, even in the
presence of a magnetic helicity flux. Thus, the sign reversal
of Bz is therefore associated with a sign reversal ofJz at the
same radius. Nevertheless, the reversal is still not very strong
with min(Bz)/max(Bz) ≈ −0.07, while in laboratory RFPs
this ratio is typically−0.2 [35].

C. Enhancing the reversal through a kineticα effect

The models presented above have shown that a reversal
of Bz is only possible when there is a diffusive magnetic
helicity flux within the domain. This raises the question
whether this phenomenon is more general and whether it
also occurs when one tries to promote a reversal through

TABLE III: Values of km andǫm with and without magnetic helicity
flux for B = 1, L = 1000, andkfR = 10.

Q 0.03 0.1

κα/ηt 0 1 0 1

kmR 4.63 4.503.51 3.32

ǫm 0.84 0.830.91 0.92
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FIG. 3: Effect of magnetic helicity flux on equilibrium profiles of
Bz for Q = 0.1 (upper panel) andQ = 0.03 (lower panel). In both
cases we haveB = 1, L = 1000, andkfR = 10. Note the field
reversal at the outer rim in the latter case.

an imposed kineticα effect.
We have already seen that the weak reversal discussed

in § III B was neither connected with a sign reversal ofα
nor with one of αred. It might therefore be illuminating to
impose a kineticα effect with a sign reversal, given by

αK = αK0J0(kαr), (24)

where kα ≈ 5.5200781 corresponds to the second zero
of J0, thus obeying αK(R) = 0. It turns out that it
is now indeed possible to enhance the reversal discussed
above significantly, provided αK0 is negative. This is
shown in Fig. 4, where we compare profiles ofBz for
α̃K0 ≡ αK0R/ηt = 0, 10, and 30. Here, the tilde de-
notes nondimensionalization. In the upper panel we keep
κ̃α ≡ κα/ηt = 1, but in the lower panel it is varied and
takes the values 0, 0.3, and 1. The results show quite
clearly that a strong field reversal is only possible if there
is a significant diffusive magnetic helicity flux within the
domain.

To understand the reason for the enhancement of the re-
versal in the presence of a kineticα effect and a magnetic
helicity flux, we need to consider the resulting profiles of
α = αK + αM. For αK0 = 0, we have a positive max-
imum of α at r = 0. Adopting now negative values of
αK0, we find that α is decreased atr = 0, becauseαM and

FIG. 4: Profiles ofBz for α̃K0 = 0, 10, and 30 with̃κα = 1 (upper
panel), and̃κα = 0, 0.3, and 1 with̃αK0 = 30 (lower panel), using
Q = 0.03 in both cases.

αK have here opposite signs. At larger radii (r/R > 0.5),
α is enhanced for larger values ofα̃K0, leading to a shift
of its maximum away from the axis. Nevertheless,α re-
mains strictly positive; see the upper panel of Fig. 5. This
means that the sign change ofαK has actually induced a
sign change ofαM; see the lower panel of Fig. 5. This, in
turn, suggests that the current helicities of large-scale and
small-scale fields have also changed, which is indeed com-
patible with our result that Jz remains positive, butBz

becomes negative forr/R >∼ 0.5. Thus, the field reversal
may be linked to the tendency ofα to maintain always the
same sign. This is further supported by the fact that a dif-
fusive magnetic helicity flux also tends to minimize spatial
variations of α.

The addition of a kinetic α effect can be motivated by
the fact that even purely magnetically driven turbulence
will produce flows with kinetic helicity and thus to an αK

term, although we expect it to be weaker than the magnetic
term so as not to produce dynamo action in the absence of
external driving. To determine the critical value ofαK0 for
self-excited dynamo action, we putQ = B = 0 and find
that for −αK0R/ηt > 11.49 the dynamo is self-excited.
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FIG. 5: Profiles ofα (upper panel) andαM together with−αK (lower
panel) forα̃K0 = 0, 10, and 30 with̃κα = 1 andQ = 0.03, B = 1,
L = 1000, andkfR = 10. The difference betweenαM and−αK

(gray-shaded area) corresponds toα.

D. Anisotropy of α

So far we have completely ignored the fact thatα ef-
fect and turbulent magnetic diffusivity are really tensors.
In fact, recent calculation of current-driven instabiliti es
in Couette flows suggest that the two non-radial diagonal
components ofαij have opposite sign [38]. It is unclear
whether this result is specific to the presence of differen-
tial rotation. Nevertheless, it is important to assess the
sensitivity of our results to changes in the sign of the two
diagonal components,αφφ and αzz.

We perform experiments for a case with
α = diag (0,−0.2, 1)αM and another with
α = diag (0, 1,−0.2)αM, using Q = 0.03, B = 1,
L = 1000, kfR = 10, and κα = ηt. In both cases,Bz

increases away from the axis (Fig. 6), which has never
been seen in actual RFP experiments. On the other
hand, we must keep in mind that opposite signs ofαφφ

and αzz have mainly been inferred for Couette flows,
while in the RFP there is no systematic rotation. Also,
of course, the determination ofα may be contaminated
by ill-determined coefficients of the turbulent magnetic
diffusivity tensor. It would therefore be important to
revisit this issue in future simulations of the RFP.

FIG. 6: Profiles ofBz for α = diag (0,−0.2, 1)αM (dashed line)
and another withα = diag (0, 1,−0.2)αM (solid line), usingQ =
0.03 B = 1, L = 1000, kfR = 10, andκα = ηt.

E. Decay calculations

Next, we consider the case of a decaying magnetic field
in the absence of an external electric field. In that case all
components ofB must eventually decay to zero. The evolu-
tion of the magnetic energy of the resulting mean and fluc-
tuating fields is shown in Fig. 7, together with the evolu-

tion of km andǫm. At early times, when〈B2〉 ≫ B2
eq, the

energy of the large-scale magnetic field decays at the resis-
tive rateλ = −2ηk2m. During that time, the energy of the
small-scale field stays approximately constant: the magneti-
cally generatedα effect almost exactly balances turbulent dif-
fusion and the magnetic field can only decay at the resistive

rate. However, at later times, when〈B2〉 ≪ B2
eq, the en-

ergy of the small-scale field decays with a negative growth
rateλ = −2ηk2f , which then speeds up the decay of the en-
ergy of the large-scale magnetic field to a rate that is about
1.3× ηtk

2
m, where we have used the valuekmR = 3.1 that is

relevant for the late-time decay. This value is also that obey-
ing Taylor’s [18] postulated minimum energy state. Again, no
reversal of the magnetic field is found, except in cases where
there is an internal magnetic helicity flux in the system.

IV. CONCLUSIONS

The present work is an application of the dynamical
quenching model of modern mean-field dynamo theory to
magnetically driven and decaying turbulence in cylindrical ge-
ometry. In the driven case, an external electric field is applied,
which leads to magnetic helicity injection at large scales.Such
a situation has not yet been considered in the framework of
mean-field theory. It turns out that in such a case there is a
weak anti-correlation between the actual value of magnetic
helicity of the mean field,ǫmkm, and the relative magnetic
helicity ǫm with ǫm ∼ k

−1/4
m . This weak anti-correlation is

found to be independent of whetherQ, B, orL are varied. No
theoretical interpretation of this behavior has yet been offered.
In the decaying case, we find that the decay rate is close to
the (microscopic) resistive value when the field is strong, i.e.,
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FIG. 7: (Color online) Evolution of〈B
2
〉/B2

eq, km/k1, andǫm for
different values ofB. Note that time is shifted byt∗, which is the
time whenkm attains its second maximum. In the top panel, the
red lines indicate resistive decay rate of the large-scale field at early
times, resistive decay rate of the small-scale field at late times, and
the turbulent decay rate of the large-scale field at late times.

|B| > Beq, and drops to the turbulent resistive value when
the mean field becomes weaker. This behavior has also been
found in earlier calculation of the decay of helical magnetic
fields in Cartesian geometry [20].

The original anticipation was that our model reproduces
some features of the RFP that is studied in connection with
fusion plasma confinement. It turns out that the expected field
reversal that gives the RFP its name is found to require the

presence of magnetic helicity fluxes. Without such fluxes,
there is no reversal; see Fig. 3. Nevertheless, the reversalis
rather weak compared with laboratory RFPs. This discrep-
ancy can have several reasons. On the one hand, we have
been working here with a model that has previously only been
tested under simplifying circumstances in which there is tur-
bulent dynamo action driven by kinetic helicity supply. It is
therefore possible that the model has shortcomings that have
not yet been fully understood. A related possibility is thatthe
model is basically valid, but our application to the RFP has
been too crude. For example, the assumption of fixed val-
ues ofηt andBeq is certainly quite simplistic. On the other
hand, it is not clear that this simplification would really affect
the outcome of the model in any decisive way. A different
possibility is that the application of an external electricfield
is not representative of the RFP.Yet another possibility is
that the α effect is boosted by a kinetic contribution. If
this is indeed the case, there would be particular require-
ments for such anα: it must be negative near the axis (for
positive current helicity of the large-scale field), but of op-
posite sign in the outer parts. Such anα effect has not
yet been derived or otherwise motivated for such systems.
However, if such an effect is present, it should be possible
to measure it from future direct numerical simulations of
such systems.

One of the remarkable predictions from our model is
that, regardless of whether or not a kineticα effect is
present, magnetic helicity fluxes within the domain are
always necessary for a reversal. This is indeed compati-
ble with measurements from RFP experiments [4], where
transport of magnetic helicity from one part of the plasma
to another has been observed. Thus, our simple model
has a number of detailed properties that can be tested by
performing corresponding three-dimensional simulationsof a
similar setup. This has not yet been attempted, but it would
clearly constitute a natural next step to take.
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