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On pattern identification in systems with S(1) symmetry
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This work is devoted to pattern identification in systemdw#{1) symmetry based on limited experimental
data. As we demonstrate, such pattern identification is tioatpd by the lack of a theoretical basis as well as by
the presence of experimental uncertainties, and possieléapping and missing points in the data. The study
is motivated by a recent finding of physical systems wher@hbikties of different wavenumbers may co-exist
and thus lead to several single-wavenumber patterns supesed with a random phase-shift between them.
As shown in this work, such patterns cannot be identified Wishrier analysis as well as direct measurement
of the wavenumbers is not possible. We present both a catistritheoretical approach, which establishes
the conditions under which the structure of such patterridestifiable, and an example of application — the
crown structure analysis in the drop splash problem. Folatiter study a new experimental setup is developed
based on high-speed stereo photography, which producesuitable for a quantitative analysis of the observed
patterns.
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I. INTRODUCTION
A. Motivation

There are many natural and engineering systems, which ex
hibit pattern formation and are defined on periodic spatial o
time domains: among them are coupled oscillatdis ¢s-
cillatory convection in binary mixture®?], numerous astro-
physical phenomen&{6], synchronous rhythmic flashing of
fireflies [7], along-the-edge instabilities of accelerating liquid (a)
sheets §], crown patterns in the drop splash phenoméedja [
to mention a few. In this work we consider systems where patFIG. 1: Patterns observed in the drop splash probBJm(#) single-
terns are formed due to instabilities with several wavenensb Wavenumber crown, (b) frustrated crown.
excited at the same growth rate. One recent example refers to
along-the-edge instability of liquid shee® [LO, 11], where
it was found that the linear evolution of the interfacialiper ~ dom phase shifts between them.
bation f (or its Fourier coefficienfy,, k € R andn € Z), is
governed by the dispersion relation:

B. Key problem
2=« (0”1K2 + 1) , Q)

Given the above theoretical example of frustrated pattern
where 1 is the growth rate,x = +vVnZ2+k? the two- forming systems among many other natural phenomena, the
dimensional wavenumber, and the bifurcation parameter. natural question is how to identify such patterns based en ex
Since the growth raté depends only on the modulus of the perimental data. Namely, given experimental points, tHe co
two-dimensional wavenumbes the maximum growth rate lection of which is limited and could represent just peaks of
Amax iS achieved akmax = Vo /3 and thus ifkmax > N > 1, the pattern (e.g. the location of spikes in figdjecan one de-
there exists several critical wavenumbéfy parameterized compose the pattern into single-wavenumber subpatteths wi
byi =0,...,n, with the same growth ratgnax. random phase shifts between them? As discussed below, such

At the linear level, the above result implies that if only patterns cannot be identified with Fourier analysis as weell a
one critical wavenumber is excited, then the pattern islsing direct measurement of the wavenumbers is not possible.
wavenumber, while for higher values @fmore than one crit- In this work we focus on one-dimensional systems with
ical wavenumber can be excited such that the picture becomé&{1) symmetry, i.e. circle group, though the results are read
‘frustrated’, cf. figurelb, as was discovered recently in certain ily applicable to systems with isomorphic 8(1) symmetry
regimes of the drop splash phenome®jaThe frustrated pic- groupsS Q2), T, andR/Z as well as generalizable to higher
ture occurs due to randomness of the initial conditionsctvhi  dimensions. Therefore, our data are a list of points of thefo
are amplified and evolved into several superimposed single® = {64, ..., 6,} and its underlying pattern structure is the sub-
wavenumber patterns of different wavenumbers and with raniect of this study. For example, for the spatial domain case i
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the context of the drop splash crown shown in figlyeach  of application of the DFT, circular statistics, and the onoa-

6; represents the angle location of an individual crown spikeameter method to gain some insight into the pattern stregtu
on the interval [02r). In the time domain case, the data could however, as will be shown below, they do not allow one to re-
be signals of several flashing fireflieg with rational ratios  solve the key problem adequately and robustly.

of periods R7] which naturally have a random phase shift be-

tween them: each would then be the time corresponding to

a single flash. The problem on both time and spatial domains A. Discrete Fourier transform

is to determine an underlying periodic structure of sulgpat

of a given collection of data poin® — the list of time events  While the DFT is the standard tool for wavenumber or fre-
or spatial locations. Obviously, such sampling does not-comquency analysis, it works well only for the data obeying the
ply with the Nyquist-Shannon theorert] (i.e. if the period  Nyquist-Sahnnon sampling theorem. For example, given the
of our signal is Z/nin the case oh spikes, the sampling rate set @) representing only the spike location, so that the corre-
should ben/r), which makes the discrete Fourier transform sponding points on the unit circle are

(DFT) approach impossible as will be shown below. How-

ever, here we have limited data, e.g. only the peaks of pat- =€ n=0,...,N-1, 4)
terns, which, as we will show, are nevertheless sufficient to
determine the pattern structure. the DFT
N-1
Xe= ) Xqe @Mk k=0, N-1, (5)

C. Paper outline oy
In what follows, in§ll we first discuss the currently avail- 9VesX = {0,4,0,0}, i.e. the wavenumbér= 1 (correspond-
able tools and show their inapplicability to the resolutmfn N9 tO the wavelength7) is identified instead of the correct
the key problemformulated above. Next, we develop a the- onek = 4._ The same Fourier amplitud&sare obtained for

ory (§111), which shows under which conditions patterns arethe very different data sé = {x/2,7/2,7/2,7/2}.

identifiable in the ideal casgl{IB), in the presence of scat-

ter §lIIC), as well as for the data with overlapggl(D) and | Xk |

missing points {Ill E). As an example of application of the ’
developed theory, we use the data from the crown patterns in 6
the drop splash problen§l{/), which required a new experi-
mental technique§(V A) to obtain data suitable for the anal-
ysis presented here. The examples of data analysis are given 2
in §IVB. The discussion is concluded §V with questions 1 1
requiring further exploration. 2 f ¢

(a) (b)
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II.  INAPPLICABILITY OF KNOWN APPROACHES
FIG. 2: On inability of DFT to identify the structure of frusted

) o ~_ patterns: (a) two patterns of wavenumber 4 with the phaserstii2,
In the case of a simple periodic signal one may use finitgb) power spectrum of DFT for the function in figuza; X, = 7.93.

differences\d;; = 6,—6; to identify if such a pattern is periodic
with a single period because the first off-diagonal elemehts  a;55 if we superimpose on the top oR)(the same
the matrixAé;; give the period, e.g. for wavenumber patterr2) but with a phase shifb = /12, then

: the DFT yields the distribution of the Fourier amplitudesras

© =1{0.7/27,3n/2}, (2) figure2b, which clearly illustrates that for a given set of data,

the DFT does not help one to identify readily that there are

this matrix becomes . .
two single-wavenumber patterns wikh= 4 and the phase-

0 -Z —g & shift¢ = n/12. Instead, one may may formally conclude that
2 2 . . .
| %2 0 -% —x 3 the pattern is of the wavenumber 2 with some noise. The
AGj = n 2 0 -% | (3) useful insight one can get from the above examples is that the
37,, n % 0 maximum of the power spectrum (in the ideal case without

scatter) shown in figurgb approximately equals to the num-
which tells us that the period i8/2. However once multi- ber of pattern data points, e.g. in the considered examniple, i
ple periods are present, one must account for ‘interfefencesquals to B3 ~ 8, but there is a number of possible com-
and thus finite differences alone become insufficient and inbinations of wavenumbers yielding the same maximum of the
efficient. In the case of substantial number of data points, @ower spectrum. The number of possible subpattern combina-
‘guess work’ search for patterns is not feasible either beea tion grows with the number of data points and thus makes the
of the large number of possible combinations to analyze. BeDFT approach non-constructive. Therefore one needs atrobus
sides these direct inefficient approaches one may also thirknd systematic approach to decompose and identify patterns
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B. Circular statistics and order parameter A regular patternis a set consisting of a finite unio@§] of
single-wavenumber patterns with (potentially, randormgggh

There are many systems, defined on a circle, which includ&hifts between them, cf. figuZa. As a result, airregular
problems with angles and time and require statistical amly Patterndoes not have a regular structure and cannot be de-
known as circular statisticslf]. One example from circu- C€OmMposed into a union of single-wavenumber patterns.
lar statistics is the measurement of the angles at whictsbird FOr systems witt5(1) symmetry it is natural to consider
take flight [L4]. The biologists are interested in how the data@ data point as an angtec [0, 27), where the angles 0 and

If a single-wavenumber pattern with wavenumliecon-
dtainsk elements it is said to beomplete i.e. not missing
pany elements. Expressing a regular pattern in terms ofesing|
Wavenumber patterns constitutgsttern decompositian

B. Regularideal patterns

are clumped, i.e. if the birds leave in the same direction2 aré understood to represent the same point. A single-
Therefore, the circular statistics analysis is not inidatly ~ Wavenumber pattern is described by a wavenurkke® and
targeted to the identification and quantification of regplte & Phase with respect to the origifi = 0, as illustrated in fig-
terns, because a regular distribution of the birds depmeny ~ Ure 3. Positive angles are measured in the counter-clockwise
gles would involve some sophisticated bird behavior! direction from thex-axis. The spacing between two consec-
More precisely, given a set of angles on the intervalf), utive elements of a single-wavenumber pattern is called the
each of them defines a unit vector — adding up all these uni/@velengthi and related to the wavenumber ky= 27/4,
vectors results in a vector of lengthwhich can be rephrased Which is an integer and also represents the number of points
more compactly using complex exponentials (spikes) on the unit circle.
1c ‘
iy (m iojm
r(m)éM):N;éJ , MeN, (6) //
o\ |
where in the casen = 1 the expressiome? is known as
the trigonometric momenin circular statistics 13], and the
complex order parametan dynamical systemsl| 15]. Es-
sentially, the complex order parameter can be interpresed a
the collective rhythm produced by the collection of points o . ) .
the unit circle in the complex plane. The complex order paF!G- 3: An ideal single-wavenumber patten®(4,¢), with
rameter is a useful diagnostic tool but its scope is to give g/avenumber 4 and phage= 7/6 relative to a given, e.g. labora-
sense of how well ordered the system isr(t) ~ 0, then tory, system of coordinates.
the system is considered disordered as the unit vectors poin
in arbitrary uniformly distributed directions; if, on theher
handr(1) ~ 1, then the azimuths of a distribution are clumpe
in a particular direction. This is also known as the Rayleig
test. From the prospective of our analysis of patterns, whe
the order parameter is small, as in the case of regular patter
data with some scatter, then there is formally no difference
between random and regular data from the point of view of
circular statistics. The general case 6f,(n > 1 introduced N _ . .,
by Daido [L6], allows one to characterize the synchroniza- W& begin with the simplest case — the ‘ideal pattern” —
tion properties and clusteringtm) €*(™ are them-th Fourier WhICh is considered to be free from e_xpenmental scattee Th
modes of the distribution of phases. While the usual Ky-deal pattern case will serve the basis for more generakcase
ramoto order parametef1) %) [15] is suitable for distribu- developed later ig§HI C-IIE.
tions with a single maximum, the higher order parameters are
suitable for analyzing distributions with several maxiwien 1 Definitions
referred to as clusters. However, as we will showlIM, even '
such a generalization is not suitable for identification af-p o ] ]
terns composed of several single-wavenumber patterns with FOr the purpose of qualitative analysis, we will need a for-
random phase shifts between them. mal definition of ideal patterns.
Definition 1 (Ideal single-wavenumber pattern)et ® =
{61,...,0¢) be a set ofo > k > 2 elements. If® can be
Ill. PATTERN IDENTIFICATION THEORY represented as
{6h€[0,27)|0h=nA+¢p,forn=0,...,k=1}, (7)
whered = 2r/k is the wavelength and € [0, 1) the phase
shift, then®(k, ¢) is anideal single-wavenumber pattern

A. Key notions

We begin by first introducing the key notions informally as
motivated by the examples discussedgh andll. A single- An ideal regular pattern is a set, which can be decomposed
wavenumber patteris a set of elements which are regularly into a finite union of ideal single-wavenumber patternspas f
spaced on a circle and have at least two elements, &)g. ( malized below.
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Definition 2 (Ideal regular pattern)Let ® be a finite set which allows one to distinguish the eleme#itof the set®
obeying (0), which belong to that single-wavenumber pat-
tern. Equation10) states that the spacing between elements in
where®() is thei" ideal single-wavenumber pattern such thatan ideal single-wavenumber pattern are multiples of theswav
e NeW = gifi # j, andmis the least number of ideal lengtha of that pattern. In particular, for a single-wavenumber
single-wavenumber patterrzg], then ® is anideal regular  pattern of wavenumbeés = 27r//l containingk elements, we
pattern should expect to finuﬂ;) = positive entries in the dif-
ference matribA@.

Given2, equation 10) allows one to form a set of elements
from A®jj, which belong to a single-wavenumber pattern with
wavelengthA. This set of elements, which are spaced by
multiples ofa, requires further consideration. Two complica-

jons may occur: (a) it may be that ‘pathological’ phasetshif
etween subpatterns of different wavenumbers coincide wit
the wavelengthl and thus give rise to spurious pairs of ele-
ments, or (b) there may be multiple single-wavenumber pat-
terns with the same wavenumber and some phase shifts be-
tween them. Even though the situation (a) is highly improb-
able due to randomness of the initial conditions, thoseispur
us elements are easy to exclude from the consideratioa sinc
he wavenumber (and therefore the number of elements in the

m .
containing all elements of interest. & = (J OO (k, ),
i=1

2'(k 2)!

Note that permutations in this decomposition into single-
wavenumber patterns do not lead to a new pattern. To clar-
ify the terminology introduced above, consider the exam-
ple in figure3. Plotted are the angles from the @t =
(¢, 7/2+ ¢, m+ ¢,37/2+ ¢} with ¢ = n/6. By inspection
we see that this set is a single-wavenumber pattern with th
wavenumbelk = 4 and the wavelength = /2 because
O=04,¢)={6,€[0,21)|0=7n/2+ ¢, forn=0,...,3}.

For the subsequent analysis, we will also need the differ;
ence matrix introduced i§ll, which is a key step towards un-
covering the regular decomposition of a @t {6y, ..., 0\}
with N elements. The differendg x N skew-symmetric ma-
trix A® consists of differences between all pairs of element

in the se®: single-wavenumber pattern) is known. As for the situattmn (
A =6, — 0. (8) the individual same Wevengr_nber patterns and the phass shift
between them can be identified based on the knowledge of the
Remarkl. The difference matrix@® contains N — 1)N/2 = wavenumber. A search for possible single-wavenumber pat-
(N—NZ!)!Z! - ( ) possible unique entries; its lower triangular half terns is started with the largest wavenumber N, i.e. con-
of A® contains all the positive difference combinations, cf. {@ining the total number of elements@& Namely, starting
@A). with the largest wavenumber ensures that the fewest number

of single-wavenumber patterns will be used in the decompo-

sition. Once single-wavenumber patterns are identifiesly th
2. Pattern identification are removed from the s@ and the process iterates until every

element 0f® belongs to a unique single-wavenumber pattern.

Now the idea is to demonstrate decomposability of idealBy construction, the pattern decomposition is unique. o

regular patterns.

Theorem 1. If a given ideal regular pattern is complete and 3. Subpatterns of single-wavenumber patterns

without overlapping elements, then there exists an algorit

which identifies it. The resulting pattern decomposition is In certain cases, a single-wavenumber pattern may be de-
unique. composed as a union of smallsubpatterns A subpattern

is simply another single-wavenumber pattern with a smaller
Qvavenumber (larger wavelength), which is a subset of the
larger single-wavenumber pattern under consideratioris Th
idea of subpatterns will prove useful when analyzing pater
With overlaps inglliD.

rithm capable of decomposing any given ideal regular patter
which is complete and without overlaps, into ideal single-
wavenumber patterns with some phase shifts between the
In order to initiate a decomposition of the given®adf length

N into ideal single-wavenumber patter@® (ki ¢;), we first )
identify the wavelengtht of ideal single-wavenumber pat-

terns. Let us consider differences between two elements of

(C]

A@jj = 6 - 6 = (A + ¢i) — (MA" + ¢)), 9

for someni,n’j € Z*. Any pair of elements belong either
to the same single-wavenumber pattern or to different singl
wavenumber patterns. Should two elemdrapperto belong
to the same single-wavenumber pattern, i.e6,,if; € 00,
thend = 2" andg; = ¢}, in which case equatio® becomes

FIG. 4: An ideal single-wavenumber patted(6, 0).

We now clarify these ideas with an example. Referring to
A@jj = (ni —nj)A, nj —nj € Z7, (10)  figure 4, where®(6,0) = {6, € [0,27)|§ = nn/3 forn =



0,...,5}, we can observe that this single-wavenumber pattern 4 0.4
with wavenumber 6 can be grouped into two sets of single- "
wavenumber patterns with wavenumber 3, or into three sets

of single-wavenumber patterns with wavenumber 2:

0(6,0) = ®1)(3,0) U 09(3,7/3), (11a)
= 00)(2,0) U 0W(2,7/3) U 0®(2,27/3). (11b)

In general, this leads to the following claim, the proof of

which is straightforward.

Lemma 1. Any ideal single-wavenumber patte@(N, ¢),

(b)

FIG. 5: On the definition and identification of patterns witater:
(a) a pattern with scatter (dark circles) defined relativéhtoideal

where N is not a prime number, may be expressed as a unidtfttern (light circles), (b) representing a circular patten a graph:

of ideal single-wavenumber patterns of wavenumber p, wher!

p is an integer divisor of N,

N/p

ON.¢) = JOO (p.g+ n(i - 1)) . (12)
i=1

C. Regular patterns with scatter

A natural generalization of ideal patterns is to consider th
case of (non-ideal) regular patterns when the elemen@® of
have some uncertainty (experimental scatter) associated

e points are plotted as coordinatasy), where the line represents
the ideal linear relationshipA + ¢ with A being the wavelength, e,
is the residual between the line and the plotted peins 6, — (N +

9)-

to avoid the ambiguity when two points lie within the scatter
radius and effectively overlap. From a theoretical perspec

the two conditions — spacing of the elements and the pattern
completeness — are sufficient to avoid the cases when pattern
are not identifiable.

Theorem 2. If a given regular pattern® with scatters is
tomplete and in the ideal regime, such that none of the two

them. As such, the following development is more relevant taslements o® are closer than twice the scatter,> 26, then

actual measured data. It is natural to introduce non-idaal p
terns by allowing deviations (residuals) from the idealecas

there exists an algorithm which identifies the pattern. Tée r
sulting pattern decomposition is unique.

Hence, a regular pattern with scatter is defined about the cor

responding ideal regular pattern by lettigdoe the deviation

Proof. We will again demonstrate the existence of an algo-

of ¢ from the ideal case. A natural assumption is that theithm which identifies regular patterns with scatter by pdev

magnitude of the uncertaintiés| is bounded from above by
some constani. Such patterns are calledgular with scat-
ter, where the amount of scatter is quantified with sicatter
bounds.

Definition 3 (Single-wavenumber pattern with scat-
ter). Let © {61,...,6¢ be a set with k ele-
ments. If ® admits the following representation
{6h€[0,27)|0h =N+ ¢+ €&, forn=0,..., k-1, |&| < 5},
whered = 2r/k is the wavelengthg € [0, 1) the phase
shift, ands the scatter, the®(k, ¢, §) is asingle-wavenumber
pattern with scatter

ing the decomposition into single-wavenumber patternk wit
scatter. Le® be a regular pattern witN elements which can

be partitioned into single-wavenumber patterns with scatt

In the ideal regime, the single-wavenumber patterns are sep
arated such tha®® N @ = ¢ if i # j. Similar to the case
without scatter, we begin by considering a difference betwe
two elements 0®

A®jj =6 = 0 = (Ni A+ ¢n + &) — (N + ¢ + &), (13)

for some indicesni,n’j € Z*. In analogy to the ideal case
considered irglll B, equation 13) may be simplified i#; and
0j belong to the same single-wavenumber pattern with scatter.

Figure 5 illustrates the correspondence between the twdrhatis,d;, ; € ©®
ways of viewing the same pattern. On the left is the unit cir-

cle with pointsg; shifted bye from the ideal location. On the
rightis a plot in the, 8,)-coordinates. All the points collapse
to a line in the limit of vanishing scattér— 0. This graphical
representation of a regular pattern naturally illustraester
and phase shifts, e.g. the phase shift is justytirgercept of
the line. One can apply standard error analy%ig py con-
sidering® = {04, ..
ideally should fall on a lin@, = An+ ¢, whered = 2r/kand
k € N (cf. figure5b).

AOIJ = (n - n/) A+ €n — €. (14)

By the theorem assumptios,, &, are both bounded by con-
stants, so that the relationld) gives

|A®;; — (n—n') | < 25. (15)

.,On} as a series of measurements, whichEquation (5) is an exact analogy to equatiob(j in the ideal

case with the only difference that the scatter paranddtero-
duces an inequality (the ideal equality ca$6)(is recovered

As easy to see, the condition for a given pattern to be in thén the limit § — 0). Thus, the algorithm follows that of theo-
ideal regime is when two elements are not closer than twiceem 1 and therefore provides a unique pattern decomposition

the scattes, 1 > 2. Such spacing of the elements allows one(provideda > 26).

O
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FIG. 6: Two overlapping single-wavenumber patterns with (a) (b)

wavenumbers 3 and 4 which share the elerden®. .
Therefore, in the regular pattern regime with scatter, the / \ \
analysis is straightforward and no ‘pathological’ casesdne { / / .

be considered because the points are spaced according to the
conditions in theorer@. With the modification of the equality

(10) to the inequality 15), the algorithm is identical to the one
presented for ideal regular patterngii B .

-

(©) (d)

D. Regular patterns with overlaps FIG. 7: On the definition of incomplete patterns (light oirslare
the removed elements): (a) the complete single-wavenupdieern

Until now, we have considered only regular patterns WherY"ith wavenumbek = 4, (b) one element removed: the incomplete
single-wavenumber pattern is identifiable, (c) two elerseatmoved:

no overlapping single-wavenumber patterns may occur. I:Ig‘fhe incomplete pattern is still identifiable, (d) two elerseremoved:

_ureG |Ilustrat_es an ideal regular pattern with overlaps CORSISt e resulting single-wavenumber pattekn<2) cannot be identified
ing of two single-wavenumber patterr@(3,0) and®(4,0), 5¢ incomplete.

which share one elemerit= 0. A physical example and rea-
sons for the presence of overlaps will be giveRIME. Due to

the fact that overlapping elements are ‘double-counte®ga 1 oy suppatterns, finding redundant subpatterns of a single-
ular pattern with overlaps has fewer elements than the sum Qf5yenumber pattern is trivial and guarantees a unique pat-
the elements of the constituent single-wavenumber pattern e decomposition. Once subpatterns are removed, all that
The presence of overlaps in a regular pattern requires theymains are the largest possible single-wavenumber patter
understanding of the origin of single-wavenumber pattdens  \yhich constitute the decomposition of the ideal regular pat

veloped in§lll B, as will become clear from the subsequentiern. The rest of the algorithm is the same as in thedrent
discussion.

Motivated by the example in figuré let us consider
ideal regular patterns, which may contain overlappinglidea E. Incomplete patterns
single-wavenumber patterns, while each component single-

wavenumber pattern is complete. . . . . .
P P Finally, we provide some considerations for the case of in-

Theorem 3. If a given ideal regular pattern, possibly contain- complete regular patterns, i.e. when there are missinggoin
ing overlaps, consists of complete single-wavenumber pawhlch can be due to, for example, the limited ability to ccile

terns, then there exists an algorithm which identifies ite Th €xperimental data. These considerations lead to a proper de
resulting pattern decomposition is unique. inition of incomplete patterns and the conditions when they

are identifiable. It is not straightforward, however, to defi
Proof. Let us again demonstrate the existence of an algorithnan incomplete pattern, because any given regular pattern ca
which identifies ideal regular patterns potentially conitajj ~ be considered to be the result of a larger pattern missing the
ideal single-wavenumber patterns with overlaps. Accommoappropriate elements. We illustrate this and other complex
dating the presence of overlaps requires only a few modiiies with the following simple example of a regular single-
fications of the original algorithm developed §filB. The  wavenumber patter@(4, ¢) in figure7a. Let us remove some
main modification is to note that a given elemeénte ®  elements and consider whether the resulting incomplete pat
may belong to multiple single-wavenumber patterns. Theretern is identifiable. To identify an incomplete pattern, ami
fore, subtracting single-wavenumber patterns as theydarei mal number of elements are added such that a regular pattern
tified may affect other equally valid single-wavenumber pat is completed.
terns. One mechanism to avoid this complication is to test In the first case, when only one element is removed, as
for and identify all possible single-wavenumber patterithw shown in figurerb, the incomplete pattern is identifiable and
wavenumbers ranging frold to 2 without removing single- can be completed, because the grayed element can be added
wavenumber patterns once they are identified. From lemmhby extrapolating the obvious wavelengtii2 to the area of



missing spikes.

The second case deals with two elements, which can be re-
moved in two ways. Figuréc shows the result if two consec-
utive elements are removed. In this case, the incomplete pat
tern may be identified in the manner analogous to the one in
figure7b, since the wavelength is identifiable: the two grayed
elements may be added back to make a single-wavenumber
pattern with wavenumber 4. The other case, in which two
non-adjacent elements are removed as in figlahethe ‘in-
complete’ pattern is just a single-wavenumber pattern with
wavenumber 2! Therefore, the incomplete pattern is not-iden
tifiable. The key distinction in this case from the former sne
is that the removed elements constitute a subpattern, vidich
a single-wavenumber pattern on its own.

Therefore, a useful definition of @ancomplete patterris
the one in which a pattern is identifiable.

Definition 4. An incomplete regular patter®' is a regular
pattern®R, minus a subset of poin®&~ c OF:

0'(k ¢) = 0%k ¢)\ O, (16)
where®' is not a regular pattern in the sense of definitton

While the theory of incomplete pattern identification yet to
be developed, probably in the context of a concrete applica-
tion, one may conjecture that a sufficient conditiond@bgk, ¢)
to be identifiable is i®~ is not regular, i.e. not decomposable
into any single-wavenumber patterns.

IV. APPLICATION: CROWN PATTERNS IN THE DROP

SPLASH PROBLEM FIG. 9: (Color online) Stereo images of a drop splash crowth wi

corresponding spikes (circles) labeled by number: (ajhedige, (b)
right image.

™ A. Experimental setup and data extraction

The key components of the experimental setup (cf. figure
N y 8) necessary to collect the data suitable for the patterrtiftten
HSC1 HSC2 cation analysis can be divided into two groups. The first grou
is responsible for measuring the physical parameters amd ge
erating the drop splash, which is discussed in detailin |
Namely, the droplet is created by pumping a liquid through
a syringe at a consistent low flow rate ensuring that droplet
FIG. 8: Schematic of the experimental setup consisting of$yn-  formation is uniform. The syringe is positioned, with théthe
chronized high-speed cameras (HSC) oriented at differiewing  of 5 |inear stepper motor, above a petri dish filled with a thin
angles. liquid film of controlled thickness.
The second group of components serves to capture the drop
The goal of this section is to provide an illustration of phys splash event. Since the drop splash event lasts over a frac-
ical phenomena when the question of pattern identificatiotion of a second, high-speed cameras (Phantom v5.1-5.2) are
arises and to demonstrate an experimental approach of obhecessary to capture the dynamics, which is standard in the
taining the data suitable for the analysis offeredlim. The  drop splash studies. However, since we are interested in the
illustration comes from the drop splash proble®h [ Since  structure of the crown in space, we appeal to 3D high-speed
the goal here is just to illustrate pattern identificatioadty, =~ photography, which is new in the context of the drop splash
no attempt is made to perform a full study of the drop splastexperiments; note that it is impossible to get accurate-posi
patterns, which is beyond the scope of the present paper. tions of the crown spikes using just one camera because (a) it



8

cannot be placed right above the drop splash and (b) the tim&iques may be found inlf]. The result of a ‘camera cali-
dependent dynamics of the crown is unknown. The setup ibration’ is a model of the camera which translates between a
figure8 cartoons how two high-speed cameras are positionegdoint in an image and the light ray that is projected to that
at two different viewing angles to generate a stereo video opoint, which is indispensable for relating the image feasur
the event. The cameras need to be calibrated and synchdonizacquired with stereo photography to the laboratory coordi-
with a trigger to ensure that each of pair of frames corredponnates. A stereo calibration consists of determining thé-pos
to the same time event. tion of the right camera reference frame with respect to the
left camera (or vice versa). Beginning with the seminal work
by Tsai 0], steady progress has been made towards the pas-
sive calibration of standard camer&4[22], which does not
require any internal information about the camera, sucksas i

The basic idea of the stereo approach is that given two imtocal length. Bouguetdd] has implemented the calibration

: S .. __procedure into a Matlab toolboxX4l], which is used in our
ages of the same scene taken from different viewing position setu
they are first matched and the difference between them allows Stz.reo trianaulation. i.e. the determination of a coordina
one to recover the lost 3D dimension, i.e. the def8).| . 9 L : .
in 3D space from a pair of images, is possible once a stereo
calibration has been performed. Stereo triangulation make
use of the fact that each pixel location on the image defines a
ray as in human vision, hence determining a pointin 3D space

1. Stereo camera calibration and triangulation

222, L _ becomes a geometric problem of finding the point of intersec-
v PR ’ tion of two rays (or the closest point between the rays in the
220y e e 3 - non-ideal case). Accuracies of various calibration raasijn
g e ° S when an object of known geometry is compared to the geom-
=218y e e e etry measured using a stereo triangulation method, have bee
S B reported to be one part in a thousa@6][
216 e®® L

2. Data extraction procedure

We now give a detailed description of the data extraction
yo (mm)  -10 -10 2 (mm) procedure, which begins with a pair of images and ends with
a set of angle®.

The first step is to identify the corresponding spikes in each
of the left and right images. The corresponding spikes from
the left and right images are shown in figigewhere same
5 [ ) ‘@ | numbers correspond to the same s@Kg[ It should be noted
() that the ability to recognize the same object from diffe peart

L spectives is known as the ‘correspondence problem’ ofstere
E vision [25], which is complicated by noise, obstructions, and
[

“ reflective properties of the viewed objects; this remainiseto
[ a generally unsolved problem. Therefore, the process of ac-
tually determining which spikes correspond between thie lef
and right images is done ‘by hand’. For accurate correspon-
PS dence, it is necessary to have a visible and identifiabletpoin
© o ° on the object in both camera views. For the purposes of the
-5 0 5 present experiment, such a pointis the tip of a particuléesp
X (mm) We intentionally used slightly out of focus photos as it does
(b) not affect the accuracy of stereo triangulation.
The two pixel coordinate pairsx(y;) and .,V;), of a
FIG. 10: Example of data reduction from the images in figare given point from the left and right cameras, respectivelg, a
(a) spike positions as a result of stereo triangulation @reference  the input for the stereo triangulation function. The lagies
frame of the left camera; circle size corresponds to the ¢atime  the position &, yi, z) of the point in the reference frame of the
experimental uncertainty§iV A 3), (b) data projected onto a plane left camera, cf. figurd0a; the details of stereo triangulation
and circle. may be found in23].
With the 3D data now available, the next step is to reduce
The practice of making physical measurements using imthe data to a set of angles on the unit circle. Since the point
ages, known as photogrammetry, is over a century old; théx, Vi, z) is given in the frame of the left camera, which po-
historical development of camera models and calibration-te  sition relative to the location of the crown rim is arbitraan




ideal (flat) rim would be just a set of points lying on a cir- r(m)
cle which has been rotated and translated. Thereforeaitiste
of directly fitting the spike coordinates to a general radate
and translated circle in 3D space, we break up the task into
two linear steps: fitting to a plane, and then to a circle irt tha
plane. 4
A plane is fitted to the data in the least-squares sense, which
gives a plane defined by its normalvector. To rotate this 2
plane to the laboratory frame of reference defined by nor- ?TITTTTTT.”HH [
mal Z to the horizontal plane, we make use of Rodrigues’ 5 10 15 %0
rotation formula £6]. The direction of a desired rotation is
from Z to Z, i.e. a rotation vector can be found according to (@)
the right hand rulev,ot = Z x Z. The angle of rotation is
Orot = Arccos¥ - 7), where ¢ - ) is the dot product between
Z andZ. The result of implementing Rodrigues’ formulais a p
rotation matrixR, such thatX,Y,2)" = R(x, yi,2)"; the pro-
jection onto the plane is obtained by setting 0O, cf. figure
10b.
The resulting set of coordinateX,(Y) need to be fitted to
a circle, again in the least-squares sense, which may be dis- 2
placed from the origin. If the fitted circle has a centéy, (),
by taking (X, Y) — (X = X¢, Y — Y¢), the center of the circle
can be made to coincide with the origin of the axes. Then each
projected on the plane data point represents the pointstlose (b)
to the circle. Once all these steps are accomplished, digterm
ing the angle se® becomes straightforward. €n
For example, given the stereo images in fig@yrthe results
of the data extraction are shown in figutB. Stereo trian- 0-1
gulation, in the frame of reference of the left camera yields
the position of spikes as displayed in figur@a. After fitting
to a plane and rotation to the laboratory frame of reference n
(not shown), one can see that the variance inZftirection 5 18
is much less than the crown size in th¢ Y)-plane. This
fact confirms the expectation that the tips of the spikes ef th
crown are nearly coplanar. Next step is to fit the data to a cir- —01
cle, using least square approach, the result of which isngive
in 10b. (c)

FIG. 11: Example of data analysis for the regular crown withes-

imental scatter shown in figu® (a) moments (m) of the complex
3. Remarks order parametej for the function in figurelOb, (b) extracted angles

(dots) and the least square fit (line) according@pwith 1 = 27/k,

As in any experiments, the collected data are subject to e>§€ N, (c) residuals of the least square fit in figurkb, cf. definition

perimental errors and uncertainties, which can be divided i
two categories. The first type of errors is due to instrumen-

tation imprecisions. The second type of errors comes fromy s 5 gypstantial scatter but is still identifiaBI[ an irregu-
data reduction and analysis. For example, the error in-detej,, pattern, and a frustrated pattern exemplified in figle

mining the pixel coordinates of corresponding spikes is du‘?hese are the cases of real experimental data which are most

to how well the same spike location can be identified in achy,iorasting from the point of view of the analysis presented
image. All three factors — spike definition, camera focusl an here

resolution — contribute to the uncertainty in data redurctio

C. Avregular pattern with substantial scatter
B. Examples of data analysis

The generalized complex order parame®y (vhile sug-
In this section, we demonstrate the analysis of three datgesting some clustering of data, shows the lack of a clear
sets from the drop splash experiments. The three patterns veingle dominating order between the dominant valoes:
have chosen are aimed at illustrating a regular patterrgiwhi 21, 22, 23. Therefore the order parameter plot is inconclusive,
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FIG. 12: Right image of the irregular crown.

but still may be interpreted as indicating the possible gmes

of a single-wavenumber pattern with considerable scatter.
Following the algorithm developed in the proof of theo-

rem2, we arrive at the grap#, in figure 11b, which clearly

suggests that the pattern is complete with single-wavereumb

k = 23 and scattef ~ 0.941. The substantial scatter ratio (b)

6/ so close to unity (compare to the conditions in theorem

2) indicates that, while it conforms with the definiti@of a €n

single-wavenumber with scatt8g], the fit is far from ideal

according to theorer. The fact that the pattern is still iden- 1

tifiable despitey ~ 0.94 1 implies that the condition > 24§ in

theoren? is sufficient, but not necessary. 0.5

| L] ‘ ‘
2 4 6 ¢ f l 1
D. Anirregular pattern 0.5

Now let us consider the apparently irregular crown pattern
shown in figurel2. From this figure, we may expect that in- (c)
terpreting the data as a complete single-wavenumber patter
with some scatter is inappropriate. It is notable that the-co FIG. 13: Example of data analysis in the case of the irreqpagtern
plex order parameter amplitudes in figur@ do not suggest shown in figurel2: (a) moments of the complex order parame@r (
any dominate wavenumber(s). With the assumption that thertr the function in figurel2, (b) extracted angles (dots) and the least
are no overlaps and missing points, based on the algorith/#fiuare fit (line) according t@Y with 4 = 27/k, k € N, (c) Residuals
developed in the proof of theoref one concludes that the ©f the least square fitin figurkSo.
pattern is irregular. The latter fact is also evidenced k& th
attempted fit of the data to a single-wavenumber pattern in
figure 13b exhibiting the scatter (cf. figurE3c) substantially
larger than the wavelength!

figure 14a; the complete pattern decomposition is shown in
figure 14b.

E. Afrustrated pattern As one can see from the latter figure, there are 5 overlap-
ping points, which is hinted, in particular, by the largezesi
An finally, we would like to ‘decipher’ the pattern in figure of the corresponding spikes in figutb. While it may appear

1b, which will serve as an illustration of both a superposi-that given random initial conditions the odds of 5 coincglin
tion of several single-wavenumber patterns and overlappinspikes are very low, the surface tension effect tends to-mini
points. Naturally, the DFT and order parameter approachesize the surface area. Therefore, if there are two closeginou
are not helpful in this case and thus not discussed. Thessingl spikes and the time evolution of the crown is sufficientlyslo
wavenumber patterns are identified with the help of the alsurface tension will have time to force the spikes to merge
gorithm in the proof of theorer leading to the plo#(n) in  similar to a coalescence of liquid drops.
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On V. CONCLUSIONS
In this Letter we offered a theoretical approach for pattern

identification in the wavenumber space. At its basis is tlse ca
of ideal patterns without scatter. Effects of scatter aneir-ov

4 4
laps are then introduced as a generalization of the ideal pat
tern identification algorithm; conditions for pattern idiéna-

9 | tion are established systematically. This theoreticatagagh

is applicable to a broad range of physical problems \8ith)
symmetry on spatial and time domains. The case of incom-
plete patterns remains a challenge, though a step has been
taken towards defining such patterns and understandingof th
conditions when they are identifiable. Another potentiaily
teresting extension of the pattern identification theoryldo

be to quasipatterns, i.e. which satisfgx + T) = €0 f(x)

with quasiperiodl' and some constanésandb.

To illustrate the theory, a novel experimental method is de-
veloped to produce the data suitable for the pattern identifi
cation analysis of the crowns resulting from drop splashing
In particular, we used stereo triangulation and data réaiuct
procedure to identify the angular position of each crowkepi
and applied the theory to a regular pattern with scatter,els w
as to irregular and frustrated patterns.

(b)

FIG. 14: (Color online) On decomposition of the crown patter
in figure 1b into single-wavenumber patterns: (a) extracted angles
(dots) and the least square fit (line) accordingZ®pwith 1 = 2r/k,

k € N, the slope of which gives the wavelength of each single-
wavenumber patterrk = 8 (dotted) k = 5 (dashed)k = 3 (dotted-
dashed), and three patterns with= 2 (solid). The scatter bound This work was partially supported by the National Science
of such a decomposition & ~ 0.075. Note that there are several Foundation CAREER award under Grant No. 1054267. The
overlapping points af = 28,103,176',2485°,3435, (b) super-  authors would like to thank Professors Yuan-Fang Wang and
position of single-wavenumber structures giving rise te élown  jeff Moehlis for the helpful discussions, and Hans Mayer for
pattern in figuretb. reading over the manuscript.
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