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Membrane potential and spike train statistics depend distinctly on input statistics
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A description of how the activity of a population of neurons reflects the structure of its inputs
is essential for understanding neural coding. Many studies have examined how inputs determine
spiking statistics, while comparatively little is known about membrane potentials. We examine how
membrane potential statistics are related to input and spiking statistics. Surprisingly, firing rates and
membrane potentials are sensitive to input current modulations in distinct regimes. Additionally,
the correlation between the membrane potentials of two uncoupled cells and the correlation between
their spike trains reflect input correlations in distinct regimes. Our predictions are experimentally
testable, provide insight into the filtering properties of neurons, and indicate that care needs to be
taken when interpreting neuronal recordings that reflect a combination of subthreshold and spiking
activity.
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I. INTRODUCTION

To understand dynamics and information processing in
neuronal networks, it is important to examine how the
inputs to neurons shape their activity. Computational
and theoretical approaches to this problem typically fo-
cus on spiking activity. However, action potentials are a
sparse representation of a cell’s response, while the sub-
threshold membrane potential is continuously modulated
by a cell’s inputs. In addition, popular recording tech-
niques such as voltage sensitive dyes and local field po-
tentials capture a mixture of subthreshold and spiking
activity. While the multivariate statistics of membrane
potential traces have been examined experimentally [1–
4], a theoretical approach to the problem has not been
fully developed [5].

We provide theoretical tools to examine how the statis-
tics of inputs to neurons determine the marginal and joint
statistics of their membrane potential activity. This ap-
proach also allows us to study how membrane potential
statistics are related to spiking statistics. Counter to in-
tuition, we find that current coded signals are reliably
reflected by membrane potentials and firing rates in dis-
tinct regimes: Firing rates are most sensitive to modula-
tions of a cell’s input current when excitation is strong
and firing rates are high. In contrast, the mean mem-
brane potential is most sensitive to such modulations
when excitation is weak and firing rates low. In addition,
we find that when two uncoupled cells receive correlated
inputs, their spiking correlations and membrane poten-
tial correlations are reflective of the correlations between
their inputs in distinct regimes.

These findings illuminate some fundamental filtering
properties of neurons and have significant implications
for the interpretation of different types of experimental
recordings. For example, the correlation between two
signals obtained from voltage sensitive dyes or local field
potentials can exhibit a decrease in correlations when
spiking correlations increase.

II. METHODS

We model two cells receiving correlated, stochastic in-
put using a leaky integrate–and–fire (LIF) model. With-
out loss of generality, we scale and shift the voltage units
so that the membrane capacitance is Cm = 1 and the leak
current has reversal potential at zero. Thus the mem-
brane potential of cell k = 1, 2 obeys

dVk

dt
= −Vk

τm
+ Je ek(t)− Ji ik(t) (1)

where e1(t) =
∑

j δ(t− tje1) and e2(t) =
∑

j δ(t− tje2) are
correlated stationary point processes representing excita-
tory inputs with rate re, and similarly for the inhibitory
inputs i1,2(t) with rate ri. The term Je (Ji) represents
the synaptic strength of excitation (inhibition) and τm
the membrane time constant. Additionally, whenever
Vk(t) exceeds threshold at Vth, a spike is fired and the
membrane potential reset to Vre. Output spike trains are
given by sk(t) =

∑
j δ(t− tjk), where t

j
k is the time of the

jth spike of cell k. We denote the output firing rates by
rs. For notational convenience, we also define the total
input currents ink(t) = Je ek(t)− Ji ik(t) with mean

µ = 〈ink(t)〉 = Jere − Jiri.

For simplicity, the dynamics and input statistics of the
two cells are assumed to be statistically identical in the
text, with a general treatment given in the appendices.
We quantify the covariance between spike trains and

membrane potentials using the cross-covariance Cκ(τ) =
cov(κ1(t), κ2(t + τ)), for κ ∈ {s, e, i, in, V } where
cov(x, y) = 〈xy〉 − 〈x〉〈y〉, 〈·〉 denotes expectation and
processes are assumed stationary and ergodic. The cross-
covariance between the total input currents is related to
the excitatory and inhibitory cross-covariances by

Cin(τ) = J2
eCe(τ) + J2

i Ci(τ) − 2JeJiCei(τ), (2)

where Cei(τ) = cov(e1(t), i2(t + τ)) = cov(i1(t), e2(t +
τ)). Auto-covariances are defined similarly, Aκ(τ) =



2

cov(κk(t), κk(t+τ)). To quantify the correlation between
membrane potentials, we normalize the cross-covariance
to obtain the Pearson normalized cross-correlation (here-
after referred to simply as cross-correlation)

RV (τ) =
CV (τ)

AV (0)
=

cov(V1(t), V2(t+ τ))√
var(V1(t))var(V2(t+ τ))

, (3)

which satisfies |RV (τ)| ≤ 1 and where |RV V (0)| = 1 im-
plies that the membrane potentials are perfectly corre-
lated or anti-correlated, i.e. V1(t) = λV2(t).
The Pearson normalized cross-correlation between

point processes is not defined since they have infinite
variance (i.e., var(κk(t)) = ∞ for κ ∈ {e, i, in, s}) [6,
7]. We instead consider statistics of the spike counts,

Nκk
(t1, t2) =

∫ t2
t1

κk(s)ds for κ ∈ {in, s, e, i} and
k = 1, 2. Define the normalized spike count vari-
ance σ2(T ) = var(Nκk

(t, t + T ))/T , covariance γκ(T ) =
cov(N1(t, t+T ), N2(t, t+T ))/T , and correlation ρκ(T ) =
γκ(T )/σ

2
κ(T ).

We next provide a general and intuitive derivation of
spiking and membrane potential statistics in the limit of
weak and strong excitation. The relation between the two
is then examined outside of these limits using a diffusion
approximation.

III. WEAK EXCITATION LIMIT

We begin by examining the response properties of a
pair of LIFs in a regime where spiking is rare, for in-
stance when excitation is weaker than the combined cur-
rent from inhibition and leak (Jere ≪ Jiri + Vth/τm).
In this limit we find that the mean membrane potentials
reliably reflect the mean input currents. In contrast the
cells’ firing rates depend only weakly on the mean input
current. Additionally, correlations between membrane
potentials reflect input correlations, but spiking correla-
tions are nearly zero.
In the limit of weak excitation, the membrane poten-

tials are given by Eq. (1) without thresholding, and hence
by linearly filtered versions of the inputs. Standard signal
processing identities can be used to obtain the membrane
potential statistics [8]. The stationary mean of the mem-
brane potentials is proportional to the mean of the input
current, 〈Vk〉 = µτm, so that the gain of the membrane
potential is given by

d〈Vk〉
dµ

= τm.

The auto- and cross-covariance functions are obtained
by applying a linear filter to the input auto- and cross-
covariance functions,

AV (τ) = (K ∗Ain)(τ) and CV (τ) = (K ∗ Cin)(τ), (4)

where K(τ) = τme−|τ |/τm/2. Thus, the integral correla-
tion coefficient of the input is preserved in the membrane

potentials in the sense that

∫∞

−∞
CV (τ)dτ∫∞

−∞
AV (τ)dτ

=

∫∞

−∞
Cin(τ)dτ∫∞

−∞
Ain(τ)dτ

= lim
T→∞

ρin(T ).

The stationary variance is var(Vk) = AV (0) =∫∞

−∞ Ain(τ)K(τ)dτ which gives the cross-correlation

function, c.f. Eq. (3).

Whereas membrane potential statistics reliably reflect
input statistics, the gain of the spike trains and the cor-
relation between spike trains are nearly zero when exci-
tation is weak

drs
dµ

≈ 0, Cs(τ) ≈ 0 and ρs(T ) ≈ 0. (5)

and asymptotic expansions are known for each [9–12].
The conclusion that spiking correlations vanish in the
limit of weak excitation requires an assumption that in-
put correlations are weak. However, spiking correlations
are found to be nearly zero when excitation is weak and
input correlations are chosen to be moderate in magni-
tude [9, 10].

The results in this section were obtained by assuming
that excitation is weak so that spiking is rare. However,
the results are valid any time active spiking conductances
have a negligible impact, such as when spiking is sup-
pressed either pharmacologically or by injecting a hyper-
polarizing current in experiments [2, 3]. See Sec. VID
for further discussion.

IV. STRONG EXCITATION LIMIT

We now examine the response properties of two LIFs
when excitation is strong and firing rates are high. In this
regime the sensitivity to input currents is reversed: The
mean membrane potentials show a weak dependence, but
the firing rates reflect the mean input current reliably.
Similarly, membrane potential correlations are zero, but
spiking correlations reflect input correlations.

When excitation dominates the current across the
membrane (Jere ≫ Jiri+Vth/τm), an approximation can
be obtained by ignoring the effects of inhibition and leak.
Eq. (1) is then replaced by the equation for a perfect in-
tegrator [9, 13],

dVk

dt
= Je ek(t), (6)

with the same threshold and reset conditions. This model
is analyzed in Appendix A and we review the results here.
Under weak assumptions, we show that the bivariate dis-
tribution of (V1(t), V2(t+ τ)) is uniform, generalizing the
univariate result in [14]. We also assume that Vth−Vre is
an integer multiple of Je, which simplifies the exposition,
but does not significantly change the results.
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FIG. 1: (Color online) (A) Firing rate (rs, dashed red, top), mean membrane potential (〈V 〉, solid blue, top) and gains (drs/dµ,
dashed red, bottom; d〈V 〉/dµ, solid blue, bottom) as functions of the excitatory input rate, re. (B) Susceptibility magnitude of
the firing rate. (C) Susceptibility magnitude of the mean membrane potential. As the level of excitation increases, firing rates
become more sensitive and membrane potentials become less sensitive to perturbations. In all plots, ri = 2KHz and τm = 20ms.
Voltage is scaled so that Vre = 0 and Vth = 1 with Je = Ji = 1/30. Mean membrane potential has units (Vth − Vre)

−1, ω has
units Hz, and susceptibility functions have units (Vth − Vre)

−1 for χs and ms for χV .

The mean membrane potential is given by 〈Vk〉 =
(Vth + Vre)/2. Thus, the gain of the membrane poten-
tials is zero in this limit,

d〈Vk〉
dµ

= 0.

Two random variables whose joint distribution is uni-
form are necessarily independent, and therefore V1(t) is
independent from V2(t+ τ), and so

CV (τ) = RV (τ) = 0 (7)

for all τ . It is worth noting that this result is not valid
when the cells’ inputs are perfectly correlated, since iden-
tical inputs imply that the bivariate membrane potential
process is not ergodic on its state space.
Whereas the gain and correlation of the membrane po-

tentials are zero in the limit of strong excitation, the spike
trains reliably reflect the inputs. The firing rate is given
by rs = re/θ = µ/(Vth − Vre) where θ = (Vth − Vre)/Je
is the number of inputs required to reach threshold from
reset. This gives the gain,

drs
dµ

= (Vth − Vre)
−1.

Perhaps counterintuitively, the membrane potentials
for this model are independent, but the output spike
trains are correlated. This is possible because the times
at which the membrane potentials jump are correlated
even though the states that they occupy are not. To see
this, suppose that Ce(τ) > 0 and that cell 1 spikes at time
t. Then cell 1 necessarily received an excitatory input at
time t. Although conditioning on a spike in cell 1 does
not affect the distribution of V2(t+τ), the fact that cell 1
received an input at time t increases the probability that

cell 2 receives an input near time t+ τ , since Ce(τ) > 0.
This in turn increases the probability that cell 2 spikes
near time t + τ . In Appendix A, this argument is used
to derive the output cross-covariance function,

Cs(τ) = θ−2Ce(τ) = (Vth − Vre)
−2Cin(τ). (8)

Spike count statistics over large time windows are
known in closed form for this model [9, 15]. Vari-
ances and covariances are scaled, limT→∞ σ2

s (T ) =
(Vth−Vre)

−2 limT→∞ σ2
in(T ) and limT→∞ γs(T ) = (Vth−

Vre)
−2 limT→∞ γin(T ) so that spiking correlations over

large time windows equal input correlations,

lim
T→∞

ρs(T ) = lim
T→∞

ρin(T ).

However, spike count correlations over small windows are
reduced since, to first order in T ,

ρs(T ) ≈
Cs(0)

rs
T =

θ−2Ce(0)

θ−1re
T ≈ θ−1ρin(T ).

The model defined by Eq. (6) is a simplification of real-
istic neuronal dynamics, even when excitation is strong.
However, we show next that these results accurately pre-
dict the statistics of two LIFs receiving strong excitation.

V. ANALYSIS OF THE DIFFUSION
APPROXIMATION

The model given by Eq. (1) is difficult to analyze out-
side of the two limits discussed above, so we instead con-
sider a diffusion approximation,

dVk

dt
= − Vk

τm
+ µ+

√
2Dηk(t). (9)
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Here, η1(t), and η2(t) are unbiased Gaussian noise with
〈ηk(t)ηk(t+ τ)〉 = δ(τ) and 2D〈η1(t)η2(t+ τ)〉 = Cin(τ).
The parameter,D = (J2

e re+J2
i ri)/2, is the effective diffu-

sion coefficient of the input current. This approximation
is valid when ek(t) and ik(t) are independent Poisson pro-
cesses (but e1(t) and i2(t) need not be independent) and
Je, Ji ≪ Vth − Vre. Although the inputs are assumed to
be Poisson, their pairwise cross-covariances need not be
delta functions [16, 17]. See [14, 18–20] for a more in-
depth look at the validity of the diffusion approximation.
Univariate and bivariate spiking statistics for this

model have been studied extensively and the univariate
moments are known in closed form [21, 22], but the statis-
tics of the membrane potentials have received compara-
tively little attention. Below, we use the Fokker-Planck
formulation from [23, 24] to derive membrane potential
statistics in terms of the input parameters and the output
spiking statistics.

A. Stationary mean and variance of the membrane
potentials

In Appendix B, we derive the steady state mean and
variance of the membrane potentials,

〈Vk〉 = τm (µ− (Vth − Vre)rs) , (10)

var(Vk) = τmD −
(
(V 2

th − V 2
re)/2− τmµ(Vth − Vre)

)
τmrs

− (Vth − Vre)
2τ2mr2s . (11)

The stationary firing rate, rs, and the stationary density,
P0, are known in closed form and can also be obtained
by solving a boundary value problem [7, 23, 25].
The mean and variance of Vk(t) can also be obtained

by integrating the stationary density, but Eqs. (10) and
(11) are easier to evaluate and have an intuitive interpre-
tation: Taking rs → 0 gives the mean and variance in the
weak excitation limit (compare to Sec. III). The remain-
ing terms quantify the effect of thresholding in terms of
the firing rate.
The mean membrane potential and firing rate are

shown as a function of re in Fig. 1A. When re is small,
rs ≈ 0 and 〈Vk〉 increases approximately linearly with
re, consistent with the discussion in Sec. III. When re
is larger, rs increases approximately linearly with re and
〈Vk〉 ≈ (Vth + Vre)/2, consistent with Sec. IV.

B. Membrane potentials and firing rates are
sensitive to input current modulations in distinct

regimes

We now examine the sensitivity of the firing rate and
mean membrane potential to modulations of the input
current for the diffusion approximation. This extends the
results in the limiting cases in Secs. III and IV, where we
found that the firing rate and mean membrane poten-
tial are sensitive to modulations of the input current in
distinct regimes.

C s(τ) C 
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r e
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0.00125

43 r e
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FIG. 2: (Color online) (A) Cross-covariance between spike
trains as re increases. Inset compares linear response cal-
culation (solid) to the strong excitation limit (dashed, from
Eq. (8)) when re = 4.5KHz. (B) Cross-covariance between
membrane potentials as re increases. Inset compares lin-
ear response calculation (solid) to the weak excitation limit
(dashed, from Eq. (4)) when re = 2.15KHz. Parameters are
the same as in Fig. 1 with input cross-covariances Ce(τ ) =

ρinree
−|τ |/τin/τin, Ci(τ ) = ρinrie

−|τ |/τin/τin, and Cei(τ ) = 0

so that, from Eq. (2), Cin(τ ) = ρinDe−|τ |/τin/τin with input
correlation magnitude ρin = 0.1 and timescale τin = 5ms.
Axes have units ms for τ , KHz for re, Hz2 for Cs(τ ), and
(Vth −Vre)

2 for CV (τ ). Firing rates vary range from 0.1Hz to
58Hz.

The gain of the membrane potential is given by taking
the derivative of Eq. (10) with respect to µ to give

d〈Vk〉
dµ

= τm

(
1− (Vth − Vre)

drs
dµ

)
. (12)

This expression and Fig. 1A indicate a dichotomy be-
tween the regimes where rs and 〈Vk〉 depend sensitively
on the input bias: When excitation is weak, the gain of
the firing rates is nearly zero and the gain of the mem-
brane potentials is maximal,

drs
dµ

≈ 0 and
d〈Vk〉
dµ

≈ τm,

consistent with the results in Sec. III.When excitation is
strong, the gain of the firing rate is maximal and the gain
of the membrane potentials is approximately zero,

drs
dµ

≈ (Vth − Vre)
−1 and

d〈Vk〉
dµ

≈ 0,

consistent with the results in Sec. IV. Eq. (12) interpo-
lates these two regimes.

We now use linear response theory to analyze the sensi-
tivity of the neuronal responses to dynamic modulations
of the input current by examining the response to the
bias current µ(t) = µ0 + ǫeiωt in Eq. (9). Using a com-
plex perturbation allows us to derive the amplitude and
phase shift simultaneously [23].

The susceptibility functions, χV (ω) and χs(ω), of the
mean membrane potential and firing rate are defined by
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FIG. 3: (Color online) Spike count correlations (A) and nor-
malized membrane potential cross-correlation (B) at various
firing rates (see inset). Linear response approximations (solid)
are compared to simulations with Poisson inputs (dashed).
Firing rates were modulated by changing re. All other pa-
rameters are as in Fig. 2.

the asymptotic relations [26]

〈Vk(t)〉 = 〈V0〉+ ǫ χV (ω)e
iωt + o(ǫ)

rs(t) = r0 + ǫ χs(ω)e
iωt + o(ǫ)

where 〈V0〉 and r0 are the stationary mean membrane
potential and firing rate when ǫ = 0.
The function χs(ω) is known in closed form and its

properties have been studied extensively [7, 23, 25]. In
Appendix B, we derive the membrane potential suscep-
tibility in terms of χs(ω) as

χV (ω) =
τm

1 + iωτm

(
1− (Vth − Vre)χs(ω)

)
. (13)

Note that taking ω = 0 in Eq. (13) recovers Eq. (12)
since χs(0) = drs/dµ and χV (0) = d〈Vk〉/dµ. Taking
the norm squared on either side of Eq. (13) relates the
sensitivity of the firing rate and membrane potential to
modulations of the input current at frequency ω,

∣∣χV (ω)
∣∣2 = K̃(ω)

∣∣1− (Vth − Vre)χs(ω)
∣∣2, (14)

where K̃(ω) =
∫∞

−∞ K(t)e−iωtdt = τ2m/(1 + τ2mω2) is the

Fourier transform of the kernel K(t) from Sec. III.
Figs. 1B and 1C compare the amplitude of the spiking

and membrane potential susceptibility. When excitation
is weak,

|χs(ω)| ≈ 0 and |χV (ω)| ≈
√
K̃(ω).

When excitation is strong,

|χs(ω)| ≈ (Vth − Vre)
−1 and |χV (ω)| ≈ 0.

Thus, spiking and subthreshold dynamics reliably reflect
dynamic input modulations in distinct regimes.

C. Membrane potential and spiking correlations
reflect input correlations in distinct regimes

We now examine the spiking and membrane potential
correlations using the diffusion approximation. Confirm-
ing the results in Secs. III and IV, we find that spiking

and membrane potential correlations reflect input corre-
lations in distinct regimes.
When input correlations are weak, linear response the-

ory can be used to derive the following approximation of
the output cross-covariance function [10, 11, 27, 28]

C̃s(ω) ≈ |χs(ω)|2 C̃in(ω) (15)

and, by an identical argument,

C̃V (ω) ≈ |χV (ω)|2 C̃in(ω). (16)

The cross-covariances can then be obtained by invert-
ing the Fourier Transform. Combining Eq. (14) with
Eqs. (15-16) provides insight into the relationship be-
tween spiking and subthreshold correlations. When ex-
citation is weak,

C̃s(ω) ≈ 0 and C̃V (ω) ≈ K̃(ω)C̃in(ω),

consistent the results in Sec. III (see Eqns. (4) and (5)).
When excitation is strong,

C̃s(ω) ≈ (Vth − Vre)
−2C̃in(ω) and C̃V (ω) ≈ 0,

consistent with the results in Sec. IV (see Eqns. (7) and
(8)). Eq. (14) interpolates these two limits. Fig. 2 shows
how CV (τ) and Cs(τ) change with re and confirms that
the cross-covariance between the membrane potentials
and the cross-covariance between the spike trains reflect
input correlations in opposite regimes.
Cross-covariances are not normalized to account for

noise magnitude. In Fig. 3, we show how spike count
correlations and normalized membrane potential cross-
correlations change with firing rate when re is increased.
In general, spike count correlations increase with re and
rs, while membrane potential cross-correlations decrease,
consistent with recordings from the rat hippocampus [4].
Fig. 3 shows that the linear response and diffusion ap-
proximations provide an excellent agreement to results
obtained via direct simulation of Eq. (1).
So far, we have examined how changes in re affect cor-

relations. In Fig. 4, we show that the overall trends are
the same if ri is varied simultaneously, but the decrease
in membrane potential correlations is less dramatic.

D. Correlation timescales

In Fig. 2, the timescale of Cs(τ) when excitation
is strong appears faster than the timescale of CV (τ)
when excitation is weak. The membrane potential cross-
covariance is a low-pass filtered version on the input
cross-covariance (see Eq. (4) and also compare Eq. (16)
with Fig. 1C). On the other hand, the input cross-
covariance is transferred faithfully to the spiking cross-
covariance when excitation is strong (see Eq. (8) and
also compare Eq. (15) with Fig. 1B). Thus, whenever
the timescale of Cin(τ) is faster than the membrane time
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FIG. 4: Spike count correlation over large time windows (A)
and peak membrane potential correlation (B) plotted against
firing rate as re and ri vary along linear paths: re − 500Hz =
α(ri − 500Hz) for different slopes α (see inset). All other
parameters are as in Fig. 2.

constant (τin < τm), Cs(τ) will appear to decay faster
than CV (τ). However, the tails of Cs(τ) and CV (τ) ac-
tually decay at the same exponential rate as τ → ∞ (not
pictured, but see [27]).

This phenomenon can be explained intuitively by not-
ing that Cs(τ) is determined by two interacting mech-
anisms when input correlations are positive: 1) input
correlations increase the likelihood that both V1(t) and
V2(t+ τ) are near threshold and 2) an input that pushes
cell 1 over threshold near time t increases the likelihood
that cell 2 receives an input at time t + τ . The effect
of the first mechanism on Cs(τ) decays asymptotically
like e−τ/τm , whereas the effect of the second mechanism
decays like Ce(τ). Since the membrane potentials are
nearly independent when excitation is strong, the first
mechanism has a much smaller effect in this regime and
the second mechanism determines the shape of the peak
of Cs(τ). However, the first mechanism dominates in the
tail of Cs(τ) since its effect decays more slowly.

VI. DISCUSSION

We derived a number of results that relate sub-
threshold membrane potential statistics of two uncoupled
integrate–and–fire neurons to their spiking statistics and
to the statistics of their inputs. We found that a cell’s
firing rate and mean membrane potential are sensitive to
modulations of its input currents in opposite regimes. We
additionally showed that correlations between the cells’
spike trains and membrane potentials also reflect input
correlations in opposite regimes. Thus, care must be
taken when interpreting the marginal and joint statistics
of underlying cell responses from experimental record-
ings.

When examining spiking and membrane potential cor-
relations, we only considered a pair of uncoupled cells.
Synaptic and electrical coupling will impact spike train
and membrane potential correlations. Linear response
theory could be used to extend our methods [27, 28].
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FIG. 5: (Color online) Spike count correlation over large
time windows versus peak membrane potential correlation for
500 randomly generated excitatory/inhibitory input rates and
correlations. (A) Input rates were drawn from wide uni-
form distributions (re ∈ [2, 4]KHz and ri ∈ [0, 1.75]KHz)
and input correlations from narrow uniform distributions
(ρee ∈ [0.15, 0.2], ρii ∈ [0.15, 0.2], and ρei = 0). (B) In-
put rates were drawn from narrower uniform distributions
(re ∈ [2.2, 2.4]KHz and ri ∈ [1.3, 1.4]KHz) and input corre-
lations from wider uniform distributions (ρee ∈ [0, 0.2], ρii ∈
[0, 0.2], and ρei = 0). Parameters are the same as in Fig. 2

except input cross-covariances are Ce(τ ) = ρeeree
−|τ |/τin/τin,

Ci(τ ) = ρiirie
−|τ |/τin/τin, and Cei(τ ) = 0.

A. Comparing spiking and membrane potential
correlations when input correlations change

In all of the results plotted above, we fixed input corre-
lations while varying the excitatory and inhibitory input
rates, re and ri. This assumption helped isolate changes
in spiking and membrane potential correlations that were
due to nonlinear neuronal filtering. However, in vivo in-
put correlations can change with stimulus and behavioral
states. Thus, one should not necessarily expect that in-
put correlations remain fixed as other parameters change.
As discussed in Sec. V, spiking and membrane poten-

tial correlations generally change oppositely with changes
in re and ri. However, they both increase with an increase
of input correlations. In Fig. 5, we consider a situation
where spiking and membrane potential correlations are
computed for randomly sampled points in input parame-
ter space. When re and ri are drawn from wide distribu-
tions and the magnitude of input correlations are drawn
from narrower distributions (Fig. 5A), spiking and mem-
brane potentials vary inversely with one another. How-
ever, when re and ri are drawn from narrow distributions
and the magnitude of input correlations are drawn from
wider distributions (Fig. 5A), spiking and membrane po-
tentials vary together. Thus, despite our results, spiking
and membrane potential correlations need not change op-
positely with input statistics in situations where input
correlations are modulated.

B. A spiking model with active conductances

The LIF model we analyzed has the advantage that
subthreshold activity is easily separated from spiking ac-
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tivity. However, experimental recordings, such as those of
local field potentials or the light emitted by voltage sen-
sitive dyes, often represent a combination of spiking and
subthreshold activity. Additionally, the sharp threshold
and lack of active currents in the LIF can yield anoma-
lous response properties [29]. To test whether our results
hold for a spiking model with active conductances, we
used an exponential integrate–and–fire (EIF) model in
which the membrane potential is held at 40mV for 1.5ms
at each spike. We refer to this model as a “spiking EIF.”
Representative output is shown in Fig. 6C, and the model
is fully described in Appendix C.
Fig. 6A shows the mean membrane potential and an

estimate of the gain for this model as a function of re.
The estimated gain decreases for large re, but does not
approach zero. This is likely due to the contribution of
spikes to the mean membrane potential. Fig. 6B shows
that correlations between the membrane potential traces
of two spiking EIF cells decrease with re, similar to the
LIF.

C. Implications for pooled recordings

Recordings of local field potentials and voltage sen-
sitive dye signals can represent the pooled activity of
large populations of cells. The correlation between two
such pooled signals is generally larger than the correla-
tions between the activity individual cells in the recorded
populations [30–35]. We model the pooled signals by
summing the individual membrane potentials, Xk(t) =∑n

j=1 V
k
j (t), k = 1, 2. If the populations are homoge-

neous, then the cross-correlation between the summed
activities is given by [34]

RX(τ) =
RV (τ)

RV (0) +
1
n (1−RV (0))

=
RV (τ)

RV (0)
+O(1/n).

(17)
If the population is heterogeneous or if some cells’ mem-
brane potentials contribute more strongly to the pooled
signals, RV (τ) can be replaced by a weighted average of
the cross-correlations in Eq. (17) [34]. For large popula-
tions (n ≫ 1), this amplification of correlations can mask
the decrease in correlations shown in Fig. 6B since even
when individual cells are weakly correlated, the pooled
signals will be strongly correlated. This effect is illus-
trated for the spiking EIF model in Fig. 6D: even though
the correlation between individual membrane potentials
decreases quickly and dramatically with re, the correla-
tion between two pooled recordings decreases only mod-
estly and slowly with re. For larger n, the decrease is
reduced even further.

D. Comparison with experimental results

Experimentally, spiking correlations were found to in-
crease while membrane potential correlations decrease

with an increase in firing rate associated at the onset of
seizure-like activity [4]. This is consistent with the results
in part C of Sec. V. However, we note that membrane
potential correlations in [4] were computed by deleting a
few milliseconds surrounding each spike from the mem-
brane potential traces. It is not clear what effect this
deletion has on the computed correlations and whether
it compromises the applicability of our results to their
findings.
In [2], membrane potential cross-correlations were

compared to spiking cross-covariances in vivo. The mem-
brane potential cross-correlations were obtained while
the cells were hyperpolarized by a constant injected cur-
rent to prevent spiking. Cross-covariances between the
spike trains were obtained while the cells were depo-
larized by a constant injected current to promote spik-
ing. These two conditions are analogous to the weak
and strong excitation conditions discussed above: our re-
sults are preserved when “weak excitation” is replaced by
“strong hyperpolarizing current” and “strong excitation”
is replaced by “strong depolarizing current.” The authors
found that membrane potential cross-correlations in the
hyperpolarized state have a longer timescale than spiking
correlations in the depolarized state, consistent with our
results in part D of Sec. V.
Membrane potential cross-correlations were also re-

ported in [3] under hyperpolarized and depolarized con-
ditions, but spiking was pharmacologically suppressed in
these recordings. Since the decrease of RV (τ) with re
reported above depends on a threshold and reset, our
results do not apply when spiking is suppressed.
Integrate–and–fire (IF) models provide a minimal de-

scription of membrane and spiking dynamics. How-
ever, the behavior of networks of IF neurons is fre-
quently in good agreement with biological neuronal net-
works [28, 36]. We therefore expect that our results can
provide further insight into dynamics of neuronal net-
works.
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Appendix A: Analysis of the strong excitation limit

We analyze the model considered in Sec. IV whose
membrane potential is defined by Eq. (6). Here we con-
sider the general case, and do not assume that the cells
are dynamically identical or that they receive statistically
identical inputs. This introduces the need for subscripted
notation, eg, Vth,k, re,k, etc. for k = 1, 2.
After being reset to Vk(t) = Vre,k, the membrane po-

tential is incremented by Je,k at each input spike and
therefore remains in the state space Γk = {Vre,k, Vre,k +
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FIG. 6: (Color online) (A): Mean membrane potential and an approximation to the gain (found by taking ∆〈V 〉/∆µ for the
points sampled) for the spiking EIF model as a function of re. Dots show sampled points, which are interpolated linearly. (B):
Membrane potential cross-correlation for a spiking EIF model plotted for various values of re. (C): A sample voltage trace
(taken at re = 2.7KHz) and the trajectory of a single spike for the spiking EIF. (D): Cross-correlations between two pooled
recordings of 200 membrane potential traces, obtained by applying Eq. (17) to the cross-correlations in (B) with n = 200. Note
that correlations are at least an order of magnitude larger here than in (B) due to pooling. Input parameters are as in Fig. 2.

Je,k, . . . , Vre,k + θkJe,k} where θk = ⌊(Vth,k − Vre,k)/Je,k⌋
is the number of input spikes to bring cell k from reset
to threshold and ⌊·⌋ gives the integer part of the argu-
ment. Thus, the bivariate membrane potential process,
(V1(t), V2(t)) has state space Γ = Γ1 × Γ2.
Cell k spikes after every θ excitatory inputs. Thus, the

firing rate is easily seen to be rs,k = re,k/θk.
The membrane potential at any two points in time are

related by

Vk(t1) = Vk(t0)⊕k Je,kNek(t0, t1) (A1)

where Nek(t0, t1) =
∫ t1
t0

ek(t)dt is the number of excita-

tory inputs in the open interval (t0, t1) and ⊕k represents
modular addition on the discrete state space Γk.
We now show that the membrane potentials sampled

at any two points in time have a bivariate uniform dis-
tribution.

Theorem 1. Consider the two-cell integrate–and–fire

model defined by Eq. (6) with resets at Vre,k and thresh-
olds at Vth,k. Assume that the membrane potential pro-

cess is ergodic with finite memory in the sense that
there exists a steady state probability mass function p :
Γ× R

2 → R
+ such that

p(v1, v2; t1, t2) = lim
t→∞

Pr
(
V1(t1 + t) = v1, V2(t2 + t) = v2

|V1(0) = u1, V2(0) = u2

)

and p(v1, v2; t1, t2) > 0 for all t1, t2 ∈ R
+ and

(v1, v2), (u1, u2) ∈ Π. Then p is uniform with

p(v1, v2; t1, t2) = (θ1θ2)
−1

for all t1, t2 ∈ R
+ and (v1, v2) ∈ Π.

Proof. Suppose (v1, v2), (w1, w2) ∈ Π and t1, t2 ∈ R
+.

From Eq. (A1), the event that (V1(t1 + t), V2(t2 + t)) =
(v1, v2) given (V1(0), V2(0)) = (0, 0) has the same prob-
ability as the event that Je,k (Nek(tk + t) mod θk) =

Vk(tk + t) for k = 1, 2. By the same reasoning, this
is in turn has the same probability as the event that
(V1(t1 + t), V2(t2 + t)) = (w1, w2) given (V1(0), V2(0)) =
(w1 ⊕1 −v1, w2 ⊕2 −v2). Thus,

p(v1, v2;t1, t2) = lim
t→∞

Pr
(
V1(t1 + t) = v1, V2(t2 + t) = v2

|V1(0) = 0, V2(0) = 0
)

= Pr
(
V1(t1 + t) = w1, V2(t2 + t) = w2

|V1(0) = w1 ⊕1 −v1, V2(0) = w2 ⊕2 −v2
)

= p(w1, w2; t1, t2)

and therefore p is uniform. Since p is a probability mass
function with respect to its first two arguments, we may
conclude that

p(v1, v2; t1t2) =
1

card(Π)
=

1

θ1θ2
.

The assumption of ergodicity with finite memory made
in Theorem 1 essentially assures that the bivariate distri-
bution of the membrane potentials approaches a steady
state that does not depend on initial conditions. We
expect this assumption to hold when inputs are not per-
fectly correlated and do not have infinite memory. For
example, if inputs are delta-correlated Poisson processes,
this assumption is straightforward to verify. However,
the assumption can be violated by inputs that exhibit
infinite-timescale deterministic trends. For example, if
the input to one cell is perfectly periodic (an input spike
arriving every T ms) with random and uniformly dis-
tributed phase, then the input process is stationary, but
the assumption is violated.
Since the components of a bivariate uniform distribu-

tion are independent, we may conclude from Theorem 1
that V1(t1) is independent from V2(t2) for any times t1
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and t2. From this fact, we can derive the output cross-
covariance function as follows. First note that the cross-
covariance can be written as [37]

Cs(τ) = lim
δ→0

δ−2 Pr
(
Ns1(t, t+ δ) > 0, (A2)

Ns2(t+ τ, t+ τ + δ) > 0
)
− rs,1rs,2.

Now note that a spike occurs in sk(t) at time t0 only if
an excitatory input arrives (from ek(t)) at time t0 and
Vk(t0) ∈ [Vth,k−Je,k, Vth]. Thus, Eq. (A2) can be rewrit-
ten as

Cs(τ) = lim
δ→0

δ−2 Pr
(
V1(t) ∈ [Vth − Je, Vth],

Ne1(t, t+ δ) > 0, (A3)

V2(t+ τ) ∈ [Vth − Je, Vth],

Ne2(t+ τ, t+ τ + δ) > 0
)
− rs,1rs,2

Finally, since the membrane potentials are independent
and uniformly distributed, this becomes

Cs(τ) = (θ1θ2)
−1

(
lim
δ→0

δ−2 Pr
(
Ne1(t, t+ δ) > 0,

Ne2(t+ τ, t+ τ + δ) > 0
)
− re,1re,2

)

= (θ1θ2)
−1Ce(τ).

In the text, we assume that Vth,k − Vre,k is an integer
multiple of Je,k for k = 1, 2. This assumption can be
made without loss of generality since when it is not met,
Vth,k can be replaced by Vre,k + θkJe,k without affecting
the dynamics. Under this assumption, θk = (Vth,k −
Vre,k)/Je,k and therefore rs,k = Je,kre,k/(Vth,k − Vre,k) =
µk/(Vth,k − Vre,k) and Cs(τ) = (θ1θ2)

−1Ce(τ) = (Vth,1 −
Vre,1)

−1(Vth,2 − Vre,2)
−1Cin(τ). Additionally, the mean

membrane potential is given by 〈Vk〉 = (Vth,k + Vre,k)/2
since its distribution is uniform on Γk.

Appendix B: Derivation of membrane potential
statistics for the diffusion approximation

We now derive the expressions from Sec. V that relate
membrane potential statistics of the diffusion approxima-
tion to the firing rate and susceptibility. Since we focus
on univariate statistics here, we omit subscripts that in-
dicate neuron number, ie, we use V (t) in place of Vk(t).
Though we don’t discuss lower barriers on the membrane
potentials in the text, we allow for the possibility of a
reflecting barrier at some Vlb ≤ Vre in our calculations
below. The unbounded case can be recovered by setting
Vlb = −∞. However, our numerical calculations require
a finite lower barrier. In all figures, the lower barrier was
set so low that it did not significantly affect the statistics
(see Appendix D).
Much of our analysis uses standard properties of bilat-

eral Laplace transforms, defined by

L[f(x)](s) = f̂(s) =

∫ ∞

−∞

f(x)e−sxdx.

WhenX is a random variable with density f , then f̂(0) =

1, f̂ ′(0) = 〈X〉 and f̂ ′′(0) = 〈X2〉.
From [23, 24], the stationary density and probability

flux, P0(v) and J0(v), of V (t) = Vk(t) from Eq. (9) obey

−∂P0

∂v
=

1

D
((v/τm − µ)P0 + J0)

−∂J0
∂v

= rs (δ(V − Vth)− δ(V − Vre)) .

We first derive the stationary mean of the membrane po-
tential. Taking the bilateral Laplace transform on either
side of these equations gives

sP̂0 =
1

D

(
1

τm

∂P̂0

∂s
− µP̂0 + Ĵ0

)

sĴ0 = rs
(
eVths − eVres

)
,

which can be solved algebraically to obtain

∂P̂0

∂s
= τm(µ+ sD)P̂0 −

τm
s

(
eVths − eVres

)
rs. (B1)

Taking s → 0 yields an expression for the the mean mem-
brane potential, given in Eq. (10).
To derive the variance of the membrane potentials, first

differentiate Eq. (B1) to obtain

∂2P̂0

∂s2
=τm

∂P̂0

∂s
(µ+ sD) + τmDP̂0

− τm
s2
(
eVths(sVth − 1)− eVres(sVre − 1)

)
rs

which, upon taking s → 0, gives

〈V 2〉 = τm

(
µ〈V 〉+D − 1

2
(V 2

th − V 2
re)rs

)

which, using Eq. (10), yields the expression for
var(V (t)) = 〈V 2〉 − 〈V 〉2 given in Eq. (11).
Similar methods can be used to derive the response

properties of the mean membrane potential. Given a pe-
riodically perturbed bias, µ(t) = µ0 + ǫeiωt, the prob-
ability density can be written to first order in ǫ as
P (v, t) = P0(v) + ǫP1(v)e

iωt + o(ǫ) and similarly for the
flux, J(v, t) = J0(v)+ǫJ1(v)e

iωt where P0 and J0 are the
solutions when ǫ = 0 (see above). Isolating the first or-
der terms of the time-dependent Fokker-Planck equation
gives [23, 24]

−∂P1

∂v
=

1

D
((v/τm − µ0)P1 + J1 − P0) , (B2)

−∂J1
∂v

= iωP1 + χs(ω) (δ(v − Vth)− δ(v − Vre)) ,

where χs(ω) is the susceptibility of the firing rate, which
satisfies rs(t) = r0 + ǫχs(ω)e

iωt, where r0 is the fir-
ing rate when ǫ = 0. The susceptibility, χV (ω), of
the mean membrane potential is defined by 〈V (t)〉 =
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〈V0〉 + ǫχV (ω)e
iωt + o(ǫ), where 〈V0〉 =

∫ Vth

Vlb

vP0(v)dv

is the stationary mean membrane potential when ǫ = 0
and is given by Eq. (10). The susceptibility satisfies

χV (ω) =

∫ Vth

Vlb

vP1(v)dv = P̂ ′
1(0). (B3)

Taking the Laplace transform on either side of Eq. (B2)
gives

sP̂1 =
1

D

(
1

τm

∂P̂1

∂s
− µ0P̂1 + Ĵ1 − P̂0

)

sĴ1 = iωP̂1 + χs(ω)
(
eVths − eVres

)
,

which can be solved to obtain

1

τm

∂P̂1

∂s
=

(
µ0 + sD − iω

s

)
P̂1

− 1

s

(
esVth − esVre

)
χs(ω) + P̂0.

Taking the limit as s → 0 on both sides of this equation
and using Eq. (B3) yields the expression for χV (ω) given
in Eq. (13)
Since rs and χs(ω) are known in closed form [7, 25], the

expressions derived above effectively give χV (ω) in closed
form. In addition, the expressions link the statistics of
the membrane potentials to the statistics of the output
spike trains.

Appendix C: A spiking EIF model

We now describe the spiking EIF model used for the
simulations in Fig. 6. The subthreshold membrane po-
tentials obey [23, 38]

dVk

dt
=

E0 − Vk

τm
+∆T e

(Vk−VT )/∆T + Je ek(t)− Ji ik(t)

(C1)

where ek(t) and ik(t) are defined as in the Methods above.
Each time the membrane potential reaches threshold at
Vth, it is held there for a period of time, τspike, simulating
a spike, and is then reset to Vre. Active currents are
activated when the membrane potential approaches VT

and pull the membrane potential toward Vth.

Parameters for Fig. 6 are τm = 20ms, E0 = −60mV,
VT = −53mV, ∆T = 4mV, Vth = 40mV, Vre = −70mV
and τspike = 1.5ms. Note that the absolute refractory pe-
riod only lasts for 1.5ms, but a relative refractory period
is introduced by the fact that Vre < E0.

Appendix D: Numerical methods and simulations

Spiking statistics for the LIF were calculated using the
threshold integration methods from [23]. Membrane po-
tential statistics for the LIF were calculated from spik-
ing statistics using the equations derived in Appendix B.
All threshold integration calculations use a mesh size of
∆v = 0.0005 when Vth = 1 and Vre = 0. A lower bound
of Vlb = −3 was chosen to have an insignificant impact
on the statistics calculated. Cross-covariances and cross-
correlations were obtained by taking the inverse Fourier
transform on either side of Eqs. (15) and (16). Spike
count correlations were obtained from auto- and cross-
covariances using the identities [6, 10, 11, 37]

ρs(T ) =

∫ T

−T (T − |t|)Cs(t)dt
∫ T

−T
(T − |t|)As(t)dt

and lim
T→∞

ρs(T ) =
C̃s(0)

Ãs(0)
.

Monte Carlo simulations for Figs. 3 and 6 were run
for 500s and 500 trials. Correlated Poisson inputs were
generated using the a thinning and jittering algorithm
described in [9, 16] and Eqs. (1) and (C1) were each inte-
grated numerically using a first order Euler method with
time bin ∆t = 0.05ms.
C and Matlab code for all figures is available from the

first author upon request.
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