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Abstract

Simulation of the Rouse model in flow underlies a great variety of numerical investigations of

polymer dynamics, in both entangled melts and solutions, and in dilute solution. Typically, a

simple explicit stochastic Euler method is used to evolve the Rouse model. Here, we compare

this approach to an operator splitting method, which splits the evolution operator into stochastic

linear and deterministic nonlinear parts, and takes advantage of an analytical solution for the linear

Rouse model in terms of the noise history. We show that this splitting method has second-order

weak convergence, whereas the Euler method has only first-order weak convergence. Furthermore,

the splitting method is unconditionally stable, in contrast to the limited stability range of the

Euler method. Similar splitting methods are applicable to a broad class of problems in stochastic

dynamics in which noise competes with ordering and flow to determine steady-state order parameter

structures.
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I. INTRODUCTION

The Rouse model underlies a great many simulations of polymer dynamics. It is used

in slip-link models, and to represent dilute polymer solutions (neglecting hydrodynamic

interactions), as well as unentangled polymer melts and concentrated solutions. In the

Rouse model, a polymer is represented as a sequence of monomer beads bonded by springs.

Each monomer feels a spring force from its neighbors, a drag force with respect to the

surrounding fluid, and a stochastic force representing the effect of thermal fluctuations.

The Rouse model in shear flow is of interest because the resulting chain motion is complex

and unsteady. Individual chains stretch in flow, and tumble over themselves when the leading

end of the chain dips below the trailing end.

This unsteady motion leads generally to a varied ensemble of molecular configurations,

which for some purposes are not well represented by simple average quantities such as chain

average orientation or stretch. This variety of molecular configurations for sheared dilute

polymers has been termed “molecular individualism”, [1] and is most easily explored by

direct simulation. For the case of dilute and semidilute DNA solutions, such simulations

have been compared to direct imaging studies carried out with fluorescently labeled DNA.

[2, 3]

Numerical simulations of the Rouse model are also a central feature of sliplink simulations,

which have been extensively used as a stochastic counterpart to tube-based constitutive

theories of monodisperse and polydisperse linear chains. [4–7] In all of these simulations,

a Rouse chain is somehow confined to a piecewise linear tube defined by a sequence of

entanglement points called sliplinks, which are typically advected affinely with the mean

flow.

The Rouse motion of the chain within the tube naturally imparts to the sliplink model

the physics of contour fluctuations, constraint release, and stress relaxation via reptation.

However, most of the CPU time in such simulations is spent on the Rouse motion; fur-

thermore, the numerical method most often used is the simple but rather inaccurate and

unstable explicit Euler method, which necessitates a very short timestep.

In many applications, the Rouse model is augmented with additional terms and interac-

tions, which are typically nonlinear but deterministic. For example, the harmonic springs

of the Rouse model can be upgraded to finitely extensible nonlinear elastic (FENE) springs,
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to limit the fully extended length of the chain. [8] Or, for simulations of dilute chains in

a solution, various approximate hydrodynamic interactions may be added. [9] In either

case, the random forces in the model are unaltered, and remain the chief reason for using

simple explicit methods like Euler and thus short timesteps, which result in uncomfortable

limitations on the lengths of chains that can be simulated. [9]

In short, most polymer dynamics simulations require time-evolution of the Rouse equation

in some form. Much of the computational power in such simulations is spent numerically

integrating the Rouse equation. This can become a rate-limiting computational step for large

or lengthy simulations. However, if there were an exact solution to the Rouse equation, the

time-evolution of the Rouse equation for any forward timestep could be done in one quick

step, greatly speeding up the simulation.

II. EXACT SOLUTION

The Rouse equation takes the form

ζ

(
∂R(s, t)

∂t
− v(R(s, t))

)
= K

∂2R(s, t)

∂s2
+ f(s, t) (1)

where R(s, t) is the chain position at arclength s and time t, v(r) is the imposed flow field,

ζ is the monomeric drag coefficient, K is the stiffness of the spring between neighboring

beads, and f(s, t) is the random force.

The noise f(s, t) is taken to be delta-correlated in time and space, and Gaussian dis-

tributed with zero mean, with variance given by

〈fi(s, t)fj(s′, t′)〉 =
2ζ

β
δijδ(s− s′)δ(t− t′) (2)

where β = 1/(kT ). The noise amplitude 2ζ/β is determined by requiring that the chain

diffusion constant D satisfies the Stokes-Einstein relation D = kT/(Nζ).

A. Rouse modes

The Rouse equation is a system of linear constant-coefficient PDEs with a linear stochastic

driving force, which is analytically solvable with Fourier analysis. Each position vector
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R(s, t) can be represented as a linear combination of the Rouse modes Xp(t) as

R(s, t) · x̂ = Rx(s, t) =
∞∑
p=1

Xp(t) cos

(
pπs

n

)
(3)

where n is the arclength of the chain. Cosine expansion is chosen in order to impose tension-

free ends on the chain. The p = 0 mode is omitted here because it is only responsible for

translational motion. Analogous equations relate y and z coordinates Ry(s, t) and Rz(s, t)

to mode amplitudes Yp(t) and Zp(t).

The inverse relation between the Rouse modes and the chain conformation is

Xp(t) =
2

n

∫ n

0

Rx(s, t) cos

(
pπs

n

)
ds (4)

and analogously for Yp(t) and Ry(s, t).

The mode noise xp is obtained by Fourier cosine transform of the real space noises

fx(s, t) = f(s, t) · x̂ with Eqn. 4. The mode noise has variance

〈xp(t)xq(t′)〉 =
4ζ

βn
δpqδ(t− t′) (5)

A simple shear flow field takes the form

v(r) = γ̇yx̂ (6)

with the shear rate γ̇, the velocity direction taken as x̂, and the gradient direction taken as

ŷ. Since simple shear flow is a linear function of position, the Fourier transform can usefully

be applied to it as well in Eqn. 1.

For a shear flow like Eqn. 6, only the Rx component in Eqn. 1 is coupled to the flow. Ry

and Rz are each independent of the other components. The equation of motion for Rx has

a source term γ̇Ry from the flow, but is completely decoupled from Rz. Thus, solving for

Rz is trivial and analogous to solving for Ry, and we neglect it for simplicity.

Since the Rouse modes are only time dependent, Eqn. 1 reduces to a system of linear

ordinary differential equations (ODEs). Substituting the modes and rearranging gives

ζX ′p = γ̇Yp −KpXp + xp (7a)

ζY ′p = −KpYp + yp (7b)

where p is a positive integer, Kp = π2p2K/n2, and xp and yp are the mode noises.
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Solution for the Rouse modes Yp (solving Eqn. 7b) for a finite ∆t = t1 − t0 is a simple

integrating factor problem. Let ωp = Kp/ζ. Then,

Yp(t1) = e−ωp∆tYp(t0) +
1

ζ

∫ t1

t0

eωp(t−t1)yp(t)dt

= e−ωp∆tYp(t0) + ∆Yp (8)

Yp has a fading memory of its current value (the exponential term), plus a change due to

stochastic noise (∆Yp). For sufficiently long times, the new mode value will “forget” its

initial value and depend on only its noise history.

The governing equation for the modes Xp (Eqn. 7a) depends not only on Xp but also on

Yp (because of the shear flow force). Substituting Eqn. 8 into Eqn. 7a, and solving with

integrating factors over the same time range gives

Xp(t1) = e−ωp∆t

(
Xp(t0) +

γ̇∆t

ζ
Yp(t0)

)
+

1

ζ

∫ t1

t0

eωp(t−t1)xp(t)dt

+
γ̇

ζ2

∫ t1

t0

(t1 − t)eωp(t−t1)yp(t)dt

= e−ωp∆t

(
Xp(t0) +

γ̇∆t

ζ
Yp(t0)

)
+ ∆X(x)

p +
γ̇

ζ
∆X(y)

p (9)

Like Yp, Xp has a fading memory of its current value, and a stochastic forcing (∆X
(x)
p ). It

also has a fading memory of the flow force at its current value, and an additional stochastic

forcing that depends on yp. Because of this dependence, Xp is correlated to Yp.

The integrals ∆Yp, ∆X
(x)
p , and ∆X

(y)
p can be thought of as summations of the mode

noises (weighted by the exponential) over the given time range. Since the mode noises are

Gaussian random variables with zero mean, any linear combination of these variables is also

a Gaussian random variable with zero mean. Thus, ∆Yp, ∆X
(x)
p , and ∆X

(y)
p are all Gaussian

random variables with zero mean, and their variances can be computed as functions of ∆t

since the variances of the mode noises are known (see Appendix A).

〈∆Y 2
p 〉 = 〈∆X(x)

p

2〉 =
4

ζβn

v0(2ωp∆t)

2ωp
(10a)

〈∆X(y)
p

2〉 =
4

ζβn

v1(2ωp∆t)

8ω3
p

(10b)

where v0(x) = 1− exp(−x) and v1(x) = 2− (2 + 2x+ x2) exp(−x).

Frequently, the Rouse model is evolved forward in time to generate “snapshots” of a chain

in a given flow. In order to do this numerically, the time period of interest ∆t is usually
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divided into m fundamental steps, and the chain is evolved over a noise history with m

different noise pairs (integrating over the noise). However, since the noise integrals ∆Yp,

∆X
(x)
p , and ∆X

(y)
p are themselves Gaussian random variables with known variance, it is

sufficient to generate appropriate representative values for each over the total timestep ∆t.

Thus, only one triplet of Gaussian random variables needs to be generated for each ∆t.

B. Mixed flows

The formal solution to the Rouse model generalizes to flow fields of mixed shear and

extensional flows

v(r) = γ̇(yx̂ + βxŷ) (11)

where γ̇ is the shear rate, and 0 < β ≤ 1 is the “extensional character”. If β = 0, v is the

shear flow profile, and the solution of Section II A applies. If β = 1, v is pure extensional

flow along y = x. Flow fields with β between zero and unity are of mixed type, with a

character between shear and extensional.

The profile for a mixture of shear and extensional flow is still linear, so the solution

proceeds through the Rouse modes as before

ζX ′p = γ̇Yp −KpXp + xp (12a)

ζY ′p = γ̇βXp −KpYp + yp (12b)

In matrix formX ′p
Y ′p

 =
1

ζ

−Kp γ̇

γ̇β −Kp

Xp

Yp

+
1

ζ

xp
yp

 ≡M

Xp

Yp

+
1

ζ

xp
yp

 (13)

M has basis of eigenvectors (1,
√
β) and (1,−

√
β). If β 6= 0 (non-shear flow), M has a

complete basis of eigenvectors, and is diagonalizable.

If λ1 and λ2 are the corresponding eigenvalues for M, Eqn. 13 takes the form

X̃ ′p = λ1X̃p +
1

ζ
x̃p (14a)

Ỹ ′p = λ2Ỹp +
1

ζ
ỹp (14b)

where X̃p, Ỹp and the noise terms are in the basis of the eigenspace. Note that the solution

to the mixed flow case is actually simpler than the shear flow solution because the modes

6



are decoupled in the eigenspace. The solution to Eqn. 14 then proceeds as in Section II A

(see Appendix C).

C. Finite extensibility

The Rouse model assumes that the bonds of a chain are harmonic springs, which exert a

force proportional to the stretch, F = −K∆x. The change in spring force (or, the “stiffness”

of the spring) ∂F/∂x is the spring constant K. However, in reality, the stiffness of the spring

is not constant at all.

There are several models for such “anharmonic” (finitely extensible) springs. Although

these models vary in form, they are fundamentally the same – the stiffness of the spring

∂F/∂x increases with stretch. In most such models, ∂F/∂x diverges at a certain stretch,

which represents the spring becoming too stiff and “breaking”. Simulating such springs in

a stochastic equation is inconvenient because it can require integration near the singularity.

A quartic spring is a suitable model for a spring that stiffens without the spring force

diverging. The stretching energy for a quartic spring is

U =

∫
1

2
K

[(
∂R

∂s

)2

+
α

2

(
∂R

∂s

)4]
ds (15)

This amounts to replacing the spring constant in the Rouse equation with a value that

depends on local stretch, given by

K → K0

[
1 + α

(
∂R

∂s

)2]
(16)

Here α is a parameter that determines the stiffness of the springs. The value of α is chosen

so that the spring becomes k times stiffer than K0 at a given stretch b2 = (∂sR)2, so that

α =
k − 1

b2
(17)

In our simulations, we chose α = 0.1 so that the spring constant would double at a squared

bead-to-bead distance of 10.

D. Simulations

It is computationally simple to collect data on the behavior of chains in shear flow with

an explicit update formula for the Rouse modes. A valid starting conformation is defined in
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real space, transformed to Fourier space and evolved for a desired ∆t, and then transformed

back to real space for analysis. This data can be used to generate averages and probability

distributions for chain properties, like end-to-end distance or inclination angle.
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(a) Harmonic Spring
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(b) Quartic Spring

FIG. 1: (Color online) Probability distributions for adjacent bead-to-bead distance

squared for shear rates γ̇τR = 0, 4, 8; n = 15 bonds, α = 0.1 for nonlinearity. Distance

given in units of the average relaxed distance between adjacent beads, so b2
γ = (∂sR)2 for a

given shear rate, and b2
0 = 〈(∂sR)2〉 for a chain in zero shear with a linear spring.

One measure of interest to nucleation theory is the squared distance between adjacent

beads. Fig. 1a shows this property for a chain with harmonic springs in increasing shear.

As expected, the distributions broaden as γ̇τR increases (more flow stress). However, these

distributions also demonstrate the physical simplifications of the Rouse model. Although

probability distributions of the distance between adjacent beads are expected to broaden

with increasing shear, they should not broaden indefinitely. The bonds of the chain should

stretch to a point, but then become stiffer and more resistant to change. Otherwise, a chain

could stretch to arbitrary length.

Fig. 1b shows more realistic chain behavior after the quartic spring term is introduced.

The distributions become narrower and steeper. This effect is most noticeable at high shear

rates (where the harmonic springs would ordinarily become very stretched). For γ̇τR = 8,

the distribution completely changes shape, becoming concave down. The effect of the quartic

8



spring is most significant at high shear rates because the nonlinear term α(∂sR)2 is negligible

at small stretches (where the spring behaves mostly harmonically), and dominates at large

stretches.

Although the anharmonic spring is a better model for the physical behavior of a chain

in flow, it has unfortunate consequences for the formal solution to the Rouse equation.

The Rouse equation (Eqn. 1) is solvable because it is linear, and can be diagonalized with

a Fourier cosine transform. The nonlinear term “breaks” the solution because the Rouse

equation is no longer diagonalizable. Any modification to the Rouse model that introduces a

nonlinear term would have this effect. Some type of numerical method is required to evolve

the modified Rouse equation.

III. OPERATOR SPLITTING

The typical approach to solving the nonlinear Rouse equation is to integrate over a

discrete noise history with very small timesteps, using a stochastic numerical integrator.

Although such methods solve deterministic differential equations reasonably well, they are

not as effective at solving stochastic equations. Such numerical integrators march across

the integration interval based on local values of the derivative at each integration step. If

an equation is sufficiently “smooth” (several times differentiable), such methods work well

because the value of the derivative changes smoothly and predictably.

Since deterministic equations are usually smooth, reasonably large integration steps can

be taken, and these methods are efficient and accurate. However, stochastic equations are

not smooth because of the noise, so small integration step sizes are required. A new noise

term needs to be generated at each integration step. Since simulations of chain behavior

typically require fairly large cumulative time scales, this process becomes computationally

intensive.

Even though the modified Rouse equation is no longer linear, it is tempting to capitalize

on the exact solution to the linear Rouse equation in designing a numerical solution method.

The modified Rouse equation can be expressed as the sum of a linear part L and a nonlinear

part N ,where L represents the linear Rouse equation, and N represents the nonlinearity
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introduced by the quartic spring.

∂R

∂t
= v(R) +

1

ζ

[
K0 +K0α

(
∂R

∂s

)2]
∂2R

∂s2
+

1

ζ
f

=

(
v(R) +

K0

ζ

∂2R

∂s2
+

1

ζ
f

)
+

[
K0α

ζ

(
∂R

∂s

)2]
∂2R

∂s2
(18a)

= L+N (18b)

Although it would be difficult to solve this equation since it is nonlinear and stochastic, it

is easy to solve either L or N independently. L can be evolved over the entire ∆t in one

step because it has an exact solution. N is integrable numerically with reasonably large

timesteps since it is deterministic and smooth.

Operator splitting provides a general and effective way to solve equations like Eqn. 18b,

in which the time evolution operator is the sum of pieces that can each be solved separately,

but not easily at the same time. One first evolves L exactly, and then evolves N numerically.

If these evolutions are done quickly enough (by swapping between operators over short time

scales ∆tswap), then Eqn. 18b is solved exactly in the limit of ∆tswap → 0. Error propagates

as the swap times become “greedy” (too large). This method applies not only to the quartic

spring, but also to any separable nonlinear operator.

Since L is solved in Fourier space, and numerical integration of N is done in real space,

each swapping step requires one forward Fourier transform, and one inverse Fourier trans-

form. Fast Fourier transforms (FFTs) can be applied if the solution is discrete in space.

The Rouse model is discretized along arclength s into monomeric beads, with s = 1, 2, ..., N .

FFTs are O(N logN) operations, so the conversion between Fourier space and real space

can be done quickly.

Operator splitting is commonly employed for ordinary deterministic differential equations,

as described in Ref. 10. Splitting was introduced by Ottinger in the context of stochastic

dynamics of continuous fields. [11] The convergence properties of Ottinger’s algorithm were

analyzed by Petersen. [12] More recently, stochastic splitting was applied by Lennon et al.

to improve efficiency of complex Langevin simulations. [13]

Ideally, a numerical method has error that quickly decreases as the computational

timestep h is taken smaller, and remains stable as large steps are taken. Numerical methods

are compared in terms of the rate at which error becomes small, and the range of timesteps

over which the methods are stable.
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Convergence measures how quickly error decreases as the computational step size de-

creases. For deterministic equations of motion, convergence is straightforward to describe.

A method is “of order α” if the difference between the approximate solution ya and the true

solution y for a single step h is

y(h, y0)− ya(h, y0) = O(hα+1) (19)

Across a finite time interval ∆t, ∆t/h steps are taken, and the cumulative error for an order

α method is

y(∆t, y0)− ya(∆t, y0) = O(hα) (20)

If y is a vector, it is convenient to compute the error as the average of the sum of the

squares of the differences between the components of ya and y (the mean-square error). The

mean-square error for a finite time interval will be O(h2α).

Stochastic differential equations can be thought of as deterministic equations with a

particular time-dependent random driving force. As for deterministic equations, “strong”

convergence measures the fidelity of the approximate solution to the true solution for a given

noise history. For the Rouse model, the entire chain conformation R is taken as y, and the

solution error is the mean-square error in the bead positions. Finally, to eliminate sensitivity

to the particular noise history, the solution error is averaged over many noise histories.

Frequently in simulations of polymer dynamics, the statistical properties for a chain are

of greater interest than the actual solution for a particular noise history. These properties

are represented by distribution functions P [R(s, t)], the probability for a given trajectory

to be generated from a starting condition R(s, 0). The approximate distribution functions

should approach the true distribution functions as the step size h becomes small.

Weak convergence describes how quickly the error between distributions decreases as h

becomes small. If the distribution functions of possible trajectories match, then all correla-

tion functions will also match. Here we briefly reprise the basic concepts related to strong

and weak convergence of numerical methods for stochastic differential equations, which are

treated extensively in the monograph of Kloeden and Platen, [14] and can be adapted to

the present problem.

A method has weak convergence “of order β” if

〈g[y(t)]〉 − 〈g[ya(t)]〉 = O(hβ) (21)
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where g is any functional of the solution y(t) over some time interval ∆t, and the average is

taken over both noise and initial conditions. Here, g[y(t)] can be any correlation function,

such as the autocorrelation function y(t)y(t′). Note that any correlation function can be

expressed in terms of the distribution P [y(t)], so convergence of the approximate distribution

P [ya(t)] to the true distribution P [y(t)] ensures the validity of Eqn. 21.

Although Eqn. 21 provides a formal definition for weak convergence, it is not useful for

verifying the convergence order of a numerical method. It is impossible to confirm explicitly

that Eqn. 21 holds for all possible correlation functions. It would be more convenient to

have Eqn. 21 in a form where the convergence of only a small set of quantities needs to be

checked.

Consider the evolution of the distribution over a short time interval ∆t from a well-defined

initial configuration corresponding to a very narrow initial distribution function P (y0). If

the time interval is short enough, the distribution does not have time to change very much.

If a numerical scheme is accurate, then the small changes in the approximate distribution

P (ya) should also match the change in the true distribution P (y). Since both the true and

approximate distributions remain narrow after the short time ∆t, it suffices to compare

them by comparing the low-order moments of each distribution.

To verify weak convergence, the error between true and approximate moments of the

distribution is compared in the limit of small time intervals. A useful theorem gives this

criterion for weak convergence: the difference in the k-th moments for a single step h is [14]

〈∆yk(h)〉 − 〈∆yka(h)〉 = O(hβ+1) (22)

where k = 1, 2, ..., 2β + 1. The corresponding cumulative error for the moments evaluated

after a finite interval ∆t is

〈∆yk(∆t)〉 − 〈∆yka(∆t)〉 = O(hβ) (23)

However, note that if y is a vector, it becomes increasingly cumbersome to compute even

the successive moments, which are tensors of increasing rank. This is certainly the case for

the Rouse model for a chain of N beads, for which there are 2N degrees of freedom. There-

fore in the present work, instead of explicitly verifying numerically the weak convergence

criterion Eqn. 23, we content ourselves with exemplifying weak convergence Eqn. 21 for a

particular property of interest, namely the mean squared distance between adjacent beads,

(1/n)
∑

(∂sR)2.
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A. Convergence properties

It is easier to understand the significance of convergence properties for some numerical

method of interest by comparing it to a baseline numerical method. A suitable point of

comparison is the explicit Euler method, because it is a typical solution method for stochastic

equations. The explicit Euler method is ordinarily not a good numerical method for solving

deterministic equations because it is order α = 1 and has a narrow range of stability (see

Section III B). However, the explicit Euler method is commonly used to solve stochastic

equations because it only relies on the noise at the initial conditions to evolve the equation,

and thus is simple to implement.

Operator splitting can be applied symmetrically or asymmetrically, yielding different

convergence properties. Asymmetric splitting proceeds as described before, with alternation

between L and N for equal times. In symmetric splitting, N is first evolved for half of the

swap time, then L is evolved for the full swap time, and finally N is evolved for the remain-

der of the swap time. In the limit of infinite time evolution, symmetric and asymmetric

splitting are indistinguishable. When evolved over finite time scales, symmetric splitting

has better convergence properties, with only one additional FFT. For the purposes of this

paper, operator splitting is taken to mean symmetric splitting.

The “true” dynamic for each method must be defined in order to compare error as the

computational step size is varied. For the explicit Euler method, the true dynamics is defined

as the solution for a stepsize h = dt. For operator splitting, the true dynamics is defined

as the solution for a fundamental stepsize dt′ when L and N are evolved on the swap time

∆tswap = 2dt′ (the shortest possible discrete symmetric swap time). We define the true

evolution under the nonlinear operator N to be the solution obtained using an accurate

numerical integrator. In this way we can focus on the error introduced only by operator

splitting.

Approximations are computed for the explicit Euler method by taking h = 2kdt, and

for operator splitting by taking ∆tswap = 2kdt′ for k = 1, 2, ..., kmax. For each method,

the approximations and true dynamic are evolved over the same short time period so that

solutions change on equal time scales. The difference between the approximations and the

true dynamic will be the cumulative error (of order α or β).

Since all dynamics are compared over the same time period, the overall time explored
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∆t must be at a minimum ∆t = 2kmaxdt. However, the convergence theorems are only true

for short stepsizes h. Thus, the fundamental steps dt and dt′ must be very short times.

Additionally, the explicit Euler method requires very small steps so that the solution does

not explode over the total ∆t.

To exemplify convergence orders with numerical results, the size of dt and dt′ must be

determined by trial-and-error for each method and convergence type. They must be chosen

short enough that the distribution function does not have time to change very much, long

enough that the distribution function does change, and also long enough that computational

underflow is avoided. In general, good choices for dt and dt′ to exhibit convergence properties

are fractions of the shortest Rouse time τR/n
2, and dt for the explicit Euler method is much

shorter than dt′ for operator splitting.

Analysis shows that both the explicit Euler method and operator splitting exhibit strong

convergence of order α = 1 (see Appendix E). In order to verify strong convergence, the

approximate and true dynamics for each method are evolved over a particular noise history.

For the explicit Euler method, this simply requires computing a noise history at the start of

each step, and applying an appropriate number of terms based on the size of h. For operator

splitting, the exact solution to L must be adapted from continuous time to discrete time in

order to apply the integrals over the noise as a summation of a noise history (see Appendix

B).

Since the mean-square error is O(h2α), log-log plots of the error versus step (swap) size

should appear linear with slope 2α. Both operator splitting and explicit Euler have approx-

imately a slope of two, verifying that operator splitting and explicit Euler are strong order

α = 1.

In contrast to strong convergence, the explicit Euler method only has weak convergence

order β = 1 while operator splitting has order β = 2 (see Appendix E). The change in

the sum of squared distances between adjacent beads is computed using the explicit Euler

method and operator splitting by averaging over initial configurations and noise. The error

is log-log plotted versus the step (swap) size (Fig. 3).

Operator splitting has the same strong order as the explicit Euler method, but a better

weak convergence order, which is often of greater interest. Note that in Fig. 2 and Fig. 3

the timesteps explored with operator splitting are considerably larger than those explored

with explicit Euler. The timesteps for the explicit Euler method have to be taken shorter
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FIG. 2: (Color online) Log-log plots of mean-square error for bead positions. γ̇τR = 4,

n = 15 bonds, α = 0.1. For explicit Euler, dt = (1/256)(τR/n
2) and maximum step size =

64 dt. For operator splitting, dt′ = (1/16)(τR/n
2) and maximum swap time = 64 dt′.
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FIG. 3: (Color online) Log-log plots of the absolute averaged error in the mean-square

distance between adjacent beads. γ̇τR = 4, n = 15 bonds, α = 0.1. For explicit Euler

method, dt = (1/256)(τR/n
2) and maximum step size = 64 dt. For operator splitting,

dt′ = (1/16)(τR/n
2) and maximum swap time = 64 dt′.

than operator splitting, or else the error in the solution diverges. This is a result of the most

important advantage of operator splitting over the explicit Euler method: stability.
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B. Stability

While convergence describes the behavior of the method as the time step becomes small,

stability describes behavior as the time step becomes large. Stability is generally of more

interest to running a simulation because one wants to take large timesteps to minimize the

computational work.

Stability analysis studies how small error perturbations propagate as a numerical method

marches forward. These errors may either die out, diverge, or maintain an approximately

constant amplitude. The radius of stability describes how large of a step h can be taken

without the method becoming unstable (causing the solution to diverge). Implicit numerical

methods are typically more stable than explicit methods. Additionally, methods that are

faithful at higher order derivatives tend to be stable.

The explicit Euler method is notoriously unstable. In the case of the nonlinear Rouse

model, we observe that fundamental step sizes larger than dt = 2τR/n
2 cause the method

to become unstable for n = 15 bonds. This is why such small step sizes were required to

verify the convergence orders (see Figs. 2 and 3).

Although the radius of stability can be investigated analytically, we have not carried out

this analysis for operator splitting because of the complexities introduced by the nonlinear

term. Instead, we have analyzed stability numerically by examining the steady-state error

in the Rouse modes (Fig. 4). Let the error in the p-th mode εp be defined as

εp =
〈(Xp −X(a)

p )2〉
〈X2

p 〉
(24)

where Xp is the true mode and X
(a)
p is the approximate mode. With this definition, εp = 0

if the modes match exactly, and εp = 1 if they are totally uncorrelated.

Fig. 4 shows that as the swap time increases, the error in the Rouse modes increases.

The higher modes are error-sensitive, so εp → 1 faster. The higher modes are more sensitive

because changes occur on a shorter time scale than in the lower modes, so large swapping

steps “skip” these dynamics. In contrast, the error in the lowest Rouse mode (p = 1) is less

than 1% if the swap time is approximately half the Rouse time. Further, the error for each

mode at a given swap time saturates to a steady-state value. Cumulatively, this implies

unconditional stability for operator splitting.

Error in the high Rouse modes is not as important as error in the low Rouse modes for
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FIG. 4: (Color online) Steady-state errors for the odd-number Rouse modes. γ̇τR = 4,

n = 15 bonds, α = 0.1, dt′ = τR/n
2. Chains were allowed to evolve for 4τR to reach steady

state.

representing the polymer conformation. The low Rouse modes give the general orientation

and shape of the conformation, while the high Rouse modes provide the “definition” to the

conformation – the contours, sharp twists, and turns. As error is introduced to the high

Rouse modes, chains become smoother (Fig. 5). However, the low Rouse modes are mostly

faithful, so the chains remain synchronized to the true chain.

One can impose an error tolerance on the modes (say, 10% in the highest mode), and

select the corresponding swap time. Error will enter the solution almost immediately after

the simulation begins, but it will not increase. The swap time can then be chosen depending

on the required fidelity at a given mode.

C. Computational benchmarking

The computational efficiency of operator splitting was compared to the explicit Euler

method. Operator splitting was implemented using FFTW v.3.3b for FFTs (cite), and the

fifth order adaptive step size Cash-Karp Runge-Kutta method and driver from Numerical

Recipes in C for numerical integration.[15, 16] The time required for a single step was

averaged over ten million steps, each with a different initial condition and noise.

It was observed that, as expected, explicit Euler had a constant computational time
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FIG. 5: (Color online) Sample conformations computed over a particular noise history

with different swap rates. The conformation with the largest wiggles is the “true”

dynamics. The progressively smoother conformations were run with swap times

∆tswap = 4dt and ∆tswap = 8dt.

independent of step size. However, operator splitting had a variable time on a single step,

due to the amount of work done by the numerical integrator, which depended on the starting

chain configuration and step size.

It is worth noting that the amount of work required for operator splitting is dependent

on the strength of the flow. Under strong shear flow, the chain becomes more stretched

during the linear step than under weak or no flow. The stretched configuration makes the

system stiffer for the numerical integrator in the nonlinear step, which necessitates shorter

steps and thus more work. For our benchmarking tests, we have applied a fairly strong

shear rate of γ̇τR = 4. If we were to simulate diffusion (no flow), it is likely that the added

computational cost for operator splitting would be somewhat reduced.

A plot of the relative amount of computational time required on a single step (tOS/tE) for

operator splitting and explicit Euler versus step size (Fig. 6) shows that splitting initially

requires about five times more computational work for single short steps. However, when

large steps are taken, the increase in work is significantly less than the increase in step size.
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This means that operator splitting can significantly reduce the amount of work required

in standard practice. We previously noted that explicit Euler certainly became unstable

near 2τR/n
2 when n = 15. A safer step size to guarantee stability is (1/4)τR/n

2, as we

have used as a maximum in our convergence tests. If we enforce a modest error of no more

than ≈ 30% (square error 0.1) in the highest three Rouse modes when n = 15, we find from

Fig. 4 that we can take a step of approximately 10τR/n
2 with operator splitting. From

an interpolation of Fig. 6, this corresponds to approximately a ten fold increase in work.

However, we were able to increase the step size forty fold, so this corresponds to a factor of

four speed up using operator splitting.

At very large timesteps, splitting is not faithful to the dynamics of the highest modes,

even if it is faithful to the lowest modes. However, the highest modes still take on random

values with the correct equilibrium statistics because they are regenerated at each step from

a random noise with fading memory of the previous value. This is ultimately what leads to

the stability of splitting, and prevents the error in the modes from blowing up. It is thus

reasonable to take very large timesteps, with considerably higher error in the highest Rouse

modes than 30%. It is ultimately this stability property that gives operator splitting the

computational edge over explicit Euler.
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FIG. 6: Relative computational time required for operator splitting compared to explicit

Euler method, γ̇τR = 4, n = 15 bonds, α = 0.1. The computational time for explicit Euler

was evaluated at dt = (1/16)τR/n
2.
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IV. CONCLUSIONS

Although ideally a numerical method has high order convergence and good stability

properties, it is difficult to devise a method with weak convergence higher than order β = 2

because non-Gaussian random variables are required. Thus, operator splitting is a very

useful numerical method because it has weak convergence β = 2 and seemingly unconditional

stability.

Operator splitting was successfully implemented to evolve the nonlinear Rouse equation

in shear flow in order to generate probability distributions for the distance between adjacent

beads. Strong convergence order α = 1 and weak convergence order β = 2 were verified

numerically. The stability of operator splitting was explored numerically, and shown to be

almost unconditionally stable. The exact solution to the linear Rouse equation was also

extended to mixed flow, demonstrating the generalizability of the method.

An implementation of operator splitting requires

1. “Splittable” equation. The differential equation must be separable into an exactly

solved part, and a numerically solvable part.

2. Faithful numerical integrator. A high order numerical integrator is required to min-

imize error in the numerical solution, so that error is introduced mostly by operator

splitting.

3. Fast Fourier transforms. Frequently, the exact solution is treated in Fourier space

and the numerical solution in real space. Fast Fourier transform allows for cheap

conversion between the two at each swapping step.

Although implementing operator splitting may seem inconvenient compared to a simple

implementation of the explicit Euler method, the higher order weak convergence and stability

properties of operator splitting are worth the effort. In particular, large stepsizes may be

taken so that evolutions which would be computationally intensive with explicit Euler can

be done considerably more quickly.

Operator splitting can be applied to a variety of problems in the stochastic dynamics of

continuous-field order parameters, for which the evolution equations are of the same essential

form as the nonlinear Rouse model, i.e., conforming to the three conditions listed above.

Examples include mixed binary fluids in flow, block copolymer order-disorder transitions in
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flow, and flow alignment of ordered fluids such as smectic or nematic liquid crystals. Flow

effects in these systems are often treated as initial value problems with noise effects neglected,

but clearly for each case there is a regime where noise effects compete with flow and ordering

in determining the steady-state structure, for which the present splitting approach should

prove useful.

Acknowledgements: We thank NSF DMR-0907370 and CBET-1067554, and ACS-PRF

49964-ND7 for support.
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Appendices

Appendix A: Shear flow solution

From Eqn. 7, the Rouse equations are

ζY ′p = −KpYp + yp (A1a)

ζX ′p = −KpXp + xp + γ̇Yp (A1b)

Rearranging and letting ωp = Kp/ζ gives a coupled system of ODEs

Y ′p = −ωpYp +
1

ζ
yp (A2a)

X ′p = −ωpXp +
1

ζ
xp +

γ̇

ζ
Yp (A2b)

Note that Xp is coupled to Yp, but Yp is independent.

The solution for Yp over the finite time interval ∆t = t1− t0 is a simple integrating factor

problem, with µ = exp(ωpt)

Yp(t1) = Yp(t0)e−ωp∆t +
1

ζ

∫ t1

t0

eωp(t−t1)yp(t)dt (A3)

= e−ωp∆tYp(t0) + ∆Yp (A4)

Since ∆Yp is the integral over Gaussian random variables with zero mean, it is itself a

Gaussian random variable with zero mean.

Solution for Xp begins with the same integrating factor to give

Xp(t1) = Xp(t0)e−ωp∆t +
1

ζ

∫ t1

t0

eωp(t−t1)xp(t)dt+
γ̇

ζ

∫ t1

t0

eωp(t−t1)Yp(t)dt (A5)

This solution is similar to Eqn. A3, except for the coupled integral over Yp. Considering

only this term, and substituting Eqn. A3 gives

γ̇

ζ

∫ t1

t0

eωp(t−t1)

[
Yp(t0)eωp(t0−t) +

1

ζ

∫ t

t0

eωp(t′−t)yp(t
′)dt′

]
dt (A6)

Simplifying the integrals and exponentials

γ̇

ζ
eωp(t0−t1)Yp(t0)

∫ t1

t0

dt+
γ̇

ζ2

∫ t1

t0

eωp(t−t1)

∫ t

t0

eωp(t′−t)yp(t
′)dt′dt (A7)

=
γ̇∆t

ζ
e−ωp∆tYp(t0) +

γ̇

ζ2

∫ t1

t0

∫ t

t0

eωp(t′−t1)yp(t
′)dt′dt (A8)
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The twice-repeated integral can be simplified with the Cauchy formula with n = 2

γ̇∆t

ζ
e−ωp∆tYp(t0) +

γ̇

ζ2

1

(2− 1)!

∫ t1

t0

(t1 − t)2−1eωp(t−t1)yp(t)dt (A9)

The final update formula for Xp is given as

Xp(t1) = Xp(t0)e−ωp∆t +
1

ζ

∫ t1

t0

eωp(t−t1)xp(t)dt

+
γ̇∆t

ζ
e−ωp∆tYp(t0) +

γ̇

ζ2

∫ t1

t0

(t1 − t)eωp(t−t1)yp(t)dt (A10)

= e−ωp∆t

(
Xp(t0) +

γ̇∆t

ζ
Yp(t0)

)
+ ∆X(x)

p +
γ̇

ζ
∆X(y)

p (A11)

It is apparent that ∆X
(x)
p is an independent Gaussian variable with variance analogous to

∆Yp. However, ∆Yp and ∆X
(y)
p are correlated Gaussian variables since they both depend on

yp(t). Thus, 〈∆Y 2
p 〉 = 〈∆X(x)

p

2
〉, 〈∆X(y)

p

2
〉, and 〈∆Yp∆X(y)

p 〉 must be computed to generate

appropriate representative Gaussian variables for the integrals.

Starting with 〈∆Y 2
p 〉,

〈∆Y 2
p 〉 =

1

ζ2

∫ t1

t0

∫ t1

t0

e−2ωp(t−t1)〈yp(t)yp(t)〉dtdt (A12)

We can substitute Eqn. 5 for 〈yp(t)yp(t)〉 to obtain

〈∆Y 2
p 〉 =

1

ζ2

∫ t1

t0

e2ωp(t−t1)

∫ t1

t0

[
4ζ

βn
δpqδ(t− t′)

]
dtdt (A13)

=
1

ζ2

∫ t1

t0

e2ωp(t−t1)

(
4ζ

βn

)
dt (A14)

=
4

ζβn

v0(2ωp∆t)

2ωp
(A15)

where v0(x) = 1− exp(−x). This result applies analogously to 〈∆X(x)
p

2
〉.

Proceeding as in Eqn. A12 for 〈∆X(y)
p

2
〉

〈∆X(y)
p

2〉 =
1

ζ2

∫ t1

t0

∫ t1

t0

(t1 − t)2e2ωp(t−t1)〈yp(t)yp(t)〉dtdt (A16)

which may be simplified as before with Eqn. 5 to give

〈∆X(y)
p

2〉 =
4

ζβn

∫ t1

t0

(t1 − t)2e2ωp(t−t1)dt (A17)

=
4

ζβn

v1(2ωp∆t)

8ω3
p

(A18)
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where v1(x) = 2− (2 + 2x+ x2) exp(−x).

Finally, the correlation term is computed

〈∆Yp∆X(y)
p 〉 =

1

ζ2

∫ t1

t0

∫ t1

t0

(t1 − t)e2ωp(t−t1)〈yp(t)yp(t)〉dtdt (A19)

which simplifies as before

〈∆Yp∆X(y)
p 〉 =

4

ζβn

∫ t1

t0

(t1 − t)e2ωp(t−t1)dt (A20)

=
4

ζβn

v2(2ωp∆t)

4ω2
p

(A21)

where v2(x) = 1− (1 + x) exp(−x).

Appendix B: Discretization of shear flow solution

Discretize the operators forward in time, and with a central-difference with respect to

space. Then, R(s, t) is discretized into Rs,t for integer values of s and t. We take the discrete

Fourier transform as

Xs =
2

N

N∑
r=1

Rr cos
( π
N

(r − 1/2)(s− 1)
)

(B1)

where Xs = 〈Xs, Ys〉, and r and s range from 1 to N . The inverse of this transform is given

as

Rs =
X1

2
+

N∑
r=2

Xr cos
( π
N

(r − 1)(s− 1/2)
)

(B2)

Given this transform, it can be shown that the eigenvalues become

λs = 4 sin2
( π

2N
(s− 1)

)
(B3)

The center of mass of the chain can be fixed at the origin by forcing X1 = 0.

We choose this form of the FFT because Eqn. B1 and Eqn. B2 are the discrete analogs

of Eqn. 4 and Eqn. 3, respectively. Given this convention for the FFT, the discrete noise

variance is

〈xp(ti)xq(tj)〉 =
4ζ

β

δij
∆

δpq
n

(B4)

with ∆ the fundamental step. This is the discrete analog of Eqn. 5.

Letting ωs = (K/ζ)λs, the discrete update formula for Ys becomes

Ys(t+ k∆) = (1− ωs∆)k Ys(t) +
∆

ζ

k∑
i=1

(1− ωs∆)i−1 yp(t+ (k − i)∆) (B5)
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where ∆ is the fundamental time step, and yp(t+ (k− i)∆) is an entry in the noise history.

Likewise, it can be shown that the update formal for Xs is

Xs(t+ k∆) = (1− ωs∆)kXs(t) +
γ̇∆

ζ2
(1− ωs∆)k−1 Yp(t)

+
∆

ζ

k∑
i=1

(1− ωs∆)i−1 xp(t+ (k − i)∆)

+
γ̇∆2

ζ2

k∑
i=2

(i− 1) (1− ωs∆)i−1 yp(t+ (k − i)∆) (B6)

Appendix C: Mixed flow solution

From Eqn. 13 in Section II B and letting ωp = Kp/ζ,Ẋp

Ẏp

 =

−ωp γ̇/ζ

γ̇β/ζ −ωp

Xp

Yp

+
1

ζ

xp
yp


≡M

Xp

Yp

+
1

ζ

xp
yp

 (C1)

The eigenvalues of the matrix M are

λ1,2 = −ωp ±
γ̇
√
β

ζ
(C2)

It is apparent that λ2 is always negative, and that λ1 may be negative, positive, or zero

depending on the relative magnitudes of ωp, γ̇, β, and ζ. The corresponding eigenvectors are

(1,
√
β) and (1,−

√
β). For non-shear flow (β 6= 0), the eigenvectors are linearly independent,

and M is diagonalizable.

Let Λ be the diagonal matrix of eigenvalues, and T = [e1, e2] the matrix with corre-

sponding eigenvectors as its columns. Diagonalizing Eqn. C1 gives

S̃′ = ΛS̃ +
1

ζ
B̃ (C3)

where

S̃ =

X̃p

Ỹp

 = T−1

Xp

Yp

 (C4)

and

B̃ =

x̃p
ỹp

 = T−1

xp
yp

 (C5)
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Then, we readily arrive at Eqn. 14 from Section II B

X̃ ′p = λ1X̃p +
1

ζ
x̃p (C6a)

Ỹ ′p = λ2Ỹp +
1

ζ
ỹp (C6b)

which is easily solved over the finite interval ∆t = t1 − t0 by an integrating factor µ =

exp(−λt) to give

X̃p(t1) = eλ1∆tX̃p(t0) +
1

ζ

∫ t1

t0

e−λ1(t−t1)x̃p(t)dt (C7)

= eλ1∆tX̃p(t0) + ∆X̃p (C8)

and likewise for Ỹp

Ỹp(t1) = eλ2∆tỸp(t0) +
1

ζ

∫ t1

t0

e−λ2(t−t1)ỹp(t)dt (C9)

= eλ2∆tỸp(t0) + ∆Ỹp (C10)

Observe that since x̃p and ỹp are linear combinations of Gaussian random variables xp

and yp, ∆X̃p and ∆Ỹp are correlated Gaussian random variables. We must then compute

the variances 〈∆Ỹ 2
p 〉, 〈∆X̃2

p 〉, and 〈∆X̃p∆Ỹp〉.

Proceeding for 〈∆Ỹ 2
p 〉 as in Appendix A, we obtain

〈∆Ỹ 2
p 〉 =

1

ζ2

∫ t1

t0

∫ t1

t0

e−2λ2(t−t1)〈ỹp(t)ỹp(t)〉dtdt (C11)

From Eqn. C5 we know that ỹp(t) = (1/2)(xp(t)− yp(t)/
√
β), so Eqn. C11 becomes

〈∆Ỹ 2
p 〉 =

1

ζ2

∫ t1

t0

e−2λ2(t−t1)

∫ t1

t0

〈
1

4

(
xp(t)−

yp(t)√
β

)2
〉
dtdt (C12)

=
1

ζ2

∫ t1

t0

e−2λ2(t−t1)

∫ t1

t0

〈
1

4

(
xp(t)

2 − 2√
β
xp(t)yp(t) +

yp(t)
2

β

)〉
dtdt (C13)

Since xp(t) and yp(t) are uncorrelated, the cross term can be eliminated from the average.

Substituting from Eqn. 5, and integrating twice gives the variance expression

〈∆Ỹ 2
p 〉 =

β + 1

2nβ0ζβλ2

(e2λ2∆t − 1) (C14)

where β0 is the Boltzmann constant.
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Solution for 〈∆X̃2
p 〉 proceeds similarly, with x̃p(t) = (1/2)(xp(t) + yp(t)/

√
β), to give

〈∆X̃2
p 〉 =

β + 1

2nβ0ζβλ1

(e2λ1∆t − 1) (C15)

when λ1 6= 0. If λ1 = 0, the solution simplifies to

〈∆X̃2
p 〉 =

β + 1

nβ0ζβ
∆t (C16)

Finally, computing 〈∆X̃p∆Ỹp〉 gives

〈∆X̃p∆Ỹp〉 =
1

ζ2

∫ t1

t0

∫ t1

t0

e−(λ1+λ2)(t−t1)〈x̃p(t)ỹp(t)〉dtdt (C17)

The product x̃p(t)ỹp(t) is a difference of squares, simplifying to

〈∆X̃p∆Ỹp〉 =
1

ζ2

∫ t1

t0

e−(λ1+λ2)(t−t1)

∫ t1

t0

〈
1

4

(
xp(t)

2 − yp(t)
2

β

)〉
dtdt (C18)

which may be reduced with Eqn. 5 and twice integrated as before to give

〈∆X̃p∆Ỹp〉 =
β − 1

nβ0ζβ(λ1 + λ2)
(e(λ1+λ2)∆t − 1) (C19)

This may be further simplified by observing that λ1 and λ2 are conjugates

〈∆X̃p∆Ỹp〉 =
β − 1

2nβ0ζβωp
(e−2ωp∆t − 1) (C20)

It should be noted that ∆X̃p and ∆Ỹp become totally uncorrelated if β = 1, the case of pure

extensional flow.

Appendix D: Correlated random values

We need to generate two correlated Gaussian random variables x and y with zero mean.

We want these variables to have a covariance matrix M such that

M =

σ2
xx σ2

xy

σ2
yx σ2

yy

 (D1)

where σ2
xx = 〈x2〉, σ2

yy = 〈y2〉, and σ2
xy = σ2

yx = 〈xy〉.

The covariance matrix has a generating function

Z ∝
∫

exp

(
−1

2
vT ·M−1 · v + hT · v

)
dv ∝ exp

(
1

2
hT ·M · h

)
(D2)
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where v is the vector of correlated variables, and h is a conjugate variable.

Since it is our objective to obtain v, and M−1 is not diagonal, we need to make a change

of variables to v that allows us to generate independent Gaussian random variables with

appropriate variances, and correlate them as a linear combination.

Since the matrix M is symmetric positive definite, M−1 has a complete basis of eigen-

vectors. Thus, M−1 is diagonalizable, and

M−1 ·T = Λ ·T (D3)

where Λ is the diagonal matrix of eigenvalues, and T is the matrix of eigenvectors, [e1, e2].

We can then expand v in the eigenvector basis as

v = T · a (D4)

Since M−1 is a symmetric positive definite matrix, its eigenvectors are orthonormal such

that TT ·T = I. Combining this result with Eqn. D3 and Eqn. D4, we obtain

vT ·M−1 · v = aT ·Λ · a (D5)

where a is a vector of independent Gaussian random variables with zero mean, and with

variances such that 〈a2
i 〉 = 1/Λi.

The vector of correlated Gaussian random variables may be recovered by generating a

representative vector a of independent Gaussian random variables, and then taking v = T·a.

Appendix E: Convergence order analysis

Although a treatment of weak convergence for stochastic differential equations as applied

to operator splitting can be found in Ref. 12 (with essential background materials in Ref.

14), as a convenience to the reader we briefly summarize in this appendix the basic elements

of this analysis.

The starting point for developing methods for stochastic DEs is the Ito equation, which

in differential form (for additive noise) is

dX = a(X)dt+ b dW (E1)

and in integral form is

X(t) = X0 +

∫ t

0

dt′ a(X(t′)) + b

∫ t

0

dW (t′) (E2)
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In the above, W (t) is a Wiener process, i.e., dW (t) is delta-correlated white noise. The

noise integral W (t) =
∫ t

0
dW (′t) executes a Gaussian random walk, with 〈W (t)〉 = 0 and

〈W 2(t)〉 = t. Eq. (E1) is quite general: X can denote a single variable or a vector of values,

a(X) can be any function (linear or nonlinear) of X.

To resolve ambiguities involving averages over the noise dW (t), it is helpful to regard the

time t as discrete, with timestep ∆t:

Xi+1 = Xi + a(Xi)∆t+ b∆Wi (E3)

with noise ∆Wi a sequence of uncorrelated random steps, of magnitude ±
√

∆t. The dis-

cretized equation is causal, since X at the “next” time Xi+1 depends only on the “present”

Xi and noise ∆Wi. Also, it is straightforward to average over such discretized noise.

Suppose we have some function g(X(t), t) of our stochastic process X(t), and want to

know how g itself varies over some short time interval dt. The Ito formula, essentially the

chain rule for stochastic processes, expands g about its value at time t as

dg =
∂g

∂t
dt+

∂g

∂X
(a(X)dt+ b dW ) +

1

2

∂2g

∂X2
b2dt (E4)

In integral form, the relation reads

g(X(t)) = g(X(0)) +

∫ t

0

dt′
(
a(X(t′))g′(X(t′)) + (1/2)b2g′′(X(t′))

)
+ b

∫ t

0

dW (t′) (E5)

in which g′ denotes ∂g/∂X, and for simplicity we have dropped explicit time-dependence

(i.e., ∂g/∂t = 0).

The formal solution Eq. (E2) can be expanded by repeatedly replacing a(X(t′)) and its

derivatives using Eq. (E5), to obtain the Ito-Taylor expansion,

X(t) = X(0) + aI(0) + bI(1) +

(
a′a+

1

2
a′′b2

)
I(0,0) + a′bI(1,0) + a′′b2I(1,1,0) + . . . (E6)

in which a and its derivatives are all evaluated at the initial condition X = X0. Also, I(i,j,k,...)

with i, j, k, . . . = 0 or 1 denote various integrals over the noise,

I(i1,i2,...,in) =

∫ t

0

dW in(sn)

∫ sn

0

dW in−1(sn−1)

∫ sn−1

0

. . .

∫ s2

0

dW i1(s1) (E7)

Dropping the noise (b = 0) gives the Taylor expansion of the deterministic equation dX =

a(X)dt.
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It is useful to assign to each of the various noise integrals I(i,j,k,...) a scaling power of

the time interval ∆. Each integral with a dW implies a factor ∆1/2 (since the variance of∫
dW is of order ∆) and each integral without a dW a factor ∆. Terms I(0) and I(0,0) are

deterministic, given by I(0) = ∆ and I(0,0) = ∆2/2 respectively. In what follows, we scale

the noise integrals by appropriate factors of ∆ to make power-counting explicit.

We are interested in the weak and strong convergence properties of two approximate

methods, explicit Euler and operator splitting. The integral form of the Euler method over

the time interval from t = 0 to t = ∆ is

X1 = X0 + ∆a(X0) + b

∫ ∆

0

dW (t′) (E8)

in which X0 is the initial condition X(0) and X1 the final value X(∆).

Symmetric stochastic splitting is defined (see main text) by alternating between exact

solutions with one of two partial time evolution operators a1(X) and a2(X):

X1 = X0 +

∫ ∆/2

0

a2(X1(t′))dt′

X2 = X1 +

∫ ∆

0

a1(X2(t′))dt′ + b

∫ ∆

0

dW (t′)

X3 = X2 +

∫ ∆/2

0

a2(X3(t′))dt′ (E9)

in which X3 is the final value X(∆).

To determine strong convergence order, we simply compare the Ito-Taylor expansions of

the approximate solutions to the true expansion, Eq. (E6). The Ito-Taylor expansion for

the Euler method is obvious from Eq. (E8),

X(t+ ∆) = X(t) + ∆a(X(t)) + b∆1/2I(1) (E10)

and agrees with Eq. (E6) through terms of order O(∆), hence we say the method is of strong

order 1.0.

The Ito-Taylor expansion for the operator splitting method is obtained by using the full

Taylor expansion (with a = a2) to describe the “outer” deterministic steps, and the full

Ito-Taylor expansion (with a = a1) to describe “inner” stochastic step. The result of each

step serves as the initial condition for the next, so the expansions are nested, with the final

result

X(t+ ∆) = X(t) + ∆(a1 + a2) + b∆3/2I(1) + b∆3/2
(
a′1I(1,0) + (1/2)a′2I(1)

)
+ (1/4)∆2

(
2(a1 + a2)(a′1 + a′2) + b2a′′1 + 4b2a′′1I(1,1,0) + b2a′2I(1)

)
+ . . . (E11)
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The above agrees with Eq. (E6) only through order O(∆), so is of strong order 1.0 as well.

We now sketch a proof of the criterion for weak convergence, defined as follows. (See 14

p. 474, Theorem 14.5.2, Eqn. (5.12) for details.) Suppose we have some smooth function

g(X) that we want to average over trajectories, given a definite starting point X0 at time

t0. Weak convergence means the average computed with approximate dynamics approaches

the true average, as the time difference ∆ becomes small:

〈g(X(t))|X0〉true − 〈g(X(t))|X0〉approx = O(∆β+1) (E12)

where β is the weak order of convergence.

Note that if we have a finite time difference tmax− t0, then the number of small timesteps

∆ needed is n = (tmax− t0)/∆. Since error accumulates on each timestep, the total error in

the average is of order O(∆β).

The “weak order β” notation is consistent with nomenclature for strong convergence, for

which a “strong order α” method means agreement of the Ito-Taylor expansions of the true

and approximate dynamics through order O(∆α) for a single step, and therefore an error for

a finite timestep tmax − t0 of order O(∆α).

Since the timestep ∆ is small, X(t) does not stray very far from X0. This motivates us

to expand g(X(t)) as

g(X(t)) = g(X0) + g′(X0)(X(t)−X0) + (1/2)g′′(X0)(X(t)−X0)2 + . . . (E13)

Evaluating the averages in Eqn. (E12) then reduces to evaluating the averages of moments

of the true and approximate evolution of X(t), defined as

Mk(∆t) = 〈(X(∆t)−X0)k〉 (E14)

for the exact and approximate evolutions.

How high a moment must we examine, to verify Eqn. (E12) for some given β? Note that

the Ito-Taylor expansion for X(t) begins

X(t)−X0 = a(X0)∆ + b

∫ t

0

dW (t′) + . . . (E15)

To find the largest contribution to 〈(X(t) − X0)k〉, we take as many powers of noise as

possible, since the noise scales as ∆1/2. (We need an even number of factors of the noise, so

that the average does not vanish.)
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As we consider higher moments, eventually even the lowest order contribution will be

higher order than ∆β+1. Evidently, k = 2β can generate terms of order ∆β. Therefore, we

need to compare the real and approximate dynamics up through the 2βth moment, to verify

weak convergence of order β. (The average of a term with k = 2β + 1 powers of noise will

vanish, since this k is odd, hence the error in the noise moments will be O(∆β+1).)

Since the moments to be compared are to be computed for small ∆, we use the Ito-

Taylor expansions for the true and approximate solutions, together with a set of results for

averaging various products of noise integrals. The results we need to sufficient order for

present purposes are

〈I2
(1)〉 = 1

〈I4
(1)〉 = 3

〈I(1)I(1,0)〉 = 1/2

〈I2
(1,0)〉 = 1/3 (E16)

Any averages of noise integrals in which a given noise increment dW (t) appears with an odd

power, will vanish, so that 〈I(1)〉, 〈I(1,0)〉, 〈I3
(1)〉, 〈I(1)I

2
(1,0)〉, 〈I2

(1)I(1,0)〉, and 〈I(1)I(1,1,0)〉 are all

zero.

Carrying out moment averages using these methods, we can verify that the explicit Euler

method is weak order 1.0, while operator splitting is weak order 2.0.
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