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This work is devoted to pattern identification in systems with S(1) symmetry based on limited experimental
data. As we demonstrate, such pattern identification is complicated by the lack of a theoretical basis as well as by
the presence of experimental uncertainties, and possible overlapping and missing points in the data. The study
is motivated by a recent finding of physical systems where instabilities of different wavenumbers may co-exist
and thus lead to several single-wavenumber patterns superimposed with a random phase-shift between them.
As shown in this work, such patterns cannot be identified withFourier analysis as well as direct measurement
of the wavenumbers is not possible. We present both a constructive theoretical approach, which establishes
the conditions under which the structure of such patterns isidentifiable, and an example of application – the
crown structure analysis in the drop splash problem. For thelatter study a new experimental setup is developed
based on high-speed stereo photography, which produces data suitable for a quantitative analysis of the observed
patterns.
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I. INTRODUCTION

A. Motivation

There are many natural and engineering systems, which ex-
hibit pattern formation and are defined on periodic spatial or
time domains: among them are coupled oscillators [1], os-
cillatory convection in binary mixtures [2], numerous astro-
physical phenomena [3–6], synchronous rhythmic flashing of
fireflies [7], along-the-edge instabilities of accelerating liquid
sheets [8], crown patterns in the drop splash phenomena [9],
to mention a few. In this work we consider systems where pat-
terns are formed due to instabilities with several wavenumbers
excited at the same growth rate. One recent example refers to
along-the-edge instability of liquid sheets [8, 10, 11], where
it was found that the linear evolution of the interfacial pertur-
bation f (or its Fourier coefficientfkn, k ∈ R andn ∈ Z), is
governed by the dispersion relation:

λ2
= −κ

(
σ−1κ2

+ 1
)
, (1)

where λ is the growth rate,κ = ±
√

n2 + k2 the two-
dimensional wavenumber, andσ the bifurcation parameter.
Since the growth rateλ depends only on the modulus of the
two-dimensional wavenumberκ, the maximum growth rate
λmax is achieved atκmax =

√
σ/3 and thus ifκmax > n ≥ 1,

there exists several critical wavenumbersk(i)
c , parameterized

by i = 0, . . . , n, with the same growth rateλmax.
At the linear level, the above result implies that if only

one critical wavenumber is excited, then the pattern is single-
wavenumber, while for higher values ofσ more than one crit-
ical wavenumber can be excited such that the picture becomes
‘frustrated’, cf. figure1b, as was discovered recently in certain
regimes of the drop splash phenomena [9]. The frustrated pic-
ture occurs due to randomness of the initial conditions, which
are amplified and evolved into several superimposed single-
wavenumber patterns of different wavenumbers and with ran-

(a) (b)

FIG. 1: Patterns observed in the drop splash problem [9]: (a) single-
wavenumber crown, (b) frustrated crown.

dom phase shifts between them.

B. Key problem

Given the above theoretical example of frustrated pattern
forming systems among many other natural phenomena, the
natural question is how to identify such patterns based on ex-
perimental data. Namely, given experimental points, the col-
lection of which is limited and could represent just peaks of
the pattern (e.g. the location of spikes in figure1), can one de-
compose the pattern into single-wavenumber subpatterns with
random phase shifts between them? As discussed below, such
patterns cannot be identified with Fourier analysis as well as
direct measurement of the wavenumbers is not possible.

In this work we focus on one-dimensional systems with
S(1) symmetry, i.e. circle group, though the results are read-
ily applicable to systems with isomorphic toS(1) symmetry
groupsS O(2), T, andR/Z as well as generalizable to higher
dimensions. Therefore, our data are a list of points of the form
Θ = {θ1, . . . , θn} and its underlying pattern structure is the sub-
ject of this study. For example, for the spatial domain case in
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the context of the drop splash crown shown in figure1, each
θi represents the angle location of an individual crown spike
on the interval [0, 2π). In the time domain case, the data could
be signals of several flashing fireflies [7] with rational ratios
of periods [27] which naturally have a random phase shift be-
tween them: eachθi would then be the time corresponding to
a single flash. The problem on both time and spatial domains
is to determine an underlying periodic structure of subpatterns
of a given collection of data pointsΘ – the list of time events
or spatial locations. Obviously, such sampling does not com-
ply with the Nyquist-Shannon theorem [12] (i.e. if the period
of our signal is 2π/n in the case ofn spikes, the sampling rate
should ben/π), which makes the discrete Fourier transform
(DFT) approach impossible as will be shown below. How-
ever, here we have limited data, e.g. only the peaks of pat-
terns, which, as we will show, are nevertheless sufficient to
determine the pattern structure.

C. Paper outline

In what follows, in§II we first discuss the currently avail-
able tools and show their inapplicability to the resolutionof
the key problemformulated above. Next, we develop a the-
ory (§III ), which shows under which conditions patterns are
identifiable in the ideal case (§III B ), in the presence of scat-
ter (§III C), as well as for the data with overlaps (§III D ) and
missing points (§III E). As an example of application of the
developed theory, we use the data from the crown patterns in
the drop splash problem (§IV), which required a new experi-
mental technique (§IV A ) to obtain data suitable for the anal-
ysis presented here. The examples of data analysis are given
in §IV B. The discussion is concluded in§V with questions
requiring further exploration.

II. INAPPLICABILITY OF KNOWN APPROACHES

In the case of a simple periodic signal one may use finite
differences∆θi j = θi−θ j to identify if such a pattern is periodic
with a single period because the first off-diagonal elementsof
the matrix∆θi j give the period, e.g. for

Θ = {0, π/2, π, 3π/2} , (2)

this matrix becomes

∆θi j =



0 − π2 −π −
3π
2

π
2 0 − π2 −π
π π

2 0 − π2
3π
2 π π

2 0


, (3)

which tells us that the period isπ/2. However once multi-
ple periods are present, one must account for ‘interference’
and thus finite differences alone become insufficient and in-
efficient. In the case of substantial number of data points, a
‘guess work’ search for patterns is not feasible either because
of the large number of possible combinations to analyze. Be-
sides these direct inefficient approaches one may also think

of application of the DFT, circular statistics, and the order pa-
rameter method to gain some insight into the pattern structure;
however, as will be shown below, they do not allow one to re-
solve the key problem adequately and robustly.

A. Discrete Fourier transform

While the DFT is the standard tool for wavenumber or fre-
quency analysis, it works well only for the data obeying the
Nyquist-Sahnnon sampling theorem. For example, given the
set (2) representing only the spike location, so that the corre-
sponding points on the unit circle are

xn = ei θn, n = 0, . . . ,N − 1, (4)

the DFT

Xk =

N−1∑

n=0

xn e−(2πi/N) k n, k = 0, . . . ,N − 1, (5)

givesX = {0, 4, 0, 0}, i.e. the wavenumberk = 1 (correspond-
ing to the wavelength 2π) is identified instead of the correct
onek = 4. The same Fourier amplitudesX are obtained for
the very different data setΘ = {π/2, π/2, π/2, π/2}.
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FIG. 2: On inability of DFT to identify the structure of frustrated
patterns: (a) two patterns of wavenumber 4 with the phase shift π/12,
(b) power spectrum of DFT for the function in figure2a; X2 = 7.93.

Also, if we superimpose on the top of (2) the same
wavenumber pattern (2) but with a phase shiftφ = π/12, then
the DFT yields the distribution of the Fourier amplitudes asin
figure2b, which clearly illustrates that for a given set of data,
the DFT does not help one to identify readily that there are
two single-wavenumber patterns withk = 4 and the phase-
shift φ = π/12. Instead, one may may formally conclude that
the pattern is of the wavenumberk = 2 with some noise. The
useful insight one can get from the above examples is that the
maximum of the power spectrum (in the ideal case without
scatter) shown in figure2b approximately equals to the num-
ber of pattern data points, e.g. in the considered example, it
equals to 7.93 ≃ 8, but there is a number of possible com-
binations of wavenumbers yielding the same maximum of the
power spectrum. The number of possible subpattern combina-
tion grows with the number of data points and thus makes the
DFT approach non-constructive. Therefore one needs a robust
and systematic approach to decompose and identify patterns.
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B. Circular statistics and order parameter

There are many systems, defined on a circle, which include
problems with angles and time and require statistical analysis
known as circular statistics [13]. One example from circu-
lar statistics is the measurement of the angles at which birds
take flight [14]. The biologists are interested in how the data
are clumped, i.e. if the birds leave in the same direction.
Therefore, the circular statistics analysis is not intrinsically
targeted to the identification and quantification of regularpat-
terns, because a regular distribution of the birds departure an-
gles would involve some sophisticated bird behavior!

More precisely, given a set of angles on the interval [0, 2π),
each of them defines a unit vector – adding up all these unit
vectors results in a vector of lengthr, which can be rephrased
more compactly using complex exponentials

r(m) eiψ(m)
=

1
N

N∑

j=1

ei θ j m, m ∈ N, (6)

where in the casem = 1 the expressionr eiψ is known as
the trigonometric momentin circular statistics [13], and the
complex order parameterin dynamical systems [1, 15]. Es-
sentially, the complex order parameter can be interpreted as
the collective rhythm produced by the collection of points on
the unit circle in the complex plane. The complex order pa-
rameter is a useful diagnostic tool but its scope is to give a
sense of how well ordered the system is: ifr(1) ≃ 0, then
the system is considered disordered as the unit vectors point
in arbitrary uniformly distributed directions; if, on the other
hand,r(1) ≃ 1, then the azimuths of a distribution are clumped
in a particular direction. This is also known as the Rayleigh
test. From the prospective of our analysis of patterns, when
the order parameter is small, as in the case of regular pattern
data with some scatter, then there is formally no difference
between random and regular data from the point of view of
circular statistics. The general case of (6), m ≥ 1 introduced
by Daido [16], allows one to characterize the synchroniza-
tion properties and clustering:r(m) eiψ(m) are them-th Fourier
modes of the distribution of phases. While the usual Ku-
ramoto order parameterr(1)eiψ(1) [15] is suitable for distribu-
tions with a single maximum, the higher order parameters are
suitable for analyzing distributions with several maxima,often
referred to as clusters. However, as we will show in§IV, even
such a generalization is not suitable for identification of pat-
terns composed of several single-wavenumber patterns with
random phase shifts between them.

III. PATTERN IDENTIFICATION THEORY

A. Key notions

We begin by first introducing the key notions informally as
motivated by the examples discussed in§§I andII . A single-
wavenumber patternis a set of elements which are regularly
spaced on a circle and have at least two elements, e.g. (2).

A regular patternis a set consisting of a finite union [28] of
single-wavenumber patterns with (potentially, random) phase
shifts between them, cf. figure2a. As a result, anirregular
patterndoes not have a regular structure and cannot be de-
composed into a union of single-wavenumber patterns.

For systems withS(1) symmetry it is natural to consider
a data point as an angleθ ∈ [0, 2π), where the angles 0 and
2π are understood to represent the same point. A single-
wavenumber pattern is described by a wavenumberk ≥ 2 and
a phaseφ with respect to the originθ = 0, as illustrated in fig-
ure3. Positive angles are measured in the counter-clockwise
direction from thex-axis. The spacing between two consec-
utive elements of a single-wavenumber pattern is called the
wavelengthλ and related to the wavenumber byk = 2π/λ,
which is an integer and also represents the number of points
(spikes) on the unit circle.

φ

FIG. 3: An ideal single-wavenumber pattern,Θ(4, φ), with
wavenumber 4 and phaseφ = π/6 relative to a given, e.g. labora-
tory, system of coordinates.

If a single-wavenumber pattern with wavenumberk con-
tains k elements it is said to becomplete, i.e. not missing
any elements. Expressing a regular pattern in terms of single-
wavenumber patterns constitutespattern decomposition.

B. Regular ideal patterns

We begin with the simplest case – the ‘ideal pattern” –
which is considered to be free from experimental scatter. The
ideal pattern case will serve the basis for more general cases
developed later in§§III C-III E.

1. Definitions

For the purpose of qualitative analysis, we will need a for-
mal definition of ideal patterns.

Definition 1 (Ideal single-wavenumber pattern). Let Θ =
{θ1, . . . , θk} be a set of∞ > k ≥ 2 elements. IfΘ can be
represented as

{θn ∈ [0, 2π) | θn = nλ + φ, for n = 0, . . . , k− 1} , (7)

whereλ = 2π/k is the wavelength andφ ∈ [0, λ) the phase
shift, thenΘ(k, φ) is anideal single-wavenumber pattern.

An ideal regular pattern is a set, which can be decomposed
into a finite union of ideal single-wavenumber patterns, as for-
malized below.
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Definition 2 (Ideal regular pattern). Let Θ be a finite set

containing all elements of interest. IfΘ =
m⋃

i=1
Θ

(i) (ki , φi),

whereΘ(i) is theith ideal single-wavenumber pattern such that
Θ

(i)⋂
Θ

( j)
= ∅ if i , j, andm is the least number of ideal

single-wavenumber patterns[29], thenΘ is an ideal regular
pattern.

Note that permutations in this decomposition into single-
wavenumber patterns do not lead to a new pattern. To clar-
ify the terminology introduced above, consider the exam-
ple in figure 3. Plotted are the angles from the setΘ =
{φ, π/2+ φ, π + φ, 3π/2+ φ} with φ = π/6. By inspection
we see that this set is a single-wavenumber pattern with the
wavenumberk = 4 and the wavelengthλ = π/2 because
Θ ≡ Θ(4, φ) = {θn ∈ [0, 2π) | θ = π n/2+ φ, for n = 0, . . . , 3}.

For the subsequent analysis, we will also need the differ-
ence matrix introduced in§II , which is a key step towards un-
covering the regular decomposition of a setΘ = {θ1, . . . , θN}
with N elements. The differenceN × N skew-symmetric ma-
trix ∆Θ consists of differences between all pairs of elements
in the setΘ:

∆Θi j = θi − θ j . (8)

Remark1. The difference matrix∆Θ contains (N − 1)N/2 =
N!

(N−2)!2! =
(
N
2

)
possible unique entries; its lower triangular half

of ∆Θ contains all the positive difference combinations, cf.
(3).

2. Pattern identification

Now the idea is to demonstrate decomposability of ideal
regular patterns.

Theorem 1. If a given ideal regular pattern is complete and
without overlapping elements, then there exists an algorithm
which identifies it. The resulting pattern decomposition is
unique.

Proof. Let us demonstrate the existence of at least one algo-
rithm capable of decomposing any given ideal regular pattern,
which is complete and without overlaps, into ideal single-
wavenumber patterns with some phase shifts between them.
In order to initiate a decomposition of the given setΘ of length
N into ideal single-wavenumber patternsΘ(i)(ki , φi), we first
identify the wavelengthλ of ideal single-wavenumber pat-
terns. Let us consider differences between two elements of
Θ

∆Θi j = θi − θ j = (niλ + φi) − (n′jλ
′
+ φ j), (9)

for someni , n′j ∈ Z+. Any pair of elements belong either
to the same single-wavenumber pattern or to different single-
wavenumber patterns. Should two elementshappento belong
to the same single-wavenumber pattern, i.e. ifθi , θ j ∈ Θ(i),
thenλ = λ′ andφi = φ j , in which case equation (9) becomes

∆Θi j = (ni − n′j)λ, ni − n′j ∈ Z+, (10)

which allows one to distinguish the elementsθi of the setΘ
obeying (10), which belong to that single-wavenumber pat-
tern. Equation (10) states that the spacing between elements in
an ideal single-wavenumber pattern are multiples of the wave-
lengthλ of that pattern. In particular, for a single-wavenumber
pattern of wavenumberk = 2π/λ containingk elements, we
should expect to find

(
k
2

)
=

k!
2!(k−2)! positive entries in the dif-

ference matrix∆Θ.
Givenλ, equation (10) allows one to form a set of elements

from∆Θi j , which belong to a single-wavenumber pattern with
wavelengthλ. This set of elements, which are spaced by
multiples ofλ, requires further consideration. Two complica-
tions may occur: (a) it may be that ‘pathological’ phase shifts
between subpatterns of different wavenumbers coincide with
the wavelengthλ and thus give rise to spurious pairs of ele-
ments, or (b) there may be multiple single-wavenumber pat-
terns with the same wavenumber and some phase shifts be-
tween them. Even though the situation (a) is highly improb-
able due to randomness of the initial conditions, those spuri-
ous elements are easy to exclude from the consideration since
the wavenumber (and therefore the number of elements in the
single-wavenumber pattern) is known. As for the situation (b),
the individual same wavenumber patterns and the phase shifts
between them can be identified based on the knowledge of the
wavenumber. A search for possible single-wavenumber pat-
terns is started with the largest wavenumberk = N, i.e. con-
taining the total number of elements inΘ. Namely, starting
with the largest wavenumber ensures that the fewest number
of single-wavenumber patterns will be used in the decompo-
sition. Once single-wavenumber patterns are identified, they
are removed from the setΘ and the process iterates until every
element ofΘ belongs to a unique single-wavenumber pattern.
By construction, the pattern decomposition is unique. �

3. Subpatterns of single-wavenumber patterns

In certain cases, a single-wavenumber pattern may be de-
composed as a union of smallersubpatterns. A subpattern
is simply another single-wavenumber pattern with a smaller
wavenumber (larger wavelength), which is a subset of the
larger single-wavenumber pattern under consideration. This
idea of subpatterns will prove useful when analyzing patterns
with overlaps in§III D .

FIG. 4: An ideal single-wavenumber patternΘ(6,0).

We now clarify these ideas with an example. Referring to
figure 4, whereΘ(6, 0) = {θn ∈ [0, 2π)| θ = π n/3 for n =
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0, . . . , 5}, we can observe that this single-wavenumber pattern
with wavenumber 6 can be grouped into two sets of single-
wavenumber patterns with wavenumber 3, or into three sets
of single-wavenumber patterns with wavenumber 2:

Θ(6, 0) = Θ(1)(3, 0)
⋃
Θ

(2)(3, π/3) , (11a)

= Θ
(3)(2, 0)

⋃
Θ

(4)(2, π/3)
⋃
Θ

(5)(2, 2π/3) . (11b)

In general, this leads to the following claim, the proof of
which is straightforward.

Lemma 1. Any ideal single-wavenumber patternΘ(N, φ),
where N is not a prime number, may be expressed as a union
of ideal single-wavenumber patterns of wavenumber p, where
p is an integer divisor of N,

Θ(N, φ) =
N/p⋃

i=1

Θ
(i) (p, φ + λN(i − 1)) . (12)

C. Regular patterns with scatter

A natural generalization of ideal patterns is to consider the
case of (non-ideal) regular patterns when the elements ofΘ

have some uncertainty (experimental scatter) associated to
them. As such, the following development is more relevant to
actual measured data. It is natural to introduce non-ideal pat-
terns by allowing deviations (residuals) from the ideal case.
Hence, a regular pattern with scatter is defined about the cor-
responding ideal regular pattern by lettingǫi be the deviation
of θi from the ideal case. A natural assumption is that the
magnitude of the uncertainties|ǫi | is bounded from above by
some constantδ. Such patterns are calledregular with scat-
ter, where the amount of scatter is quantified with thescatter
boundδ.

Definition 3 (Single-wavenumber pattern with scat-
ter). Let Θ = {θ1, . . . , θk} be a set with k ele-
ments. If Θ admits the following representation
{θn ∈ [0, 2π) | θn = nλ + φ + ǫn, for n = 0, . . . , k− 1, |ǫn| ≤ δ},
whereλ = 2π/k is the wavelength,φ ∈ [0, λ) the phase
shift, andδ the scatter, thenΘ(k, φ, δ) is asingle-wavenumber
pattern with scatter.

Figure 5 illustrates the correspondence between the two
ways of viewing the same pattern. On the left is the unit cir-
cle with pointsθi shifted byǫi from the ideal location. On the
right is a plot in the (n, θn)-coordinates. All the points collapse
to a line in the limit of vanishing scatterδ→ 0. This graphical
representation of a regular pattern naturally illustratesscatter
and phase shifts, e.g. the phase shift is just they-intercept of
the line. One can apply standard error analysis [17] by con-
sideringΘ = {θ1, . . . , θN} as a series of measurements, which
ideally should fall on a lineθn = λ n+ φ, whereλ = 2π/k and
k ∈ N (cf. figure5b).

As easy to see, the condition for a given pattern to be in the
ideal regime is when two elements are not closer than twice
the scatterδ, λ > 2δ. Such spacing of the elements allows one

φ

(a)

n

θn

φ

(b)

FIG. 5: On the definition and identification of patterns with scatter:
(a) a pattern with scatter (dark circles) defined relative tothe ideal
pattern (light circles), (b) representing a circular pattern on a graph:
the points are plotted as coordinates (n, θn), where the line represents
the ideal linear relationshipnλ+ φ with λ being the wavelengthλ, ǫn

is the residual between the line and the plotted point,ǫn = θn− (nλ+
φ).

to avoid the ambiguity when two points lie within the scatter
radius and effectively overlap. From a theoretical perspective,
the two conditions – spacing of the elements and the pattern
completeness – are sufficient to avoid the cases when patterns
are not identifiable.

Theorem 2. If a given regular patternΘ with scatterδ is
complete and in the ideal regime, such that none of the two
elements ofΘ are closer than twice the scatter,λ > 2δ, then
there exists an algorithm which identifies the pattern. The re-
sulting pattern decomposition is unique.

Proof. We will again demonstrate the existence of an algo-
rithm which identifies regular patterns with scatter by provid-
ing the decomposition into single-wavenumber patterns with
scatter. LetΘ be a regular pattern withN elements which can
be partitioned into single-wavenumber patterns with scatterδ.
In the ideal regime, the single-wavenumber patterns are sep-
arated such thatΘ(i)⋂

Θ
( j)
= ∅ if i , j. Similar to the case

without scatter, we begin by considering a difference between
two elements ofΘ

∆Θi j = θi − θ j = (ni λ + φn + ǫn) − (n′jλ
′
+ φn′ + ǫn′ ), (13)

for some indicesni , n′j ∈ Z+. In analogy to the ideal case
considered in§III B , equation (13) may be simplified ifθi and
θ j belong to the same single-wavenumber pattern with scatter.
That is,θi , θ j ∈ Θ(k)

∆Θi j = (n− n′) λ + ǫn − ǫn′ . (14)

By the theorem assumption,ǫn, ǫn′ are both bounded by con-
stantδ, so that the relation (14) gives

|∆Θi j − (n− n′) λ| ≤ 2δ. (15)

Equation (15) is an exact analogy to equation (10) in the ideal
case with the only difference that the scatter parameterδ intro-
duces an inequality (the ideal equality case (10) is recovered
in the limit δ → 0). Thus, the algorithm follows that of theo-
rem1 and therefore provides a unique pattern decomposition
(providedλ > 2δ). �
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FIG. 6: Two overlapping single-wavenumber patterns with
wavenumbers 3 and 4 which share the elementθ = 0.

Therefore, in the regular pattern regime with scatter, the
analysis is straightforward and no ‘pathological’ cases need
be considered because the points are spaced according to the
conditions in theorem2. With the modification of the equality
(10) to the inequality (15), the algorithm is identical to the one
presented for ideal regular patterns in§III B .

D. Regular patterns with overlaps

Until now, we have considered only regular patterns when
no overlapping single-wavenumber patterns may occur. Fig-
ure6 illustrates an ideal regular pattern with overlaps consist-
ing of two single-wavenumber patterns,Θ(3, 0) andΘ(4, 0),
which share one element,θ = 0. A physical example and rea-
sons for the presence of overlaps will be given in§IV E. Due to
the fact that overlapping elements are ‘double-counted’, areg-
ular pattern with overlaps has fewer elements than the sum of
the elements of the constituent single-wavenumber patterns.

The presence of overlaps in a regular pattern requires the
understanding of the origin of single-wavenumber patternsde-
veloped in§III B , as will become clear from the subsequent
discussion.

Motivated by the example in figure6 let us consider
ideal regular patterns, which may contain overlapping ideal
single-wavenumber patterns, while each component single-
wavenumber pattern is complete.

Theorem 3. If a given ideal regular pattern, possibly contain-
ing overlaps, consists of complete single-wavenumber pat-
terns, then there exists an algorithm which identifies it. The
resulting pattern decomposition is unique.

Proof. Let us again demonstrate the existence of an algorithm
which identifies ideal regular patterns potentially containing
ideal single-wavenumber patterns with overlaps. Accommo-
dating the presence of overlaps requires only a few modi-
fications of the original algorithm developed in§III B . The
main modification is to note that a given elementθi ∈ Θ
may belong to multiple single-wavenumber patterns. There-
fore, subtracting single-wavenumber patterns as they are iden-
tified may affect other equally valid single-wavenumber pat-
terns. One mechanism to avoid this complication is to test
for and identify all possible single-wavenumber patterns with
wavenumbers ranging fromN to 2 without removing single-
wavenumber patterns once they are identified. From lemma

(a) (b)

(c) (d)

FIG. 7: On the definition of incomplete patterns (light circles are
the removed elements): (a) the complete single-wavenumberpattern
with wavenumberk = 4, (b) one element removed: the incomplete
single-wavenumber pattern is identifiable, (c) two elements removed:
the incomplete pattern is still identifiable, (d) two elements removed:
the resulting single-wavenumber pattern (k = 2) cannot be identified
as incomplete.

1 on subpatterns, finding redundant subpatterns of a single-
wavenumber pattern is trivial and guarantees a unique pat-
tern decomposition. Once subpatterns are removed, all that
remains are the largest possible single-wavenumber patterns,
which constitute the decomposition of the ideal regular pat-
tern. The rest of the algorithm is the same as in theorem1. �

E. Incomplete patterns

Finally, we provide some considerations for the case of in-
complete regular patterns, i.e. when there are missing points,
which can be due to, for example, the limited ability to collect
experimental data. These considerations lead to a proper def-
inition of incomplete patterns and the conditions when they
are identifiable. It is not straightforward, however, to define
an incomplete pattern, because any given regular pattern can
be considered to be the result of a larger pattern missing the
appropriate elements. We illustrate this and other complex-
ities with the following simple example of a regular single-
wavenumber patternΘ(4, φ) in figure7a. Let us remove some
elements and consider whether the resulting incomplete pat-
tern is identifiable. To identify an incomplete pattern, a mini-
mal number of elements are added such that a regular pattern
is completed.

In the first case, when only one element is removed, as
shown in figure7b, the incomplete pattern is identifiable and
can be completed, because the grayed element can be added
by extrapolating the obvious wavelengthπ/2 to the area of
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missing spikes.
The second case deals with two elements, which can be re-

moved in two ways. Figure7c shows the result if two consec-
utive elements are removed. In this case, the incomplete pat-
tern may be identified in the manner analogous to the one in
figure7b, since the wavelength is identifiable: the two grayed
elements may be added back to make a single-wavenumber
pattern with wavenumber 4. The other case, in which two
non-adjacent elements are removed as in figure7d, the ‘in-
complete’ pattern is just a single-wavenumber pattern with
wavenumber 2! Therefore, the incomplete pattern is not iden-
tifiable. The key distinction in this case from the former ones
is that the removed elements constitute a subpattern, whichis
a single-wavenumber pattern on its own.

Therefore, a useful definition of anincomplete patternis
the one in which a pattern is identifiable.

Definition 4. An incomplete regular patternΘI is a regular
pattern,ΘR, minus a subset of pointsΘ− ⊂ ΘR:

Θ
I (k, φ) = ΘR(k, φ) \ Θ−, (16)

whereΘI is not a regular pattern in the sense of definition2.

While the theory of incomplete pattern identification yet to
be developed, probably in the context of a concrete applica-
tion, one may conjecture that a sufficient condition forΘI (k, φ)
to be identifiable is ifΘ− is not regular, i.e. not decomposable
into any single-wavenumber patterns.

IV. APPLICATION: CROWN PATTERNS IN THE DROP
SPLASH PROBLEM

HSC 1 HSC 2

FIG. 8: Schematic of the experimental setup consisting of two syn-
chronized high-speed cameras (HSC) oriented at different viewing
angles.

The goal of this section is to provide an illustration of phys-
ical phenomena when the question of pattern identification
arises and to demonstrate an experimental approach of ob-
taining the data suitable for the analysis offered in§III . The
illustration comes from the drop splash problem [9]. Since
the goal here is just to illustrate pattern identification theory,
no attempt is made to perform a full study of the drop splash
patterns, which is beyond the scope of the present paper.

(a)

(b)

FIG. 9: (Color online) Stereo images of a drop splash crown with
corresponding spikes (circles) labeled by number: (a) leftimage, (b)
right image.

A. Experimental setup and data extraction

The key components of the experimental setup (cf. figure
8) necessary to collect the data suitable for the pattern identifi-
cation analysis can be divided into two groups. The first group
is responsible for measuring the physical parameters and gen-
erating the drop splash, which is discussed in detail in [9].
Namely, the droplet is created by pumping a liquid through
a syringe at a consistent low flow rate ensuring that droplet
formation is uniform. The syringe is positioned, with the help
of a linear stepper motor, above a petri dish filled with a thin
liquid film of controlled thickness.

The second group of components serves to capture the drop
splash event. Since the drop splash event lasts over a frac-
tion of a second, high-speed cameras (Phantom v5.1-5.2) are
necessary to capture the dynamics, which is standard in the
drop splash studies. However, since we are interested in the
structure of the crown in space, we appeal to 3D high-speed
photography, which is new in the context of the drop splash
experiments; note that it is impossible to get accurate posi-
tions of the crown spikes using just one camera because (a) it
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cannot be placed right above the drop splash and (b) the time-
dependent dynamics of the crown is unknown. The setup in
figure8 cartoons how two high-speed cameras are positioned
at two different viewing angles to generate a stereo video of
the event. The cameras need to be calibrated and synchronized
with a trigger to ensure that each of pair of frames correspond
to the same time event.

1. Stereo camera calibration and triangulation

The basic idea of the stereo approach is that given two im-
ages of the same scene taken from different viewing positions,
they are first matched and the difference between them allows
one to recover the lost 3D dimension, i.e. the depth [18].
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FIG. 10: Example of data reduction from the images in figure9:
(a) spike positions as a result of stereo triangulation in the reference
frame of the left camera; circle size corresponds to the cumulative
experimental uncertainty (§IV A 3), (b) data projected onto a plane
and circle.

The practice of making physical measurements using im-
ages, known as photogrammetry, is over a century old; the
historical development of camera models and calibration tech-

niques may be found in [19]. The result of a ‘camera cali-
bration’ is a model of the camera which translates between a
point in an image and the light ray that is projected to that
point, which is indispensable for relating the image features
acquired with stereo photography to the laboratory coordi-
nates. A stereo calibration consists of determining the posi-
tion of the right camera reference frame with respect to the
left camera (or vice versa). Beginning with the seminal work
by Tsai [20], steady progress has been made towards the pas-
sive calibration of standard cameras [21, 22], which does not
require any internal information about the camera, such as its
focal length. Bouguet [23] has implemented the calibration
procedure into a Matlab toolbox [24], which is used in our
setup.

Stereo triangulation, i.e. the determination of a coordinate
in 3D space from a pair of images, is possible once a stereo
calibration has been performed. Stereo triangulation makes
use of the fact that each pixel location on the image defines a
ray as in human vision, hence determining a point in 3D space
becomes a geometric problem of finding the point of intersec-
tion of two rays (or the closest point between the rays in the
non-ideal case). Accuracies of various calibration routines,
when an object of known geometry is compared to the geom-
etry measured using a stereo triangulation method, have been
reported to be one part in a thousand [20].

2. Data extraction procedure

We now give a detailed description of the data extraction
procedure, which begins with a pair of images and ends with
a set of anglesΘ.

The first step is to identify the corresponding spikes in each
of the left and right images. The corresponding spikes from
the left and right images are shown in figure9, where same
numbers correspond to the same spike[30]. It should be noted
that the ability to recognize the same object from differentper-
spectives is known as the ‘correspondence problem’ of stereo
vision [25], which is complicated by noise, obstructions, and
reflective properties of the viewed objects; this remains tobe
a generally unsolved problem. Therefore, the process of ac-
tually determining which spikes correspond between the left
and right images is done ‘by hand’. For accurate correspon-
dence, it is necessary to have a visible and identifiable point
on the object in both camera views. For the purposes of the
present experiment, such a point is the tip of a particular spike.
We intentionally used slightly out of focus photos as it does
not affect the accuracy of stereo triangulation.

The two pixel coordinate pairs, (x̃l , ỹl) and (̃xr , ỹr), of a
given point from the left and right cameras, respectively, are
the input for the stereo triangulation function. The lattergives
the position (xl , yl , zl) of the point in the reference frame of the
left camera, cf. figure10a; the details of stereo triangulation
may be found in [23].

With the 3D data now available, the next step is to reduce
the data to a set of angles on the unit circle. Since the point
(xl , yl , zl) is given in the frame of the left camera, which po-
sition relative to the location of the crown rim is arbitrary, an
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ideal (flat) rim would be just a set of points lying on a cir-
cle which has been rotated and translated. Therefore, instead
of directly fitting the spike coordinates to a general rotated
and translated circle in 3D space, we break up the task into
two linear steps: fitting to a plane, and then to a circle in that
plane.

A plane is fitted to the data in the least-squares sense, which
gives a plane defined by its normalz′ vector. To rotate this
plane to the laboratory frame of reference defined by nor-
mal Z to the horizontal plane, we make use of Rodrigues’
rotation formula [26]. The direction of a desired rotation is
from Z to z′, i.e. a rotation vector can be found according to
the right hand rule:vrot = Z × z′. The angle of rotation is
θrot = arccos (Z · z′), where (Z · z′) is the dot product between
Z andz′. The result of implementing Rodrigues’ formula is a
rotation matrixR, such that (X,Y,Z)T

= R(xl , yl , zl)T ; the pro-
jection onto the plane is obtained by settingZ = 0, cf. figure
10b.

The resulting set of coordinates (X,Y) need to be fitted to
a circle, again in the least-squares sense, which may be dis-
placed from the origin. If the fitted circle has a center (Xc,Yc),
by taking (X,Y) → (X − Xc,Y − Yc), the center of the circle
can be made to coincide with the origin of the axes. Then each
projected on the plane data point represents the point closest
to the circle. Once all these steps are accomplished, determin-
ing the angle setΘ becomes straightforward.

For example, given the stereo images in figure9, the results
of the data extraction are shown in figure10. Stereo trian-
gulation, in the frame of reference of the left camera yields
the position of spikes as displayed in figure10a. After fitting
to a plane and rotation to the laboratory frame of reference
(not shown), one can see that the variance in theZ-direction
is much less than the crown size in the (X,Y)-plane. This
fact confirms the expectation that the tips of the spikes of the
crown are nearly coplanar. Next step is to fit the data to a cir-
cle, using least square approach, the result of which is given
in 10b.

3. Remarks

As in any experiments, the collected data are subject to ex-
perimental errors and uncertainties, which can be divided into
two categories. The first type of errors is due to instrumen-
tation imprecisions. The second type of errors comes from
data reduction and analysis. For example, the error in deter-
mining the pixel coordinates of corresponding spikes is due
to how well the same spike location can be identified in each
image. All three factors – spike definition, camera focus, and
resolution – contribute to the uncertainty in data reduction.

B. Examples of data analysis

In this section, we demonstrate the analysis of three data
sets from the drop splash experiments. The three patterns we
have chosen are aimed at illustrating a regular pattern, which
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FIG. 11: Example of data analysis for the regular crown with exper-
imental scatter shown in figure9: (a) momentsr(m) of the complex
order parameter (6) for the function in figure10b, (b) extracted angles
(dots) and the least square fit (line) according to (7) with λ = 2π/k,
k ∈ N, (c) residuals of the least square fit in figure11b, cf. definition
3.

has a substantial scatter but is still identifiable[31], an irregu-
lar pattern, and a frustrated pattern exemplified in figure1b:
these are the cases of real experimental data which are most
interesting from the point of view of the analysis presented
here.

C. A regular pattern with substantial scatter

The generalized complex order parameter (6), while sug-
gesting some clustering of data, shows the lack of a clear
single dominating order between the dominant valuesm =
21, 22, 23. Therefore the order parameter plot is inconclusive,
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FIG. 12: Right image of the irregular crown.

but still may be interpreted as indicating the possible presence
of a single-wavenumber pattern with considerable scatter.

Following the algorithm developed in the proof of theo-
rem2, we arrive at the graphθn in figure11b, which clearly
suggests that the pattern is complete with single-wavenumber
k = 23 and scatterδ ≃ 0.94λ. The substantial scatter ratio
δ/λ so close to unity (compare to the conditions in theorem
2) indicates that, while it conforms with the definition3 of a
single-wavenumber with scatter[32], the fit is far from ideal
according to theorem2. The fact that the pattern is still iden-
tifiable despiteδ ≃ 0.94λ implies that the conditionλ > 2δ in
theorem2 is sufficient, but not necessary.

D. An irregular pattern

Now let us consider the apparently irregular crown pattern
shown in figure12. From this figure, we may expect that in-
terpreting the data as a complete single-wavenumber pattern
with some scatter is inappropriate. It is notable that the com-
plex order parameter amplitudes in figure13a do not suggest
any dominate wavenumber(s). With the assumption that there
are no overlaps and missing points, based on the algorithm
developed in the proof of theorem2, one concludes that the
pattern is irregular. The latter fact is also evidenced by the
attempted fit of the data to a single-wavenumber pattern in
figure13b exhibiting the scatter (cf. figure13c) substantially
larger than the wavelength!

E. A frustrated pattern

An finally, we would like to ‘decipher’ the pattern in figure
1b, which will serve as an illustration of both a superposi-
tion of several single-wavenumber patterns and overlapping
points. Naturally, the DFT and order parameter approaches
are not helpful in this case and thus not discussed. The single-
wavenumber patterns are identified with the help of the al-
gorithm in the proof of theorem3 leading to the plotθ(n) in
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FIG. 13: Example of data analysis in the case of the irregularpattern
shown in figure12: (a) moments of the complex order parameter (6)
for the function in figure12, (b) extracted angles (dots) and the least
square fit (line) according to (7) with λ = 2π/k, k ∈ N, (c) Residuals
of the least square fit in figure13b.

figure 14a; the complete pattern decomposition is shown in
figure14b.

As one can see from the latter figure, there are 5 overlap-
ping points, which is hinted, in particular, by the larger size
of the corresponding spikes in figure1b. While it may appear
that given random initial conditions the odds of 5 coinciding
spikes are very low, the surface tension effect tends to mini-
mize the surface area. Therefore, if there are two close enough
spikes and the time evolution of the crown is sufficiently slow,
surface tension will have time to force the spikes to merge
similar to a coalescence of liquid drops.



11

2 4 6 8

2

4

6

n

θn

(a)

(b)

FIG. 14: (Color online) On decomposition of the crown pattern
in figure 1b into single-wavenumber patterns: (a) extracted angles
(dots) and the least square fit (line) according to (7) with λ = 2π/k,
k ∈ N, the slope of which gives the wavelength of each single-
wavenumber pattern:k = 8 (dotted),k = 5 (dashed),k = 3 (dotted-
dashed), and three patterns withk = 2 (solid). The scatter bound
of such a decomposition isδ ≃ 0.075. Note that there are several
overlapping points atθ = 28◦, 103◦,176◦,248.5◦,343.5◦, (b) super-
position of single-wavenumber structures giving rise to the crown
pattern in figure1b.

V. CONCLUSIONS

In this Letter we offered a theoretical approach for pattern
identification in the wavenumber space. At its basis is the case
of ideal patterns without scatter. Effects of scatter and over-
laps are then introduced as a generalization of the ideal pat-
tern identification algorithm; conditions for pattern identifica-
tion are established systematically. This theoretical approach
is applicable to a broad range of physical problems withS(1)
symmetry on spatial and time domains. The case of incom-
plete patterns remains a challenge, though a step has been
taken towards defining such patterns and understanding of the
conditions when they are identifiable. Another potentiallyin-
teresting extension of the pattern identification theory could
be to quasipatterns, i.e. which satisfyf (x + T) = eax+b f (x)
with quasiperiodT and some constantsa andb.

To illustrate the theory, a novel experimental method is de-
veloped to produce the data suitable for the pattern identifi-
cation analysis of the crowns resulting from drop splashing.
In particular, we used stereo triangulation and data reduction
procedure to identify the angular position of each crown spike
and applied the theory to a regular pattern with scatter, as well
as to irregular and frustrated patterns.
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