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E. Abstract 
 
Cell communication is a key mechanism in tissue responses to radiation. Several 
molecules are implicated in radiation-induced signaling between cells, but their 
contributions to radiation risk is poorly understood. Meanwhile, Green functions for 
diffusion-influenced reactions have appeared in the literature, which are applied to 
describe the diffusion of molecules near a plane membrane comprising bound receptors 
with the possibility of reversible binding of a ligand and activation of signal transduction 
proteins by the ligand-receptor complex. We have developed Brownian Dynamics 
algorithms to simulate particles histories in this system, which can accurately  reproduce 
the theoretical distribution of distances of a ligand from the membrane, the number of 
reversibly bound particles and the number of receptor complexes activating signaling 
proteins as a function of time, regardless of the number of timesteps used for the 
simulation. These simulations will be of great importance to model interactions at low 
doses where stochastic effects induced by a small number of molecules or interactions 
come into play.  
 
 
F. Physics and Astronomy Classification Scheme (PACS) indexing codes 
 
87.15.A- Theory, modeling, and computer simulation 
87.15.ak Monte Carlo simulations 
82.37.Np Single molecule reaction kinetics, dissociation, etc. 
87.53.Ay Biophysical mechanisms of interaction 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
G. Main body of the paper 
 



   - 3 - 

I. INTRODUCTION 
 
An increasing number of experiments suggest that cells respond collectively rather than 
individually to radiation [1-2]. An example of this is the bystander effect, a phenomenon 
whereby cells that were not in direct contact with radiation are also affected [3]. A great 
number of so-called bystander or non-targeted effects of radiation have been observed 
experimentally, such as micronuclei formation [4], mutations [5], reduction in clonogenic 
survival [6], apoptosis [7], changes in transformation frequency [8], and tumor induction 
[9]. The underlying mechanisms that mediate these non-targeted effects are poorly 
understood, but they suggest that cell signaling plays a major role in the response of 
tissues to radiation. An example of the role of cell signaling is amplified autocrine 
signaling, which is one of the hallmarks of cancer [10]. Molecules such as transforming 
growth factor (TGFβ) [11], reactive oxygen species (ROS) [4], NO. radical [12] and 
membrane-bound NADPH oxidases [13] have been implicated in radiation-induced 
signaling between cells.  
 
To improve understanding of the mechanisms of cell signaling, computational models 
have been used to elucidate the interaction between the epidermal growth factor (EGF) 
and its receptor (EGFR) in a systems biology perspective [14-17]. In these models, a 
Brownian Dynamics (BD) algorithm which has been developed has been able to 
characterize the spatial range of secreted ligands and to discriminate the roles of 
autocrine and paracrine trajectories in cell culture. Over the years, increasingly 
sophisticated BD algorithms have appeared in the literature  [18-22], which has been used 
to understand reversible chemical reactions kinetics. With appropriate modifications, 
these models and algorithms are the cornerstone of a computational model using reaction 
rate constants of receptors distributed on cell membranes that could allow a better 
understanding of cell communication in an irradiated system. Of importance is the ability 
to model interactions at low doses where stochastic effects induced by a small number of 
molecules or interactions come into play. Eventually, these simulations will allow us to 
calculate the range, lifetime and concentration of TGFβ following irradiation, as well as 
the number of cells affected by TGFβ and the positions where these molecules will bind 
to the cell surface receptors to initiate signal transduction.  
 
In this paper, BD algorithms for the simulation of the motion of a particle near a plane 
membrane comprising receptors and initiation of signal transduction are discussed. In the 
first part of the paper, the Green functions (or propagators) describing a particle near a 
membrane with receptors under diffusion are reviewed, the most general case being a 
membrane comprising receptors with the possibility of dissociation of a bound ligand and 
activation of signal transduction by the ligand-receptor complex. In the second part, two 
very important aspects of the BD simulations not covered by previous papers, the 
discretization of time and the sampling of the Green functions, are examined. In regards 
to sampling of the Green functions, the algorithms described in this paper require a very 
low amount of memory or disk space and are computationally fast. Simulation results and 
how these simulations could be used to link radiation track structure models with existing 
DNA repair models to improve our understanding of the radiation risks are also discussed.  
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II. GREEN FUNCTIONS OF LIGAND INTERACTION WITH CELL SURFACE 

RECEPTORS 
 

A. Cell culture model 
 

Several investigators [14-17] model a cell culture as a «cylinder» of infinite radius1 and 
of finite height2 where ligand molecule can diffuse and bind to cells receptors. The 
surface at the top of the cell culture is totally reflective for the molecules. The bottom 
surface is covered by cells with receptors; the membrane is then partially absorbing for 
ligands. In this system, a particle in cell culture will follow stochastic trajectories 
according to the diffusion equation (DE), which can be written in 1D: 
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Where p(x,t|x0) is the probability distribution function that a particle initially at x0>0  is 
found at position x at time t and D is the diffusion coefficient of the ligand. For TGFβ, 
D~2.6x10-7 cm2/s (Table 1). The initial condition of the DE for a particle initially at x=x0 
can be written as p(x,0|x0)=δ(x-x0), where δ(x) is the Dirac’s delta function. The solution 
p(x,t|x0) is the Green function [19].  
 

Table 1 
 

B. Reflective boundary at x=0 
 
In our simulations, to simplify the analytical treatment, the height of the cell culture was 
assumed to be infinite. For a semi-infinite half-space (x>0) with a reflective boundary at 
x=0, the boundary condition is written as: 
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The solution of the equation with the preceding initial and boundary conditions, which is 
referred to as pref(x,t|x0), is given by [18]: 
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1 The diffusion in the Y and Z directions can be considered as free diffusion in an infinite medium. This is a 
trivial problem and it will not be discussed further here. However, the diffusion in the Y and Z directions 
will be very important in the calculations of autocrine and paracrine range of ligand interaction.  
2 In practice, the height of a cell culture (~2 mm) is much greater than the typical distance travelled by a 
particle in a time-step; therefore, the height of the cell culture is also considered infinite in this work.  
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The survival probability of a particle Q(t|x0) is given by the integration of pref(x,t|x0) over 
the half-space [0,∞). It is 1 for every t>0 in this case. 
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C. Partially absorptive boundary at x=0 

 
In the cell culture model, the boundary condition on the surface of the cells is given by 
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where ka is the rate constant in m/s. The membrane absorption constant ka can be linked 
to the ligand-receptor binding rate constant kon (in M-1s-1) by ka=konRtotal/(πRcell

2NA)  [14], 
where NA is Avogadro’s number, Rtotal is the number of receptors at the cell surface and 
Rcell is the cell radius. Typically, for the TGFβ system, kon=(2.3±0.2)x107 M-1s-1 and 
Rtotal~1000 receptors/cell [24]. This yields ka=1.95x10-6 cm/s (Table 2). 
 

Table 2 
 
This boundary condition applies only to the surface covered by cells, whereas the 
reflecting boundary condition applies elsewhere. It is very difficult to obtain an analytical 
solution in such a case. To simplify the analytical treatment, the surface is homogenized, 
i.e., the receptors are assumed to be uniformly distributed on the surface rather than on 
the cells only [16,25]. The rate constant ka is replaced in equation (5) by an effective rate 
constant κeff (m/s), which can be calculated from the following equation [14]: 
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where σ is the fraction of the surface which is covered by cells. For convenience, the 
notation ka will be kept throughout this text. The Green function for a particle initially at 
a distance x0 from the membrane is [18]: 
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where α=ka/D. and the functions W(a,b)3 and Ω(b) are defined as follow: 
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3 These functions may be difficult to evaluate numerically. The arguments of these functions may also be 
complex numbers. For complex arguments, the Faddeeva function is used [26]. 
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Erfc(x) is the complementary error function: 
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The probability of a particle initially at x0 to remain free at time t is obtained by 
integrating (7) over the half-space [0,∞): 
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The probability Q(t|x0) is less than 1, indicating that a particle may bind to a receptor on 
the surface. If t→∞, Q→0, meaning that all particles will eventually bound to the 
membrane. The probability of a particle to occupy a bound state, noted (*), at time t is 
p(*,t|x0)=1-Q(t|x0).   
 
 

D. Reversible binding with membrane at x=0 
 
The boundary condition (5) does not include the possible dissociation of a ligand from a 
receptor bound state (at x=0). This effect has been included in previous chemistry-related 
calculations [19-20], but not in cell culture models. A particle can either be found in the 
semi-infinite half-space x>0 or occupy a bound state (at x=0), which will be noted (*). 
The central assumption is that the rate of desorption is proportional to the total absorbed 
population of particles p(*,t|x0)=1-Q(t|x0). Hence the boundary condition at x=0 can be 
written as 
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where kd is the dissociation constant. The units of kd are s-1, since dissociation is a first-
order process. For the TGFβ system, kd~(1.5±0.2)x10-4 s-1 [24]. The time evolution of the 
probability of a particle to be found in a bound state is given by [22]:  
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This system can be solved analytically by Laplace transforms [19]. In this case, p(x,t|x0) 
takes the form: 
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Where Δ2=ka
2-4Dkd, α=(ka+Δ)/2D and β=(ka-Δ)/2D. The probability of a free particle to 

remain in a free state is given by integration of equation (13): 
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The probability of a particle initially at x0>0 (free) to be found in a bound state at time t is 
thus 1-Q(t|x0). That is: 
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A ligand-receptor complex may dissociate. The probability distribution of a particle 
initially in a bound state to be found at position x>0 at time t is found by using the 
material balance condition kap(x,t|*)=kdp(*,t|x) (see ref. [22]). Using αβ=kd/D and α-
β=Δ/D, one finds [21]: 
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The probability of dissociation from the bound state is given by integration of equation 
(16):  
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The probability of a bound particle to remain bound at time t is p(*,t|*)=1-Q(t|*): 
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E. Reversible recombination with membrane and initiation of signal transduction 
 
A ligand receptor complex will either dissociate or initiate signal transduction by 
activating proteins such as the Smad proteins in the case of TGFβ. As a first 
approximation, this is equivalent to the problem 
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In our model, the rate constant ke corresponds to the pathway that a receptor-ligand 
complex will use to initiate action. For the TGFβ and its receptor, ke~0.05 s-1. The 
boundary condition is also given by equation (11). However, the time evolution of the 
reversibly bound state is given by: 
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Similarly, the time evolution for the irreversibly bound state at time t, is given by:  
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This state will be noted (**) and corresponds to activation of signal transduction in our 
model. 
 
This problem can be solved analytically using Laplace Transforms [22]. The solutions are 
expressed using three coefficients α, β and γ. They are the roots of a cubic polynomial4 
which depends on the rate constants ka, kd and ke as follow: 
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The Green function for a free particle for this system is given by [22]:  
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As usual, the probability of a particle initially at x0>0 to remain in a free state Q(t|x0) is 
obtained by integrating equation (23): 
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The probability of a particle initially at x0>0 to reversibly bound at time t (*) is [22]: 
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4 At least one of the roots of a 3rd order polynomial is real, the two other roots being either both real or 
complex conjugates.  
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A particle initially at x0>0 can also be found in an irreversibly bound state at time t. The 
probability to be found in this state is given by p(**,t|x0)=1-p(*,t|x0)-Q(t|x0). This 
calculation gives: 
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To obtain the Green function of a particle in a reversibly bound state, the material balance 
condition kap(x,t|*)=kd p(*,t|x) [21-22] is used. This yields 
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The probability of dissociation for a particle that was initially in a reversibly bound state 
Q(t|*) is found by integrating equation (27): 
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The probability of a particle initially in a reversibly bound state to remain in this state 
during t is given by [22]: 
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Finally, the probability of an initially bound particle to activate signal transduction is 
p(**,t|*)=1-Q(t|*)-p(*,t|*). Using )/())()((D/kd γ+β+αα+γγ+ββ+α= , p(**,t|*) can be 
written: 
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In sections (II-D) and (II-E), according to the values of α, β and γ, the Green functions 
may have singularities (0/0) called transitions, which may lead to several computational 
issues. They are discussed in Appendix A. 
 
 

III. DISCRETIZATION OF TIME 
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A simulation is usually divided in a finite number of timesteps Δt. Let p(x,t|x0) be the 
probability distribution for a particle to be at position x after the time t. If the simulation 
can be done in two timesteps such as timesteps t=Δt1+Δt2, we should have 
 

 
1011120 dx)x|t,p(x)x|tp(x,)x|tp(x, ∫

Ω

ΔΔ=  (31) 

Where Ω is the domain of x, i.e. the interval [0,∞). This is the Chapman-Kolmogorov 
equation. That is, the probability to find the particle at x after one timestep t is the same 
as the probability to find the particle at x after two timesteps Δt1 and Δt2, going through 
an intermediate position x1. Time discretization is an important aspect to consider in 
simulation. For example, in radiation chemistry simulations, the results should be 
independent of the number and magnitude of timesteps, if the timesteps are reasonably 
small [27].  
 
In the following sections, we discuss how the Chapman-Kolmogorov equation should be 
modified for the different cases considered in this paper. In most cases, we were not able 
to perform these integrals by using the analytical forms of the Green functions. However, 
because the processes considered in this paper are Markov processes, it immediately 
follows that Chapman-Kolmogorov type equations do hold. Equation (31) can be verified 
by noting that the right-hand side satisfies the diffusion equation and the boundary 
condition at x=0 and x=infinity, and reduces to p(x,Δt1|x0) for Δt2→0. Since the proof of 
these equations can be long, they are included in the supplementary documents 
accompanying this article [28-29].  
 
 
 

A. Reflective boundary at x=0 
 
For pref(x,t|x0), the right side of the equation (31) is the sum of four Gaussian integrals, 
which can be evaluated analytically [28]. The calculation is in agreement with equation 
(31) and confirms the assumption of time discretization for the reflective boundary at x=0.  
 

B. Partially absorptive boundary at x=0 
 
In this case, a free particle initially at x0 can 1) go to an intermediate position x1 during 
Δt1 and then go to its final x position at Δt2, 2) bind to the membrane during Δt1 or 3) go 
to an intermediate position x1 during Δt1 and bind to the membrane during Δt2. The first 
possibility can be written: 
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The probability to find a particle bound at t=Δt1+Δt2 will be given by the sum of 2) and 
3):  
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As shown in the supporting document 2, equation (32) is also a solution of the DE and 
satisfies the boundary condition (5). Moreover, equation (33) can be deduced from 
equation (32). This integral has not been found in existing tables of integrals [30] and the 
software Mathematica was not able to solve it analytically. However, numerical 
integration was attempted for different values of x0, x, D, Δt1 and Δt2 and ka. For all 
values that were used, equations (32-33) were found to be true [28].  
 

C. Reversible binding with membrane at x=0 
 
In this case, a particle initially at the position x0>0 can 1) go to an intermediate position 
x1 during Δt1 and then go to its final x position at Δt2, 2) bind to the membrane during Δt1 
and stay bound during Δt2, 3) bind to the membrane during Δt1 and dissociate during Δt2, 
4) go to an intermediate position x1 during Δt1 and bind to the membrane during Δt2. The 
probability distribution of a free particle at t=Δt1+Δt2 is given by: 
 

 
)x|t(*,p)*|t,x(pdx)x|t,p(x)x|tp(x,)x|tp(x, 0121011120 ΔΔ+ΔΔ= ∫

Ω

 (34) 

 
In this case, a term is added to the Chapman-Kolmogorov equation to take into account 
the contribution from the dissociation of bound particles after a timestep. Similarly, the 
probability of binding of a particle initially at x0 at t=Δt1+Δt2 is given by: 
 

 
1011120120 dx)x|t,p(x)x|tp(*,)x|tp(*,)*|t(*,p)x|tp(*, ∫

Ω

ΔΔ+ΔΔ=  (35) 

in the same way, a initially bound particle can 1) dissociate during Δt1 and move to its 
final x position at Δt2, 2)  stay bound during Δt1 and dissociate during Δt2, 3) dissociate 
during Δt1 and re-bind during Δt2 or 4) stay bound during Δt1 and Δt2. This yields the time 
discretization equations for initially bound particles: 
 

 
)|t,(p)|t,x(pdx)|t,p(x)x|tp(x,)|tp(x, 1211112 ∗Δ∗∗Δ+∗ΔΔ=∗ ∫

Ω  
(36) 

 
1111212 dx)|t,p(x)x|t,p()|t,p()|t,(p)|t,p( ∫

Ω

∗ΔΔ∗+∗Δ∗∗Δ∗=∗∗  (37) 

 
In the supplementary material [29], we verify that equation (34) satisfies the DE and the 
boundary condition (11), and that equations (35-37) can be deduced from equation (34). 
Furthermore, these equations were also verified numerically for all values of x0, x, D, Δt1, 
Δt2, ka and kd that were tried [28]. 
 
 

D. Reversible recombination with membrane and initiation of signal transduction 
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In this case, the particle initially at the position x0 can follow one of the following 
possibilities: 
1) go to position x1 during Δt1 and then go to its final x position during Δt2, 
2) go to position x1 during Δt1 and reversibly to the membrane during Δt2, 
3) go to position x1 during Δt1 and activate signal transduction during Δt2,  
4) bind reversibly to the membrane during Δt1 and stay in this state during Δt2, 
5) bind reversibly to the membrane during Δt1 and dissociate during Δt2, 
6) bind reversibly to the membrane during Δt1 and activate signal transduction during Δt2, 
or 
7) activate signal transduction during Δt1.  
 
From this system the following time discretization equations are obtained: 
 

 
)x|t(*,p)*|t,x(pdx)x|t,p(x)x|tp(x,)x|tp(x, 0121011120 ΔΔ+ΔΔ= ∫

Ω

 (38) 

 
1011120120 dx)x|t,p(x)x|tp(*,)x|tp(*,)*|t(*,p)x|tp(*, ∫

Ω

ΔΔ+ΔΔ=  (39) 

 
101112012010 dx)x|t,p(x)x|tp(**,)x|tp(*,)*|tp(**,)x|tp(**,)x|tp(**, ∫

Ω

ΔΔ+ΔΔ+Δ=  (40) 

 
Once again, a term is added to the Chapman-Kolmogorov equation to take into account 
the possibility of dissociation. Each term in the equations (38-40) corresponds to the 
possibilities 1)-7). Similarly, a particle initially in a reversibly bound state can: 
 
 1) dissociate to position x1 during Δt1 and go to its final position x during Δt2, 
 2) dissociate to position x1 during Δt1 and re-bind reversibly during Δt2, 
 3) dissociate to position x1 during Δt1 and initiate signal transduction during Δt2, 
 4) stay bound reversibly during Δt1 and dissociate to position x during Δt2, 
 5) stay bound reversibly during Δt1 and Δt2, 
 6) stay bound reversibly during Δt1 and initiate signal transduction during Δt2, or 
 7) initiate signal transduction during Δt1. 
 
This yields the time discretization equations for the bound particle: 
 

 
)|t,(p)|t,x(pdx)|t,p(x)x|tp(x,)|tp(x, 1211112 ∗Δ∗∗Δ+∗ΔΔ=∗ ∫

Ω

 (41) 

 
1111212 dx)|t,p(x)x|t,p()|t,p()|t,(p)|t,p( ∫

Ω

∗ΔΔ∗+∗Δ∗∗Δ∗=∗∗  (42) 

 
11112121 dx)|t,p(x)x|t,p()|t,p()|t,p()|t,p()*|t,p( ∫

Ω

∗ΔΔ∗∗+∗Δ∗∗Δ∗∗+∗Δ∗∗=∗∗  (43) 

 
Once again, we were not able to perform these integrals analytically by using the Green 
functions. However, in the supplementary material [29], we show that equation (38) is 
solution of the DE and of the boundary conditions and that equations (39-43) can be 
deduced from equation (38). Furthemore, numerical integration was also done for fixed 
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values of x0, x, D, Δt1, Δt2, ka, kd and ke. For all values that were used, equations (38-43) 
were found to be true [28].   
 
 

IV. MONTE-CARLO SAMPLING OF THE GREEN FUNCTION (BROWNIAN 
DYNAMICS ALGORITHM) 

 
In this section, the sampling algorithms of the propagators are discussed. They are used to 
calculate the state and position of a particle after a timestep Δt. In the limit of a infinite 
number of particles, many different algorithms are consistent. For a finite number of 
particles, the algorithms are not all equivalent. Those which are shown here are simple, 
fast and do not require much memory. For instance, the simulation of one time-step for 
106 particles histories requires ~30 s and a few kilobytes of memory. Similar recent 
calculations [23] uses look-up tables comprising 20000 bins to sample the Green 
functions, which certainly require a large pre-calculation time and storage space. 
 

A. Reflective boundary at x=0 
 
A method for sampling x distributed as pref(x,Δt|x0) has been published in the 1980's [18], 
but it will be recalled here because it is needed to sample the other Green functions. 
Because pref(x,Δt|x0) is the sum of two Gaussian functions and is normalized to 1, a 
random X value distributed as pref(x,Δt|x0) can be generated by using a composition 
method [31]. The algorithm is the following: 
 
 
BEGIN 
 Calculate [ ]tD4/xerfc

2
1N 00 Δ−=  

 Generate uniform [0,1] random variates U,V 
 
IF (U<N0) 
 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
Δ+= −

tD4
x

VErfcErfctD4xX 01
0

 
ELSE 

 
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

Δ+−= −

tD4
x

VErfcErfctD4xX 01
0

 
ENDIF 
RETURN X   
 
This algorithm gives a simple way to sample position x distributed as pref(x,t|x0). Tables 1 
and 2 list the parameter values used in our simulations. On Figure 1, the probability 
distribution pref(x,t|x0) of a particle initially at x0=2.5 is shown for t = 1, 2, 4, 8 and 16 
(for convenience, dimensionless units have been used). We have simulated 106 histories 
of particles initially at x0=2.5 by using the above algorithm to sample the position. The 
positions after 1, 2, 4, 8 and 16 time-steps of 1 unit are stored in normalized histograms. 
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Results are shown on Figure 1 for comparison. Similar results (not shown) are obtained 
regardless of the number of time-steps used; they match exactly the predicted analytical 
results and corroborate our assumption of time discretization.  
 

Figure 1 
 

B. Partially absorptive boundary at x=0 
 
In this case, the propagator p(x,Δt|x0) is not normalized to 1. The first step is to verify if 
the particle is free after Δt. A uniform random number U is drawn and compared to 
Q(Δt|x0). If U>Q(Δt|x0), the particle is bound irreversibly to the membrane and no further 
treatment is necessary. If U<Q(Δt|x0), the particle is free and its new position is 
calculated as follows. By selecting only surviving particles, the propagator becomes 
normalized. By setting  
 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δα

Δ
+

α−=Δ tD,
tD4

xx
W)x|t(x,p 0

02
 (44) 

 
we have p2(x,Δt|x0)<0 because α>0. Thus, p(x,Δt|x0) respects the condition to use the  
negative mixture algorithm of Bignami and de Mattels [32], described in Appendix B. In 
this particular case, a random variate X with density ∑∑ ++

i
i

i
ii p/)x(fp is obtained by 

sampling pref(x,Δt|x0) as described in section 4.1. At each time-step, the probability of 
survival of a particle must be assessed before sampling the position X. The simulation 
results are shown on Figure 2. 
 

Figure 2 
 
In this figure, the probability distribution of a particle initially at x0=2.5 with diffusion 
coefficient D=1 is shown after 1, 2, 4, 8 and 16 units. The simulation of 106 particles 
initially at  x0=2.5 using the algorithm is also shown for comparison. The results are the 
same regardless of the time-step used; they match very well the analytical results. On the 
right figure, the survival and binding probability of a particle initially at x0=2.5 are shown 
for ka=0.1, 1.0 and 10.0. It is well know that a particle, in 1D, will always reach the 
position x=0 if given sufficient time. Thus, the particle will always bind irreversibly after 
some time. This explains why the survival probability of a particles asymptotically 
decays to 0.   
 

C. Partially absorptive boundary with dissociation at x=0 
 
In this case, a particle can be free or reversibly bound; since the propagators are different 
in both situations, they should be treated differently. The first step is to determine 
whether a particle will be in a free or bound state after a time-step Δt. This is done by 
generating a random number and comparing it to the probability of survival Q(Δt|x0) for a 
free particle or to the probability of dissociation Q(Δt|*) for a bound particle. If a particle 
is in a bound state after Δt, the treatment is over for this timestep. If a particle initially in 
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a free state remains in a free state, a position distributed as p(x,Δt|x0) should be sampled. 
By setting 
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 (45) 

 
we note that p2(x,Δt|x0)≤0. Therefore the algorithm of Bignami and de Mattels (Appendix 
B) [32] can be used. If a particle initially in a bound state dissociates, its position after Δt 
is found by sampling p(x,Δt|*), which can be written: 
 

 
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ Δα+
Δ

Ω−⎟
⎠

⎞
⎜
⎝

⎛ Δβ+
Δ

Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

−
β−α

αβ=Δ tD
tD4

xtD
tD4

x
tD4

xexp*)|t,x(p
2  (46) 

 
This form is very convenient because its last term is the product of a Gaussian-type 
function with the function Ω(x), which is ≤1 for x≥0. Since α≥β, the term inside brackets 
is ≤1. Thus, p(x,Δt|*) is the product of a Gaussian function and a function ≤1; it can be 
sampled by a rejection method [31]. On Figure 3 (left), the probability distribution of a 
particle initially at x0=2.5 for ka=5 and kd=1 is shown for t=1,2,4,8 and 16 units. The dots 
are simulation results, which can also be obtained by using various combination of time-
steps. On the right figure, the probability of a given particle initially at x0=2.5 to be free 
or reversibly bound is shown for ka=5 and kd=0.1, 1.0 and 10.0.  In all cases, as discussed 
by [19], the particle will eventually be free as t→∞. 
 
 

Figure 3 
 
 

D. Reversible recombination with membrane and initiation of signal transduction 
 
The particle can be in a free, reversibly bound state or irreversibly bound state, 
corresponding to the initialization of signal transduction. The first step in the algorithm 
for a free particle is to determine its state after a time-step Δt. This is done by using the 
probabilities given by Q(Δt|x0), p(*,Δt|x0) and p(**,Δt|x0). If the particle stays in a free 
state, the position of the particle is obtained by sampling its position according to p(x,t|x0) 
by the algorithm of Bignami and de Mattels, by setting 
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 (47) 

 
The fact that p2(x,Δt|x0)≤0 is less obvious here. Since the reaction rate constants ka, kd 
and ke are always positive (or zero), it would make no physical sense to have 
p2(x,Δt|x0)>0. Even though we were not able to prove formally that p2(x,Δt|x0)≤0, this 
assumption was verified for all our simulations. 
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If a particle is initially in a reversibly bound state, its state after the next timestep is 
determined by using the probabilities given by Q(Δt|*), p(*,Δt|*) and p(**,Δt|*). If the 
bound particle dissociates, the Green function p(x,Δt|*), which may also be written as the 
product of a Gaussian function by a function of three terms in Ω(x), is sampled by the 
rejection method.     
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On Figure 4 (left), the probability distribution of a particle at x0=2.5 from a membrane 
with ka=5, kd=1 and ke=1 is shown for t=1,2,4,8 and 16. Simulation points obtained from 
sampling using the methods in this paper are also shown. The results are similar 
regardless the number of time-steps. On Figure 4 (right), the probabilities of a particle to 
be in a free, reversibly bound or irreversibly bound are shown for ka=5, kd=1 and ke=0.01, 
0.1 and 1. In all cases, since a particle will always reach the membrane at x=0 if given 
sufficient time, all particles will eventually bound irreversibly. 
 

Figure 4 
 
For transitions, the sampling algorithms are modified to use the special forms of the 
Green functions as discussed in Appendix A.  
 
 

V. DISCUSSION AND CONCLUSION 
 
We have discussed the interaction of a Brownian particle near a plane membrane with 
receptors, the most general case comprising the possibility of dissociation of the ligand-
receptor complex and initiation of signal transduction. The simulation of particles 
histories using the BD algorithms described in this paper are able to reproduce accurately 
the theoretical distribution of distances from the membrane, the number of reversibly 
bound particles and the initiation of cell signaling following the analytical solution, 
regardless of the number of time-steps. The discretization of time for the simulation 
algorithm is an important benchmark for the calculation and for the self-consistency of 
theory. We were able to establish them, but were not able to verify all of them from their 
analytical forms. However, all of them were verified numerically. We have also 
developed algorithms which are very fast and require only a small amount of memory or 
disk space. These two very important aspects are usually not considered in related articles.  
 
An important application of the theory described in this paper is the study of the response 
of a group of cells to ionizing radiation, specifically the role of TGFβ. TGFβ molecules  
are secreted by most cells in an inactive form called the LTGFβ and is rapidly converted 
to an active form by radiation or other stressors. TGFβ has been shown recently to 
suppress apoptosis in irradiated cell culture [11] and also to mediate cellular response to 
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DNA damage [34]. It could thus play an important role in the response of tissue to 
ionizing radiations [2]. The study of the role of TGFβ in cell culture is complicated by the 
fact that several isoforms of the molecule and of the receptor exist [33,35], and by its 
complex signaling pathways [36-37].  
 
It is well known that ionizing radiation creates radical and molecular species (.OH, H., H2, 
H2O2, e-

aq,...) by the radiolysis of water in living matter in a highly non-homogeneous 
manner called the radiation track structure [38]. The .OH radical liberates TGFβ 
molecules from its latent complex LTGFβ by triggering a conformational change [33]. 
Activated TGFβ binds to cells receptors and initiates signal transduction by the activation 
of a cascade of downstream signaling events mediated by Smad proteins. In this 
perspective, the simulations described in this paper are the first step in the 
implementation of a BD algorithm using reaction rate constants on cell surfaces to 
explain the experimental results on the role of TGFβ in irradiated cell cultures or tissues. 
These simulations will allow us to calculate range, lifetime and concentrations of 
activated TGFβ molecules as well as the number of affected cells and the positions where 
TGFβ molecules will bind to the cell surface receptors and initiate signal transduction 
following irradiation. This should provide considerable insight of the role of TGFβ in 
irradiated systems. 
 
It is not possible at this time to compare our results with experimental data for several 
reasons, notably because they don't exist for the situations described in this paper. 
Nevertheless, this theoretical approach had a great success to explain chemical reaction 
kinetics [22-23] and in systems biology simulations [14-17]. We also have the necessary 
data (Table 1 and Table 2) to eventually use this approach with TGFβ in biological 
systems.  
 
In future work, we plan to use radiation track structure models in different geometries of 
cell culture or tissue models to calculate the number of activated TGFβ and to include 
TGFβ signaling pathways in existing DNA repair models [39]. This will be possible by 
using the approach described in this paper with appropriate modifications for different 
geometries. These calculations will also be used to benchmark numerical calculations, 
making it possible to study more complex systems that are not amenable to analytic 
solutions. Differences between responses at high and low doses and random interactions 
of X-rays or electrons versus the distinct track structures of high-energy ions will be 
investigated. This should lead to significant improvement in our comprehension of 
radiation risk.  
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Figure captions 
 
 
Figure 1: Probability distribution of a particle near a reflecting boundary for x0=2.5 and 
D=1 at t=1, 2, 4, 8 and 16 units. The lines are the analytical predictions pref(x,t|x0). The 
dots are given by the simulation of 106 particles histories either with one or multiple 
time-steps.  
 
Figure 2: (Left) Probability distribution of a particle near a partially absorbing and 
reflecting boundary for x0=2.5, ka=5 and D=1 at t=1, 2, 4, 8 and 16 units. The lines are 
the analytical predictions p(x,t|x0). The dots are given by the simulation of 106 particles 
histories either with one or multiple time-steps. (Right) Probability of a particle initially 
at x0=2.5 to be free or irreversibly bound as a function of time for ka=5. 
 
Figure 3: (Left) Probability distribution of a particle near a partially absorbing and 
reflecting boundary with back reaction for x0=2.5, ka=5, kd=1 and D=1 at t=1, 2, 4, 8 and 
16 s. The coefficients α≈4.7913 and β≈0.20872. The lines are the analytical predictions 
p(x,t|x0). The dots are given by the simulation of 106 particles histories either with one or 
multiple time-steps. (Right) Probability of a particle initially at x0=2.5 to be free or  
reversibly bound as a function of time for ka=5 and kd=0.1, 1 and 10.   
 
Figure 4: (Left) Probability distribution of a particle near a partially absorbing and 
reflecting boundary with back reaction for x0=2.5, ka=5, kd=1 and D=1 at t=1, 2, 4, 8 and 
16 s. The coefficients α≈4.8, β≈0.099827+1.01569i and γ≈0.099827-1.01569i. The lines 
are the analytical predictions p(x,t|x0). The dots are given by the simulation of 106 
particles histories either with one or multiple time-steps. (Right) Probability of a particle 
initially at x0=2.5 to be free, reversibly bound or irreversibly bound as a function of time 
for ka=5, kd=1 and ke=0.1, 1 and 10.   
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Figure 3 
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Figure 4 
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Table 1. Parameters used for TGFβ 
Parameter Description Value Reference 
D Ligand diffusivity 2.6x10-7 cm2/s  
A Culture surface 10 cm2 [15]  
h Height of the extracellular medium 0.2 cm [15]  
ke Complex internalization rate 

constant 
3 min-1 = 0.05 s-1

  [40]  

kon Forward binding rate constant (2.3±0.2)x107 M-1s-1 [24]  
kd Complex dissociation rate constant (1.5±0.2)x10-4 s-1 [24]  
R0 Number of receptors at cell surface 1000 [24]  
Rcell Radius of the cell 0.0025 cm [15]  
Ncells Number of cells in culture 100000 [15]  
 
Table 2. Calculated quantities 
Parameter Description Value Reference 
σ Fraction of culture surface covered by 

cells 
0.196 [16]  

ka Rate constant at the cell surface 8.46x10-4 cm s-1  
κcell Surface trapping rate 3.18x10-4 cm s-1  
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Appendix A: Transitions 
 
The Green functions described in sections 2.4 and 2.5 may have singularities (0/0) when 
values of α, β and/or γ are equal. The Green functions takes different forms for these 
values.   
 
I.1 Reversible binding with membrane at x=0 
Equations (13) and (14) are still adequate for complex values of α and β, since the 
imaginary terms cancels to 0, but there is a singularity when α=β (or Δ=0). By taking the 
limit β→α of equations (13) we find5:   
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The probability of survival, in this case, can be obtained either by taking the limit β→α of 
equation (14) or by integrating equation (A1). This yields:  
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We may proceed as in section II or take the limit β→α of equations (15), (16), (17) and 
(18). Either approach yields: 
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The Green function for dissociation can also be written in a convenient form for rejection 
sampling by using the Gaussian function as a common factor: 
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where Ω'(x)=W'(0,x). 
                                                 
5 The following equations are greatly simplified by introducing the function 
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I.2 Reversible recombination with membrane and activation of signal transduction 
Since α, β and γ are the roots of a 3rd degree polynomial, there are much more transitions 
to consider. A “first order” transition occurs when one root vanishes (equals 0); a “second 
order” transition occurs when two roots are equal; a “third order” transition occurs when 
all three roots have the same identical real part. These cases are discussed in this section. 
 
I.2.1 First order transition 
In this case, one of the roots is zero (suppose γ=0). The two other roots are different and 
are not equal to zero, since this would be a 2nd or 3rd order transition. From equation (27c), 
either ka or ke is 0. Setting ka=0 would have no physical sense since a free particle cannot 
bind to the membrane. Hence we need to set ke=0, which is the situation described in 
section 2.4. Using γ=0 in the Green functions of section 2.5 gives the Green functions of 
section 2.4.  
 
I.2.2 Second order transition 
This occurs when two roots, say α and β, are equal. This implies that all roots must be 
real. In this case, the first two terms of equation (23) may be written as 0/0. This 
ambiguity is solved by calculating the limit of p(x,t|x0) with β→α. We find: 
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The probability of survival Q(t|x0) can be calculated either by integrating (A7) or by the 
limit of equation (24) with β→α. We find:  
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Similarly, the other Green functions are: 
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By summing individually each term of (A8-A10) we can verify that 
Q(t|x0)+p(*,t|x0)+p(**,t|x0)=1.  
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The last equation can be also be rewritten in a form convenient for rejection sampling by 
putting a Gaussian factor in evidence. For the reversibly bound particle, we have: 
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By summing each term individually, as expected, Q(t|*)+p(*,t|*)+p(**,t|*)=1. Two cases 
are possible. The first case is α=β=0 and γ≠0. Equation (22) implies that γ=ka/D and 
ke=kd=0. This is the partially absorptive boundary at x=0, which has already been 
discussed in section 2.3. The second possible case is α=β≠0 and γ=0. This is the transition 
of the reversible boundary, discussed in Appendix I.1. If γ=0, the last expressions can be 
simplified to yield the equations described in the first part of this appendix.  
 
 
I.2.3 Third order transition 
A 3rd order transition imposes severe conditions on the rate constants, since the real part 
of the roots are equal. The trivial case ka=kd=ke=0 is the reflective boundary. Otherwise, 
the roots can be expressed as α=rp, β=rp+ 1− ip and γ=rp- 1− ip. From equation (22a), 
since ka is real and positive, the real part of the roots are given by rp=ka/3D. The rate 
constant ke cannot be 0, since one of the roots would have to be identically equal to 0 this 
would not be a 3rd order transition. Equation (22c) allows the calculation of the imaginary 
part ip,  
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For a 3rd order transition, equation (22b) imposes the following condition on kd : 
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A 3rd order transition with real coefficients could be met by setting, for example, ka=9, 
kd=24, ke=3 and D=1, which would give α=β=γ=3. Strict conditions like this are not 
expected to happen in real life; thus, this is more a theoretical curiosity.  
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For calculations, if two roots are complex conjugate with imaginary part different from 0,  
there are no division by 0 in any of the Green functions; the general equations can thus be 
used without any modification. However, if all roots are equal and real, the limit β→α 
and γ→α should be used to avoid a division by 0. After a long calculation, we find6:  
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The condition Q(t|x0)+p(*,t|x0)+p(**,t|x0)=1 is also verified by equations (A19-A21). For 
the bound particle, the Green function for dissociation is: 
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As a common Gaussian factor can also be put in evidence for both functions W' and W'' 
to sample equation (A22) by rejection. The probabilities for the bound particle can also 
be calculated for a 3rd order transition: 
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where Ω''(x)=W''(0,x). Once again, Q(t|*)+p(*,t|*)+p(**,t|*)=1.   
 
 
                                                 
6 The equations of the 3rd order transition are greatly simplified by introducing the functions 
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Appendix B: Algorithm of Bignami and de Mattels 
 
The negative mixture algorithm of Bignami and de Mattels (1971) is described here. If a 
given probability density f(x) can be written as follows 
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where the fi(x)’s are probability densities, but the pi’s are real numbers summing to 1. 
The pi’s can be decomposed into positive and negative parts, pi+ and pi-. In this case,  
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The following rejection algorithm can be used: 
 
BEGIN 
REPEAT 
 

Generate a random variate X with density ∑∑ ++
i

i
i

ii p/)x(fp  

 Generate a uniform [0,1] random variate U 
 
UNTIL ∑∑ ≤+

i
ii

i
ii )X(fp)X(fpU  

RETURN X  
 
 


