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We present an approximate description of the behavior of an elastic–plastic material processed by
a cylindrically/spherically symmetric converging shock, following Whitham’s shock dynamics theory.
Originally applied with success to various gas dynamics problems, this theory is presently derived
for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics
equations obtained reproduce well the results obtained by high-resolution numerical simulations.
The examined constitutive laws share a compressible neo-Hookean structure for the internal energy
e = es(I1) + eh(ρ, ς), where es accounts for shear through the first invariant of the Cauchy–Green
tensor, and eh represents the hydrostatic contribution as a function of the density ρ and entropy
ς. In the strong-shock limit, reached as the shock approaches the axis/origin r = 0, we show
that compression effects are dominant over shear deformations. For an isothermal constitutive
law, i.e. eh = eh(ρ), with a power-law dependence eh ∝ ρα, shock dynamics predicts that for a
converging shock located at r = R(t) at time t, the Mach number increases as M ∝ (log(1/R))α,
independently of the space index s, where s = 2 in cylindrical geometry and 3 in spherical geometry.
An alternative isothermal constitutive law with p(ρ) of the Arctanh type, which enforces a finite

density in the strong-shock limit, leads to M ∝ R−(s−1) for strong shocks. A non-isothermal
constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the
strong-shock limit M ∝ R−(s−1)/n(γ) originally derived by Whitham for perfect gases, where γ is
inherently related to the maximum compression ratio that the material can reach, (γ + 1)/(γ − 1).
From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure
and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially
commands the strong-shock behavior, the shear modulus and yield stress modify the compression
ratio and velocity of the shock far from the axis/origin. A characterization of the elastic–plastic
transition in converging shocks, which involves an elastic precursor and a plastic compression region,
is finally exposed.

I. INTRODUCTION

Cylindrical and spherical shock waves propagating in
solid materials have been recently the focus of atten-
tion in applied physics and engineering, starting with
the problem of an out-going (exploding) wave forced
by a moving cylinder/sphere [1], as occurs in projectile
penetration. The particular study of converging shocks
in solids is relevant to the production of high temper-
atures and pressures in condensed matter, with possi-
ble applications to inertial confinement fusion [2]. Re-
cent work has actually suggested the utilization of ultra-
dense deuterium with density ≈ 140 kg.cm−3 for fusion
experiments [3, 4]. However, experimental studies reveal
complications inherent to the measurement techniques
and the difficulty of producing a quasi-radially symmet-
ric flow with minimal excursions from circularity.

Guderley [5] originally considered cylindrically and
spherically symmetric converging shock waves in an in-
viscid ideal gas and showed that, if the shock wave is
initially already strong, there exist similarity solutions
in which the radial location R(t) of the shock is propor-
tional to a power of the time measured from the instant
when the shock has imploded to r = 0. The Guderley im-
plosion problem has been addressed by Whitham’s shock
dynamics (WSD) theory [6], which gives good approxi-
mations to the values of the Guderley exponent. WSD
was also extended to imploding shocks initially infinites-
imally weak [7] and applied to two-dimensional gas dy-

namics problems [8] such as shock diffraction by a wedge
and shock stability [9].
Yadav & Singh [10] studied the propagation of spher-

ically converging shocks in metals following WSD and
employing a Mie–Gruneisen equation of state for the hy-
drostatic part of the energy but not accounting for the ef-
fects of shear. Their solution for the post-shock pressure
approaches an inverse power of R, the exponent varying
with the effective specific heat ratio of the metal. In that
study, a distinction was also made between the behavior
of light metals like aluminum, which behave like gases in
the strong-shock limit, and heavier materials like copper,
which exhibit a slight variation of it. A similar equation
of state was used by Hiroe, Matsuo & Fujiwara [11] who
simulated a cylindrically imploding shock (and its subse-
quent reflection off the axis) using a random choice nu-
merical method. They observed that the flow only falls
within the self-similar regime commonly observed with
gases in extreme proximity of the axis.
We propose the use of hyper-elastic constitutive laws

to introduce shear deformations. The laws are formu-
lated in terms of an internal energy that is an explicit
function of the material deformation, and from which
the stress tensor can be derived in a fashion that results
in a conservative hyperbolic system [12]. Among the var-
ious constitutive laws of the hyper-elastic type, Miller &
Colella [13] proposed an additive decomposition of the in-
ternal energy in terms of hydrostatic, thermal and shear
parts. Gavrilyuk et al. [14] proposed a similar decompo-
sition with an hydrostatic part that imitates a stiffened
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gas. These constitutive laws, in which the shear part de-
pends on the three invariants of the Cauchy–Green tensor
C and the material properties can vary with the density
and entropy, are fairly general and adapt well to different
stress conditions. A summary of other constitutive laws
specific to high-compression shocks in different media
(e.g. porous materials) can be found in [15], with an em-
phasis on hydrostatic terms of the Mie–Gruneisen type.
In our analysis, we examine a compressible neo-Hookean
constitutive law [16] with constant material properties
and a shear part which is a function of the first invariant
of C only. This rather simple approach reduces the com-
plexity of the problem, allowing us to obtain analytical
solutions.

Among important effects not considered here, shock-
induced melting must be briefly discussed here. During
shock compression, temperature can rise dramatically,
but due to corresponding increase in pressure, the solid
does not necessarily melt. However, melting can occur
during the post-shock release phase. To be more precise,
continuously driven shock waves are usually experimen-
tally difficult to maintain. For example, high-velocity
flier plate impactors have finite momentum, and high-
intensity laser have finite pulse times. The shock driv-
ing force ultimately vanishes and a release wave starts
propagating behind the compressed material, usually at
a faster speed than the shock front. The release is isen-
tropic and reduces the density and pressure while main-
taining the temperature, allowing the melting of the ma-
terial.

To describe the large deformations in a highly com-
pressed material, we first introduce in Section II an Eu-
lerian description of the conservation laws governing the
finite-deformation evolution of a purely elastic material
under radially symmetric conditions. After describing
the general compressible neo-Hookean hyper-elastic con-
stitutive law employed, a WSD analytical solution is con-
structed and compared against high-resolution numeri-
cal simulations. Section III extends the study to finite-
deformation plasticity and provides similar comparisons
between numerical and analytical results.

II. ELASTIC MOTION

A. Governing equations for radially symmetric

motion

We describe here the radially symmetric motion of a
continuum elastic medium induced by the collapse of
cylindrical and spherical imploding shock waves. In an
Eulerian framework, the conservation of mass, momen-

tum and energy take the form

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
= −(s− 1)

ρu

r
, (1a)

∂u

∂t
+ u

∂u

∂r
− 1

ρ

∂σrr
∂r

= (s− 1)
σrr − σθθ

ρr
, (1b)

∂e

∂t
+ u

∂e

∂r
− σrr

ρ

∂u

∂r
= (s− 1)

uσθθ
ρr

, (1c)

where r is the distance to the axis/origin, ρ the density
field, u the radial component of velocity vector, e the
internal energy, and s the space index, with s = 1 for
planar symmetry, s = 2 for cylindrical symmetry and
s = 3 for spherical symmetry. We assume a homogeneous
isotropic hyper-elastic material, where e only depends on
the three invariants of the Cauchy–Green tensor C =
f −T f −1, namely

I1 = tr(C), (2a)

I2 = det(C)C−1, (2b)

I3 = det(C) = 1/det(f )2, (2c)

and on the specific entropy ς . An analysis of the evolution
equation for the internal energy at constant entropy,

De

Dt
=

∂e

∂fij

Dfij
Dt

= − ∂e

∂fij
fik

∂uk
∂xj

=
1

ρ
σij

∂ui
∂xj

, (3)

allows us to compute the stresses from e by =
−ρf T∂e/∂f . In these definitions, the inverse deforma-
tion tensor f represents the gradient of the mapping
that transforms Eulerian coordinates to Lagrangian (ma-
terial) coordinates, and is commonly written in Cartesian
coordinates as fij = ∂Xi/∂xj.
In cylindrical symmetry (s = 2), the inverse defor-

mation tensor reduces to a diagonal form f = diag(frr,
fθθ, 1), where plane strain is assumed (no deformation
in the z-direction). Similarly, f = diag(frr, fθθ, fφφ) for
s = 3. The density constraint J ≡ ρ0/ρ = 1/detf , where
ρ0 is the density of the undeformed material, reduces the
complexity of the problem as the non-radial components
of f are functions of frr and ρ:

fθθ =
1

Jfrr
for s = 2, (4a)

fθθ = fφφ =

√

1

Jfrr
for s = 3. (4b)

At this point, the system of equations (1) can be closed
by the choice of a specific constitutive law of the form
e(I1, I2, I3, ς), which would then allow us to determine
σrr and σθθ as a function of the inverse deformation ten-
sor components and e. Thanks to (4), only the equation
of evolution of the inverse deformation tensor component
frr is then needed to complete (1), given e(I1, I2, I3, ς),
and in the same Eulerian formalism,

∂frr
∂t

+ frr
∂u

∂r
+ u

∂frr
∂r

= 0. (5)
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B. Numerical method and computational geometry

The equations of motion (1) and (5) can be rewritten in
a conservative form and solved using a one-dimensional
second-order MUSCL finite volume scheme with a 4th-
order Runge–Kutta time-stepping method. At each com-
putational cell interface, a Riemann problem is solved
approximately using the HLL method. The geometric
source terms are computed by operator splitting, and cell
averages are evaluated at the cell centers, which over-
comes the singularity at r = 0. The simulations were
performed in spherical geometry but similar results can
be achieved in cylindrical geometry as well. To achieve
sufficiently steep capturing of the shock waves, a resolu-
tion of 104 cells was used. More information about these
numerical methods can be found in Chapter 10 (HLL),
14 (MUSCL) and 15 (source terms) of [17]. To investi-
gate the strong-shock limit, additional simulations were
performed using adaptive mesh refinement (AMR) as de-
scribed in [18]. Three levels of refinement, each one in-
creasing resolution by four, over the initial 104 cells, were
used.
The shock is initiated at the position Ri at the left

boundary of the computational domain to avoid the cal-
culation of fθθ at t = 0 for all r behind the shock (fθθ = 0
immediately behind the shock), and propagates from left
to right. The value of the initial radius Ri is not rele-
vant here since the problem does not have a characteristic
length scale. The boundary condition at the left-end of
the domain is transmissive (zero-gradient boundary con-
dition), while reflective boundary conditions are applied
at the axis/origin r = 0.

C. Whitham’s shock dynamics and

Rankine–Hugoniot jump conditions

To apply WSD, the system of PDEs (1) and (5) advect-
ing the vector of primitive variables (ρ, u, e, frr) can be
first decoupled into a set of ordinary differential equations
(ODEs) called the ‘characteristic’ equations as derived in
Appendix A. The essential assumption behind the WSD
approach is based on the intuition that, as the converging
shock is adjusting to changes in the geometry, the shock
ignores its interaction with the flow behind it and its
motion can be approximated by integrating the equation
governing the flow along the u+a-characteristics, a being
the sound speed. Numerical simulations confirm that the
slope of the family of u+ a-characteristics is indeed close
to the slope of a converging shock trajectory, in particular
when the shock gets stronger (e.g. see Fig. 1(b)). This in-
tuition can be motivated by a small-perturbation analysis
of the shock propagation down a nonuniform shocktube
of cross-sectional area A(r) slowly varying from A(r) to
A(r) + dA. Over the length of the shocktube, the errors
might accumulate but they are neglected in the WSD
theory.
Assume that the shock is located at the radial position

r = R(t) at time t. For the characteristic curve of slope
u + a, the ODE relating the changes in the post-shock
properties as r (> R) varies is further simplified by us-
ing the Rankine–Hugoniot (RH) jump conditions across
the moving shock, which give the primitive variables im-
mediately behind the shock in terms of the shock Mach
number M . In the frame of reference of the shock im-
ploding at the instantaneous speed U(t) = −dR/dt > 0,
the weak formulation of the conservation equations (1)
and (5) leads to the following jump conditions normal to
the shock,

ρ(U − u) = ρ0U, (6a)

ρ(U − u)2 − σrr = ρ0U
2 − σrr0 , (6b)

ρ(U − u)

[

e+
1

2
(U − u)2

]

− σrr(U − u)

= ρ0U

(

e0 +
1

2
U2

)

− σrr0U, (6c)

frr(U − u) = U, (6d)

which relate the state immediately behind the shock
(r = R+) to the unshocked quiescent state ‘0’. These
conditions can be reformulated as

J =
1

frr
, (7a)

u = a0(1 − J)M, (7b)

σrr = σrr0 − ρ0a
2
0(1− J)M2, (7c)

e = e0 −
σrr0
ρ0

(1− J) +
1

2
a20 (1− J)

2
M2, (7d)

where M = U/a0 > 1. Observe that J < 1 since the
material is being compressed by the shock, and that Eq.
(4) and (7a) imply that fθθ is unaltered by the shock.
We now test different constitutive laws.

D. Neo-Hookean isothermal constitutive law

Assuming an isothermal constitutive law, i.e. e inde-
pendent of ς , reduces the governing equations to Eq. (1a),
(1b) and (5), with the jump conditions to (7a), (7b)
and (7c), since the energy equation is now redundant.
A fairly general isothermal constitutive law proposed by
Blatz and Ko [19] is:

e(f ) =
µ

2ρ0
(I1 − 3I

1/3
3 ) +

∫ ρ

ρ0

p(ρ′)

ρ′2
dρ′, (8)

with the density constraint I3 = J2 = (ρ0/ρ)
2
,where µ

is the shear modulus and the so-called hydrostatic pres-
sure p was assumed to not depend on ς . Using the geo-
metrical simplifications of the inverse deformation tensor
described in Section IIA and transforming both inverse
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deformation tensor f and stress tensor σ to curvilinear
coordinates, we obtain:

σrr =
µ

J

(

1

f2
rr

− J2/3

)

− p(ρ0/J), (9a)

σθθ =
µ

J

(

J4−sf4−s
rr − J2/3

)

− p(ρ0/J). (9b)

Unlike gases, the sound speed a in solids depends
on the deformation mode: for general three-dimensional
deformations, compression (or longitudinal) waves and
shear deformation waves exist, each propagating at a dif-
ferent velocity. In radially symmetric motion, the eigen-
structure of an hyper-elastic material only involves com-
pression waves traveling at speeds u± a with a referring

to the longitudinal sound speed, now simply called ‘sound
speed’. For the isothermal constitutive law (8), we ob-
tain:

a =

√

a2µ

(

1

f2
rr

+
1

3
J2/3

)

− J2

ρ0

dp

dJ
, (10)

where the shear modulus-based wave speed has been de-
fined by aµ ≡

√

µ/ρ0.

The derivation of the equation for the u + a-
characteristic curve and the application of the necessary
shock jump conditions are described in Appendix A1 a
and lead to the following ODE for any isothermal pres-
sure form:

dR

R
= − 1

s− 1

a [a+ a0(1 − J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[

a0
(

a2 − 2a2µJ
2
)

M + a2µa(1 + J)
] dJ, (11a)

M(J) =
1

a0

√

1

1− J

[

p(ρ0/J)

ρ0
− a2µ

(

J − J−1/3
)

]

, (11b)

where a(J) is given by Eq. (10) using Eq. (7a). This ODE can be integrated to obtain R as a function of J

R

Ri
= exp

(

− 1

s− 1

∫ J

Ji

a [a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[

a0
(

a2 − 2a2µJ
2
)

M + a2µa(1 + J)
] dJ

)

, (12)

with Ji and Ri the initial density ratio and position of the
shock. The shock velocity U = a0M is then found using
Eq. (11b), and integrated to obtain the shock trajectory
r = R(t).

1. Polynomial dependence for p(ρ)

As an example, we use the pressure form proposed by
Miller & Colella in [20] for the Wilkins’ flying aluminum
plate problem:

p
(ρ0
J

)

=

3
∑

α=1

cα

(

1

J
− 1

)α

, (13)

where µ = 27.8GPa, ρ0 = 2.7 kg.m−3, c1 = 72GPa,
c2 = 172GPa, and c3 = 40GPa. In the strong-shock
limit M ≫ 1, (11b) and (13) imply that J must tend to
0, which leads to an infinite density at r = 0. A more
general power law p = cαJ

−α with α > 1, similar to the
one given by (13) as M ≫ 1, would simplify the ODE
(11) to:

dR

R
≃

√
α

2(s− 1)

dJ

J3/2
. (14)

Solving Eq. (14), and using Eq. (7b) and (11b), the
strong-shock limit gives, for a shock at r = R,

J ≃
(

a0
ρ0
cα

)

−2/α

M−2/α, (15a)

u ≃ a0M, (15b)

p ≃ ρ0a
2
0M

2, (15c)

a ≃
√

αcα
ρ0

(

ρ0a
2
0

cα

)(α−1)/2α

M (α−1)/α, (15d)

with M ≃ 1

a0

√

cα
ρ0

[(

s− 1√
α

)

log

(

Ri
R

)]α

.(15e)

It is interesting to notice that the power of log(1/R) does
not depend on the space index. Also observe that for a
pressure dependence p = J−α, the isentropic exponent
defined by Γ ≡ ∂ log p/∂ log ρ is exactly equal to α.
As depicted in Fig. 1(a), the density ratio immediately

behind the converging shock predicted byWSD compares
favorably with the one obtained from high-resolution nu-
merical simulations, even when the shock is weak. The
u+a-characteristics obtained from the numerical simula-
tion and the shock trajectory predicted by WSD are dis-
played in Fig. 1(b). The characteristics behind the shock
follow a trajectory that is closer to that of the shock as
we approach the origin and the shock becomes stronger,
confirming the underlying intuition behind WSD: only
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a small envelope of information carried by the u + a-
characteristics can reach the shock, and as the shock
strengthens, it has almost lost memory of the flow behind
it. Figure 1(c) represents the shock Mach number M as
a function of the shock location R(t)/Ri, down to dimen-
sionless radii of 10−4. The numerical simulation shows
good agreement for low Mach numbers and small discrep-
ancy arises at moderate Mach numbers (2 <∼M <∼ 5). At
higher Mach numbers, the slope dM/dR of both meth-
ods agree well until the shock has reached such small radii
that the resolution of the computational grid is not suf-
ficient to track the shock, which occurs at M ≈ 50. As a
reference for later comparison with the other constitutive
laws tested, we indicate that at R/Ri = 10−1, 10−2 and
10−3, the shock Mach numbers obtained in the simula-
tion are M ≈ 2.00, 5.23 and 16.49 respectively.

2. Arctanh form for p(ρ)

We investigate an alternate pressure term for the con-
stitutive law defined by Eq. (8):

p
(ρ0
J

)

= p0

(

Arctanh (J∞/J)

Arctanh (J∞)

)β

, (16)

where p0 is the unshocked pressure and β a positive in-
teger. The material cannot be compressed more than a
limit value J∞ reached at the axis/origin which corre-
sponds to infinite pressure. In contrast, for the same sit-
uation, the internal energy and density were unbounded
for the polynomial pressure form (13). As J approaches

J∞, p ∼ (− log(J − J∞))
β
, and we can show that (11)

simplifies to

dR

R
≃ − 1

s− 1

dM

M
. (17)

As a result, the strong-shock limit M ≫ 1 for a shock at
r = R gives

J − J∞ ∝ e−2ψM2/β

, (18a)

u ∝ M, (18b)

p ∝ M2, (18c)

a ∝ M (β−1)/βeψM
2/β

, (18d)

with M ∝ R−(s−1), (18e)

where ψ (J∞, aµ, p0, β) is a positive coefficient. From
(18e), the shock trajectory near the center follows R ∝
(t∞ − t)1/s, where t∞ defines the implosion time. The
exponent in (18e) depends on the space index s only, not
on the material properties or other parameters such as
J∞. We also report that the isentropic exponent Γ is not

constant, precisely Γ ∝ e2ψM
2/β

/M2/β as M ≫ 1.
Figure 2 shows numerical results superposed with the

WSD solution. For low values of the integer β = 1 in
(16), J approaches J∞ at a very small rate dJ/dR as
r → 0, and numerical inconsistencies ultimately arise
when the Arctanh argument becomes greater than 1 due
to machine precision-generated errors. This is corrected
by choosing higher values of β, for example β = 5 in
the present case. As seen in Fig. 2(c), the WSD so-
lution obtained using the Arctanh law for the pressure
does not perform as well as polynomial one because the
strong-shock regime described by Eq. (18) (where WSD
errors are expected to be minimal) is only reached for
very small values of J − J∞ as second-order terms are
close to the dominant terms (this can be appreciated in
the figure as the power law is not reached for the WSD
result until R/Ri < 2 · 10−4). We report that M ≈ 2.23,
8.29 and 43.27 at R/Ri = 10−1, 10−2 and 10−3 respec-
tively. For a given shock position, the Mach number of
the shock is higher than when using a polynomial pres-
sure form, essentially because of the large value of the
exponent β chosen and the higher rate of increment of
the Mach number with the radius.

E. Neo-Hookean non-isothermal constitutive law

Consider now the following simple non-isothermal con-
stitutive law, to account for high-pressure effects near the
axis/origin:

e(f , ς) =
µ

2ρ0
I1 + cvT0J

1−γexp

(

ς − ς0
cv

)

, (19)

where ρ0, T0 and ς0 refer to the unshocked density, tem-
perature and specific entropy, and cv and γ are the spe-
cific heat at constant volume and specific heat ratio. The
first part of this constitutive law represents the elastic
shear deformation of the material, while the second part
simply portrays the internal energy of an ideal gas. We
expect this material to behave like an ideal gas in the
strong-shock limit (where the pressure term should be
dominant) or as µ = 0. The stress components σrr and
σθθ are given by

σrr =
µ

Jf2
rr

− (γ − 1)ρ0
J

{

e− µ

2ρ0

[

1

f2
rr

+ (s− 1)J4−sf4−s
rr

]}

, (20a)

σθθ = µJ3−sf4−s
rr − (γ − 1)ρ0

J

{

e− µ

2ρ0

[

1

f2
rr

+ (s− 1)J4−sf4−s
rr

]}

, (20b)
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and the sound speed reduces to:

a =

√

−γJσrr
ρ0

+ (1 + γ)
a2µ
f2
rr

. (21)

As µ = 0, Eq. (20a) indeed shows that σrr = −(γ −
1)ρe, and the ideal gas sound speed a =

√

γp/ρ is then
recovered with the pressure defined by p = −σrr.
The derivation of the ODE resulting from WSD theory

is more tedious than that of the isothermal constitutive
law. The u+a-characteristic equation is reported in Ap-
pendix A2. The combination of that expression with the
RH jump conditions (7) gives a final ODE of the form
dR/R = F (J)dJ , which reduces in the strong-shock limit
to

dR

R
≃ − n(γ)

s− 1

dM

M
, (22a)

with n(γ) = 1 +
2

γ
+

√

2γ

γ − 1
. (22b)

Manipulating the jump conditions (7) further and using
Eq. (20a), it can also be shown that J must tend to the
finite value J∞ = (γ − 1)/(γ + 1) as M ≫ 1 (similarly
to the ideal gas case), and after integration of (22), we
obtain for a shock at r = R(t):

J − J∞ ∝ M−2, (23a)

u ∝ M, (23b)

p ∝ M2, (23c)

a ∝ M, (23d)

with M ∝ R−(s−1)/n. (23e)

While γ has a clear physical meaning for ideal gases, it
could be expressed in the constitutive law (19) as a func-
tion of the maximum compression ratio 1/J∞ that the
solid can reach. The scaling law (23e) corresponds ex-
actly to the power law found by Whitham when applying
his WSD method to ideal gases [6], and gives an approxi-
mate strong-shock trajectory R ∝ (t∞−t)n/(n+s−1). Ob-
serve in particular that the exponent is independent on µ.
In other words, in the strong-shock limit, the solid does
experience a zero-shear behavior governed by the pres-
sure part of the constitutive law (19). Moreover, Γ ≃ γ
only as M ≫ 1, while Γ = γ for an ideal gas indepen-
dently of the conditions of compression.

The WSD prediction conforms to the numerical results
at all the stages of the shock evolution (Fig. 3). This
is confirmed by the observation that characteristics be-
hind the shock follow very closely the trajectory of the
shock. The shock Mach number plotted as a function of
the shock position offers the best of agreement between
WSD and numerical results of the three cases studied. At
R/Ri = 10−1, 10−2 and 10−3, the shock Mach number is
M ≈ 3.17, 7.71 and 19.02 respectively.

III. PLASTIC MOTION

Most materials submitted to sufficiently high stress
conditions undergo large strains when small stress in-
crements are additionally applied, and residual deforma-
tions remain even when the stresses are removed. This
defines the plastic regime. When uniaxial stress condi-
tions are applied to a deformable medium, the transition
between the elastic state and the plastic state can be de-
fined by a limit stress, normally called yield stress. For
other stress conditions involving more than one compo-
nent of the stress tensor, more complex yield criteria de-
termine whether a material point is in plastic or elastic
state. Yield criteria are usually based on the deviatoric
part of the stress tensor since plasticity appears to be
an incompressible process and is therefore intimately re-
lated to shear deformations. In the present study, as
the converging shock processes the solid with an increas-
ing strength, the shocked material is expected to ulti-
mately reach its intrinsic yield stress and enter the plastic
regime. The results shown in the previous section were
therefore only valid for some fictitious material with in-
finitely large yield stress.

A. Finite-deformation plasticity

To account for plasticity, we first introduce a finite-
deformation plasticity framework that complements the
elastic theory developed in the previous section. The in-
verse deformation tensor is decomposed into an elastic
deformation and a plastic one: f = f pf e, where f e and
f p are the elastic and plastic inverse deformation ten-
sors. To meet the particular geometry constraints of this
problem, only the diagonal components of these tensors
are non zero once transformed to curvilinear coordinates
(as was argued in the elastic case). From the compress-
ibility constraints J = 1/ det f and Jp = 1/ det f p = 1
(no change in volume for the plastic deformation), and
because J = JeJp, we can express the θθ- and φφ-
components of the total, elastic and plastic inverse de-
formation tensors in spherical geometry as functions of
their radial counterpart and J :

fθθ = fφφ =

√

1

Jfrr
, (24a)

feθθ = feφφ =

√

1

Jferr
, (24b)

fpθθ = fpφφ =

√

1

fprr
, (24c)

where ferr is related the plastic inverse deformation tensor
component by

ferr =
frr
fprr

. (25)

For a cylindrical problem under plain strain however, no
assumption about the components fezz and f

p
zz other than
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fzz = fezzf
p
zz = 1 can simplify the problem in a way that

would express the non-radial components in terms of the
radial ones. We therefore focus on the spherical geometry
for the remaining part of the study.

To pursue the analysis further, consider the compress-
ible neo-Hookean isothermal constitutive law given by
Eq. (8). Although the energy equation is redundant, it
would need to be included to evaluate the plastic dissipa-
tion. Because the internal energy determines the energy
stored in the solid that can be released by mean of elas-
tic deformation, Eq. (8) must be written in terms of the
elastic deformations (and not their total counterparts):

e(f e) =
µ

2ρ0
(Ie1 − 3(Ie3)

1/3) +

∫ ρ

ρ0

p(ρ′)

ρ′2
dρ′, (26)

with Ie1 , I
e
2 , I

e
3 the invariants of the elastic Cauchy–Green

tensor C
e = (f e)−T (f e)−1. The stresses are computed

from σ = −ρf eT ∂e/∂f e:

σrr =
µ

J

(

1

fe2rr
− J2/3

)

− p(ρ0/J), (27a)

σθθ = σφφ =
µ

J

(

Jferr − J2/3
)

− p(ρ0/J). (27b)

In general, the system (1a), (1b), (5) and (27) must be
completed by an evolution equation for fprr, f

e
rr being

then computed using Eq. (25). In the following subsec-
tion, we are exposing a simpler closure.

B. Perfectly plastic model

For simplicity, we consider the material being pro-
cessed by the converging shock as elastic–perfectly-
plastic. In uniaxial stress, this means that plasticity oc-
curs at a constant stress equal to the yield stress σY (i.e.

no incremental stress is needed to achieve larger deforma-
tions). For more general stress conditions, this concept is
extended to a yield criterion of the form σeff = σY , where
σeff is an effective stress function. For example, the von
Mises constraint may be expressed as

σeff ≡
√

3

2
tr (Σ′TΣ′) = σY , (28)

where Σ′ is the deviatoric part of the Mandel stress tensor

Σ = −(ρ0/ρ) f
e−T

σ f e
T

[21]. Applying this expression
to a diagonal stress tensor σ = diag(σrr, σθθ, σφφ) and
σφφ = σθθ, as the one given by (27),

σY = J |σrr − σθθ|. (29)

For the elastic solution behind a converging shock, we
had σrr−σθθ = µ

(

J2 − 1
)

/J < 0, since J < 1. Numeri-
cal results (see next subsection) shows that σrr−σθθ < 0
in the plastic regime as well. Substituting the stresses
by their expressions in terms of the elastic deformations
given by Eq. (27), we finally obtain the following implicit
dependence of ferr on J :

σY
µ
fe

2

rr − Jfe
3

rr + 1 = 0. (30)

This relationship implies that the stresses (27) depend
on J only, unlike the stresses for a purely elastic material
which also depended on frr. The system of governing
equations for an elastic–perfectly-plastic solid processed
by a spherical converging shock then reduces to Eq. (1a),
(1b), (27) and (30).

1. Shock dynamics for elastic–perfectly-plastic solids

Derivation of the u+a-characteristic equation and uti-
lization of the RH jump conditions (see Appendix A1 b)
leads to the final ODE:

dR

R
= −1

2

[a+ a0(1 − J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ, (31a)

M(J) =
1

a0

√

1

1− J

[

p(ρ0/J)

ρ0
− a2µ

(

1

Jfe2rr
− J−1/3

)]

, (31b)

where ferr is a function of J through Eq. (30). Integration of Eq. (31a) gives

R

Ri
= exp

(

−1

2

∫ J

Ji

[a+ a0(1− J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ

)

. (32)

For the polynomial law (13), the strong-shock limit corre-
sponds to J ≪ 1, for which ferr ∼ J−1 ≫ 1 according to
the constraint (30). For the Arctanh law (16), large Mach

numbers are obtained when J approaches J∞, while ferr
reaches a finite value given by Eq. (30) when J = J∞. For
both isothermal laws, the compression effects are dom-
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inant over the shear deformation terms and the strong-
shock limits are the same as for the purely elastic case
(Eq. (15) and (18)). Comparisons with numerical simu-
lations are provided in the following section.

C. Numerical simulation of elastic–plastic shocks

To gain generality, we implemented a numerical exper-
iment allowing the material behind the shock to be ini-
tially elastic and to transition to a plastic regime when
processed by a stronger shock. The system of equations
(1a), (1b), (5), (25) and (27), which govern the deforma-
tion of an elastic–plastic solid following a compressible
neo-Hookean isothermal constitutive law, is closed by in-
troducing an equation of evolution of the plastic defor-
mation in the radial direction F prr = 1/fprr, expressed in
an Eulerian formalism as

∂ρF prr
∂t

+
∂ρuF prr
∂r

=

− 2ρuF prr
r

+ ρF prr ǫ̇
σrr − σθθ
|σrr − σθθ|

(

J |σrr − σθθ|
σY

)N

,(33)

where the first term of the right-hand side is a geometric
source term accounting for the symmetry of the prob-
lem, while the second source term incorporates the plas-
tic model [see 18]. The exponent N is a large positive
integer (i.e. N > 10) and ǫ̇ is a positive constant that
can be assigned freely and symbolizes a reference strain
rate. The plastic source term tends to zero rapidly when
the effective stress J |σrr − σθθ| is smaller than the yield
stress σY (elastic regime) so the plastic deformation F prr
cannot increase. However, when the effective stress over-
takes the yield value, this forcing term transforms F prr
such that the effective stress is brought back to the yield
curve, given here by (30).
In contrast to the geometric source term, an implicit

time-stepping method is necessary to handle the numer-
ically stiff plastic source term that intends to modify
quasi-instantaneously the plastic deformation to bring it
back to the yield curve. The splitting strategy now re-
quires the following steps: First, the homogeneous prob-
lem related to the system (1a), (1b), (5) and (33) is
solved, then the solution is updated using a 4th-order
Runge–Kutta explicit method after inclusion of the geo-
metric source terms. Finally an implicit backward Euler
method is employed for the plastic source term.
Figure 4 reveals good agreement between the WSD so-

lution described in Paragraph III B 1 and the numerical
simulation for a converging shock in aluminum described
by an elastic–plastic material following the isothermal
constitutive law (26) and (13). The value of the yield
stress is so low that the material processed by the inci-
dent shock becomes purely plastic even for weak shock
strengths (hence the appelation of ‘plastic shock’) and no
elastic–plastic transition is visible here. It can be shown
that this material enters the plastic regime for J <∼ 0.98.

Plasticity appears to have a positive effect on the agree-
ment between the WSD and numerical simulations when
compared to the purely elastic case for this same consti-
tutive law (Fig. 1). Since plasticity is not dominant at
the strong shock limit, this effect should be attributed to
better agreement at the medium range of Mach numbers
(2 < Mshock < 5) that is where the small disagreement
betweenWSD and simulations appears in the elastic case.
At R/Ri = 10−1, 10−2 and 10−3, the shock Mach num-
bers are M ≈ 1.86, 4.98 and 15.57 respectively. These
values are lower than the ones obtained for the purely
elastic case with the same constitutive law, indicating
that the shock travels at a slower velocity when a finite
yield stress is introduced.

1. Elastic–plastic transition

To highlight the elastic–plastic transition for non-weak
shock waves, we have artificially increased the yield stress
and decreased the value of the coefficients in the pres-
sure form (13). Setting σY = 7GPa and cα = 1 GPa
for α = 1, 2, 3, the new material enters the plastic region
at J ≈ 0.85. As reported in Fig. 5(a), an initially elas-
tic shock converges, and a plastic region forms behind as
soon as the yield stress has been reached. As the couple
‘elastic precursor–plastic region’ converges towards the
center, the plastic region becomes steeper and narrower
while the elastic precursor keeps a constant strength.
When approaching the center further, the elastic pre-
cursor disappears and a quasi-discontinuous plastic wave
remains.
The elastic–plastic transition described in Fig. 5(a)

can be tracked using the Hugoniot curve for the mate-
rial, expressing the response σeff for smooth compression
(Fig. 6). As the material is compressed along the radial
direction, prior to reaching the yield point (segment OA
in Fig. 6), the entropy remains constant and the restoring
force greatly increases (elastic compression). The onset of
plasticity is materialized by a kink in the Hugoniot (point
A). During this elastic period, the shock Mach number
increases from its initial value (in the case of the simu-
lation, Mi ≈ 1.01) to the elastic precursor Mach number
(in this case, M e ≈ 1.2). Beyond the yield point, only a
slight increase in normal stress is required to significantly
compress the material as most of the additional work is
converted to entropy instead of additional restoring stress
(segment AB). As a result, for a final compression large
enough that the yield point is exceeded, the initial state
of the material can be linked to the corresponding fi-
nal state only by an elastic compression of fixed strength
up to the cusp (segment OA) and a plastic compression
from the cusp to the final level (segment AB). The in-
crement in the slope of the segment initiated at A as the
strength of the shock increases is related to the accelera-
tion of the plastic region. If the total compression is large
enough, the initial state can be directly connected to the
final compressed state without going through the kink,
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in which case only a plastic compression occurs (segment
OD). The path OAC represents the transition from the
elastic–plastic to the purely plastic regime, moment in
which the plastic region overtakes the elastic precursor.
There exist differences with the elastic–plastic transi-

tion observed in planar geometry (see [22] for a detailed
description of planar shocks in solids). In planar geom-
etry (see Fig. 5(b)), a plastic discontinuity of constant
strength is directly formed behind the elastic precursor
(a discontinuous wave of constant strength as well) if the
compression is such that the yield point is reached and
that both waves can exist. In this case, the elastic pre-
cursor travels faster than the plastic shock. In the con-
verging geometry however, as the compression increases,
a plastic wave is ultimately formed with a compact radial
extent, strengthens, narrows, accelerates, and ultimately
overpasses the elastic precursor near the center.

D. Influence of the shear modulus and plasticity on

the shock velocity

In this section, we consider the behavior of three mate-
rials: i) a purely elastic material of the aluminum kind,
following the isothermal constitutive law (8) and (13);
ii) its elastic–plastic equivalent, with σY = 0.29 GPa;
iii) the same material with ‘zero-shear’ (µ = 0). Previ-
ous sections have confirmed that the compression term
(as µ = 0) becomes dominant as the shock strengthens,
along with results for the converging problem that were
obtained considering only the compression part of the
stress [10, 11]. Figure 7(a) supports the form (11b): the
shear-related deformations (µ 6= 0) accelerate the shock.
The existence of a finite yield stress limits this effect,
giving results that are closer to the zero-shear material.
This is because the existence of the finite yield stress de-
creases the value of the shear part of the Mach number
(second term in the square root of (31b)) through the
constraint (30). We have chosen to not make the time
dimensionless in this plot since a0 depends on µ. Ac-
cording to Fig. 7(b), for a shock at a given radial loca-
tion, a purely elastic material is slightly more compressed
than its zero-shear and elastic–plastic equivalents due to
a higher shock Mach number at a given position.

IV. CONCLUSION

Exact solutions of Whitham’s shock dynamics equa-
tions for compressible neo-Hookean elastic–plastic solids
were derived. Closed expressions for the shock evolution
can be obtained in terms of definite integrals. Results
show that this method is a highly accurate tool for study-
ing converging shocks, even when shear deformations and
plasticity are considered in addition to the hydrostatic
pressure contributions commonly used.
Analysis of the strong-shock limit revealed that the

behavior of an elastic–plastic material close to the

axis/origin r = 0 is highly dependent of the pressure
equation that is used. For an isothermal law with p(ρ)
of the type p ∝ ρα, with α > 1, ρ is unbounded at r = 0
and M ∝ (log(1/R))α, where the exponent depends on
α but neither on other material properties nor on the
geometrical space index s. As the shock converges, its
shock strength increases at a slower rate than for the two
other equations of state investigated for which the den-
sity of the shocked material remains bounded close to
the origin: M ∝ R−(s−1) for an isothermal law with
p(ρ) of the Arctanh type, and M ∝ R−(s−1)/n(γ) for
the non-isothermal ‘ideal gas’-like constitutive law. For
both cases, the exponent depends on s, but the Arctanh
strong-shock limit does not involve the maximum com-
pression ratio ρ∞/ρ0 that the material can reach at r = 0,
unlike the ideal gas-like material where ρ∞/ρ0 indirectly
appears in n(γ). The study of more complex constitutive
laws remains open for future research.
We have observed that the existence of shear defor-

mation terms accelerates the shock with respect to the
same material with a shear modulus artificially set to
zero (i.e. with deformations induced by isotropic stresses
only). However, limiting the stresses by a yield value at-
tenuates this effect, reaching a result closer to the zero-
shear case. Because weak shocks are usually sufficient
to overcome common materials’ yield stress and initiate
plastic deformations behind them, we therefore conclude
that isotropic stresses could be solely considered to de-
scribe the state of an elastic–plastic solid processed by
converging shocks.
The transition from an elastic to a plastic shock ex-

hibits a complex structure of two compression waves mov-
ing at different velocities that falls beyond the capabil-
ities of Whitham’s shock dynamics. Numerical simula-
tions showed that the converging geometry modifies the
elastic precursor–plastic shock structure usually observed
in planar symmetry, making the converging plastic shock
travel faster than the elastic precursor.
The present work could serve as a basis for studying

more complex initial conditions, where perturbations are
added to the radially symmetric flow presently studied.
In particular, we plan to analyze the Richtmyer-Meshkov
flow that would be generated when an imploding wave
impacts an inhomogeneous material or more simply an
interface between two different materials (e.g. solid–solid
or solid–gas interfaces). Previous publications by the au-
thors already analyzed the Richtmyer–Meshkov flow at
an impulsively accelerated planar interface between two
elastic incompressible solids [23], obtaining stable behav-
ior of the interface in any conditions, and for gas–gas
interfaces in converging geometry [24], which can be un-
stable.
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Appendix A: Method of characteristics and

Whitham’s shock dynamics

The equations of motion (1) and (5) can be written in
the following matrix form,

∂W

∂t
+A(W)

∂W

∂r
= S, (A1)

where

W =







ρ
u
e
frr






, (A2a)

A =















u ρ 0 0

−1

ρ

∂σrr
∂ρ

u −1

ρ

∂σrr
∂e

−1

ρ

∂σrr
∂frr

0 −σrr
ρ

u 0

0 frr 0 u















, (A2b)

S =
s− 1

r









−ρu
(σrr−σθθ)

ρ
uσθθ

ρ

0









.(A2c)

W is called the vector of primitive variables, S contains
the geometric terms in the right-hand side of Eq. (1) and
(5), andA is a matrix whose eigenvalues and eigenvectors
define the characteristic equations. We find two repeated
eigenvalues u associated to two convective modes (along
whom trajectory ς and frr are conserved), and two dis-
tinct eigenvalues u± a associated to compression modes.
The system (A1) decouples as

L
∂W

∂t
+ LARL

∂W

∂r
= LS, (A3)

where L and R are the matrices whose rows and columns
respectively contain the left and right eigenvectors of A.

In the WSD approximation, we choose one of the fam-
ily of characteristic curves whose slope in the r− t plane
is closer to that of the shock wave. If the shock advances
with positive radial velocity, the correct family of charac-
teristics to approximate the shock path is the one whose
eigenvalue is given by u + a. Provided that a constitu-
tive law is prescribed, an ODE that relates the changes in
the primitive variables dWi for an infinitesimal change dr
along this characteristic curve can be written. The dWi

can ultimately be related to the change in one variable,
the shock Mach number, using the RH conditions (7). As
we will discover, it is easier to use J = ρ0/ρ instead ofM
as the natural variable in the problem, and differentiation
of J and of the RH conditions (7a,b,d) gives:

dW =







dρ
du
de
dfrr






=







−ρ0/J2

a0 [(1− J)M ′(J)−M ]
σrr0/ρ0 + a20(1− J)M [(1− J)M ′(J)−M ]

−1/J2






dJ. (A4)

We now apply this method to different constitutive laws. 1. Isothermal constitutive law

a. Elastic motion

As mentioned in Section IID, the energy equation
is redundant for the isothermal elastic case. This re-
duces the system of PDEs to Eq. (1a), (1b) and (5). As
a consequence, three simple eigenvalues are found (no
more entropy mode traveling with the material velocity):
(λ1, λ2, λ3) = (u − a , u , u + a), where a is the sound
speed. For the constitutive law (8), the matrices A, L
and R reduce to:
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A =







u ρ 0

−1

ρ

∂σrr
∂ρ

u −1

ρ

∂σrr
∂frr

0 frr u






,L =

















a2 − 2a2µ/f
2
rr

ρa2
−1

a

2a2µ
f2
rra

2

frr
ρa2

0 − 1

a2

a2 − 2a2µ/f
2
rr

ρa2
1

a

2a2µ
f2
rra

2

















,R =













ρ
2a2µρ

f3
rr

ρ

−a 0 a

frr
2a2µ
f2
rr

− a2 frr













,

(A5a,b,c)

where the partial derivatives of σrr are given by:

1

ρ

∂σrr
∂ρ

=
1

ρ

{

a2µ

[

1

f2
rr

− 1

3

(

ρ0
ρ

)2/3
]

− dp

dρ

}

, (A6a)

1

ρ

∂σrr
∂frr

= −
2a2µ
f3
rr

. (A6b)

In the above expressions, the sound speed a is expressed as

a =

√

√

√

√a2µ

[

1

f2
rr

+
1

3

(

ρ0
ρ

)2/3
]

+
dp

dρ
. (A7)

The characteristic equation corresponding to λ3 = u+ a reads:

a2 − a2µ/f
2
rr

a2ρ

dρ

dr
+

1

a

du

dr
+

2a2µ
f2
rra

2

dfrr
dr

=
s− 1

ρa(u+ a)r

[

−
(

a2 −
2a2µ
f2
rr

)

ρu

a
+ σrr − σθθ

]

, (A8)

and using Eq. (9) and (A4), and the fact that r = R(t) at the shock location, leads to the ODE

dR

R
= − 1

s− 1

a [a+ a0(1 − J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

(1− J)
[

a0
(

a2 − 2a2µJ
2
)

M + a2µa(1 + J)
] dJ, (A9a)

M(J) =
1

a0

√

1

1− J

[

p(ρ0/J)

ρ0
− a2µ

(

J − J−1/3
)

]

, (A9b)

for any isothermal pressure form p(ρ).

b. Perfectly plastic motion

The existence of a finite yield stress eliminates the ex-
plicit dependency of the radial stress with respect to frr.
In contrast, σrr depends on the density both explicitly
through J and through ferr by Eq. (30). Three distinct
eigenvalues are obtained: (λ1, λ2, λ3) = (u− a , u , u+ a),

with the sound speed being:

a =

√

−dσrr
dρ

=

√

−a2µ
(

1

fe2rr
+

2

fe3rr

dferr
dJ

J − 1

3
J2/3

)

+
dp

dρ
, (A10)

with J = (ρ0/ρ), where the derivative of the elastic defor-
mation with respect to the density ratio can be obtained
by differentiating Eq. (30):

dferr
dJ

=
fe

3

rr

2ferrσY /µ− 3Jfe2rr
. (A11)

Then, the matrices A,L and R read:
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A =







u ρ 0

−1

ρ

∂σrr
∂ρ

u 0

0 frr u






, L =















frr
2ρ

−frr
2a

0

−frr
ρ

0 1

frr
2ρ

frr
2a

0















, R =









ρ

frr
0

ρ

frr
− a

frr
0

a

frr
1 1 1









. (A12a,b,c)

After finding the left and right eigenvectors, the following ODE holds along the characteristic λ3 = u+ a:

1

ρ

dρ

dr
+

1

a

du

dr
=

2

(u+ a)r

(

− σY
ρ0a

− u

)

. (A13)

Using the RH conditions finally leads to:

dR

R
= −1

2

[a+ a0(1 − J)M ] [−a/J + a0(1− J)M ′(J)− a0M ]

[a0a(1− J)M + σY /ρ0]
dJ, (A14a)

M(J) =
1

a0

√

1

1− J

[

p(ρ0/J)

ρ0
− a2µ

(

1

Jfe2rr
− J−1/3

)]

, (A14b)

where ferr is implicitly given by (30).

2. Non-isothermal constitutive law for elastic

motion

In this case, we solve the complete system of equations
given by Eq. (1) and (5). Two simple eigenvalues and one

eigenvalue of multiplicity two are found: (λ1, λ
(2)
2 , λ3) =

(u− a , u , u+ a), with the speed of sound being:

a =

√

−γσrr
ρ

+
a2µ
f2
rr

(1 + γ), (A15)

where σrr is given by Eq. (20a). The matrices A, L and
R are:

A =















u ρ 0 0

−1

ρ

∂σrr
∂ρ

u −1

ρ

∂σrr
∂e

−1

ρ

∂σrr
∂frr

0 −σrr
ρ

u 0

0 frr 0 u















, (A16a)

L =























− frr
2ρa2

∂σrr
∂ρ

−frr
2a

− frr
2ρa2

∂σrr
∂e

− frr
2ρa2

∂σrr
∂frr

frr
ρa2

∂σrr
∂ρ

0
frr
ρa2

∂σrr
∂e

1

ρ2a2

(

σrr
∂σrr
∂e

− ρ2
∂σrr
∂ρ

)

− σrr
ρ2a2

∂σrr
∂ρ

0 − 1

ρa2

(

frr
∂σrr
∂frr

+ ρ
∂σrr
∂ρ

)

− σrr
ρ2a2

∂σrr
∂frr

− frr
2ρa2

∂σrr
∂ρ

frr
2a

− frr
2ρa2

∂σrr
∂e

− frr
2ρa2

∂σrr
∂frr























, (A16b)

R =

















ρ

frr
−∂σrr
∂frr

/∂σrr
∂ρ

−∂σrr
∂e

/∂σrr
∂ρ

ρ

frr
− a

frr
0 0

a

frr
− σrr
frrρ

0 1 − σrr
frrρ

1 1 0 1

















, (A16c)
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where the partial derivatives of the radial stress are computed as follow:

∂σrr
∂ρ

=
2Jσrr − µ(γ − 1)(s− 1)(4− s)J4−sf4−s

rr

2ρ0
, (A17a)

∂σrr
∂e

= − (γ − 1)ρ0
J

, (A17b)

∂σrr
∂frr

=
µ

J

[

−γ + 1

f3
rr

+
(γ − 1)(s− 1)(4− s)J4−sf3−s

rr

2

]

. (A17c)

The characteristic equation corresponding to λ4 = u+ a can be written as:

L4,:
dW

dr
=

1

u+ a
L4,:S, (A18)

where L4,: is the fourth row of matrix (A16b). Noting the source term (A2c) as S = (s − 1)S′/r and using Eq. (7),
(20) and (A4), we obtain the closed ODE:

dR

R
=

1

s− 1

[a+ a0(1− J)M ] L4,:(J)dW/dJ

L4,:(J)S′(J)
dJ, (A19a)

M(J) =
1

a0

√

a2µ [2− J2 − γ(J + 2)2] + 2e0(γ − 1) + 2σrr0 [1− γ(1− J)] /ρ0

(1 − J) [1 + J − γ(1− J)]
. (A19b)
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FIG. 1. Spherically symmetric (s = 3) converging shock ini-
tially started at R = Ri with Ji = 0.9 (i.e. Mi ≈ 1.14)
and propagating from left to right into a purely elastic solid
medium described by the isothermal constitutive law (8) with
polynomial pressure form (13): (a) Density radial profiles
obtained from the numerical simulation at equally spaced
times (dashed lines) and density ratio immediately behind
the shock (r = R(t)+) given by WSD (solid line); (b) u+ a-
characteristics obtained from numerical simulation (dashed
lines) and shock trajectory r = R(t) vs t obtained from WSD
(solid line); (c) Shock Mach number M as a function of the
shock position R(t) plotted in a log–log scale, from the simu-
lation (dashed line) and WSD (solid line).
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FIG. 2. Spherically symmetric (s = 3) converging shock ini-
tially started at R = Ri with Ji = 0.9 (i.e. Mi ≈ 1.02)
and propagating from left to right into a purely elastic solid
medium described by the isothermal constitutive law (8), us-
ing the Arctanh pressure form (16) with the choice J∞ = 1/6,
p0 = 10GPa and β = 5. See Fig. 1 for keys.
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FIG. 3. Spherically symmetric (s = 3) converging shock ini-
tially started at R = Ri with Ji = 0.9 (i.e. Mi ≈ 1.07)
and propagating from left to right into a purely elastic solid
medium described by the non-isothermal constitutive law (19)
with γ = 1.4 (i.e. J∞ = 1/6). See Fig. 1 for keys.
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FIG. 4. Spherically symmetric (s = 3) converging shock ini-
tially started at R = Ri with Ji = 0.9 (i.e. Mi ≈ 1.01)
and propagating from left to right into an elastic–plastic solid
medium following the the isothermal constitutive law (26)
with the polynomial pressure form (13), and given the von
Mises constraint (28) with σY = 0.29 GPa (aluminum). See
Fig. 1 for keys.
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FIG. 5. Density radial profiles obtained from the numeri-
cal simulation for (a) spherically symmetric converging and
(b) planar motion. Elastic–plastic deformations follow the
isothermal constitutive law (26), using the polynomial pres-
sure form (13) with c1 = c2 = c3 = 1GPa, and given the von
Mises constraint (28) with σY = 7GPa. Note that for the
planar case an initial shock Mach number cannot be defined
since the shock is started beyond the elastic–plastic transi-
tion. The elastic precursor Mach number is Me ≈ 1.02 for
both simulations
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shock for an elastic–plastic material. The Hugoniot curve (i.e.
the locus of the possible post-shock states of the material for
a given initial condition) is completed by some Rayleigh lines
(i.e. the thermodynamic path connecting the initial state with
a post-shock state). Isothermal polynomial pressure form is
considered, but the shape of the Hugoniot curve and the dif-
ferent regions can be reproduced for other constitutive laws.
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FIG. 7. (a) Shock trajectory and (b) J immediately behind
the shock vs R for a spherically symmetric (s = 3) converging
shock initially stated at r = Ri with Ji = 0.9. Comparisons
between the purely elastic, elastic–plastic and zero-shear solid
simulations using the isothermal constitutive law (8) or (26),
with the polynomial pressure form (13). σY = 0.29 GPa was
used for the elastic–plastic case.


