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Abstract 

Nonlinear wrinkling of a compressed film on a soft substrate in the presence of 

inhomogeneous swelling actuation strain caused by solvent diffusion is studied. The 

simulation relies on a continuum model which integrates phase field microelasticity 

and Föppl-von Kármán plate theory. We show that the wrinkling morphologies 

developed in the diffusive domain exceeding a critical compression are confined and 

become shape- and size-dependent. A rich variety of wrinkling patterns observed in 

experiments including hexagonal order, dimple or peanut structures are numerically 

recovered, depending on the distribution of diffusion-mediated actuation strain. A 

cascade feature of the diffusion-coupled wrinkle is demonstrated as well: there are 

two ranges of solvent concentration within which the sequences of wrinkling pattern 

are different.  
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I INTRODUCTION 

A compressive thin film (sheet or layer) on soft substrates may release stress by 

developing surface wrinkles through Euler-type buckling instability [1-3]. The 

wrinkling morphology is determined by the balance between the decreasing stretch 

energy of the film and the increasing energies due to film bending and substrate 

distortion. To form ordered wrinkling patterns, various strategies have been explored 

to regulate distribution of in-plane compression in the film, including pre-patterned 

substrate [4], elastomeric mold [5], cracked film [6], capillarity [7], and thermally, 

mechanically, or osmotically induced compression [8-12]. Application of such surface 

wrinkles has been found not only in measuring elastic modulus of thin films [13] and 

understanding hierarchical morphogenesis [14-16], but also in guiding 

three-dimensional micro-fabrications of smart adhesion devices [17,18], microlens 

arrays [19], self-assembled gears [20], flexible electronics [21] etc. Recent 

experiments demonstrate that the wrinkling instability can be mediated by mass 

diffusion which produces a spatio-temporal swelling actuation strain (eigenstrain). 

The nonuniformity of the eigenstrain may lead to more interesting controllable 

wrinkling morphologies such as hexagonal ordered, and dimple or peanut structures 

[22-26], which are all beyond the previously observed straight wrinkles, labyrinths, 

herringbone, and chessboard-like patterns in the absence of diffusion. Exploring the 

phenomena and the underlying dynamics is obviously of important significance for 

developing versatile approaches to generate hierarchical [27] or multi-component [28] 

polymer patterns. 
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Wrinkling of thin films in absence of mass diffusion has been extensively studied 

previously, where the compressive stress before buckling onset is usually assumed 

uniform. Under uniaxial compression, a film may buckle with straight wrinkles, and 

the critical strain, equilibrium wavelength and amplitude can be predicted by a set of 

simple scaling laws [29-31]. Similar results based on energy minimization are 

obtainable for the cases of herringbone and checkerboard wrinkling patterns [32-34]. 

The cubic anisotropic elasticity of the film is found to alter the orientation of the 

wrinkle and decrease the values of the equilibrium wavelength and amplitude [35,36]. 

In addition, finite-deformation analysis of buckling indicates that the wavelength is 

strain-dependent rather than constant in the small-deformation theory [37]. A series of 

nonlinear analysis utilizing relaxation method [38-44], finite element method [45-47], 

and iteration method [48] are developed to investigate other problems. These involve 

wrinkle growth and coarsening on viscous substrates [38-42], orientational ordering of 

wrinkles [44], and the post-wrinkling patterns under different boundary conditions 

[45-48].  

In contrast, little is known about wrinkling of thin films coupled with diffusion. 

In this case the compressive stress before buckling is in general not uniform because 

the diffusion-induced swelling is heterogeneous. Wrinkles may appear only in 

diffusive domains with compressive stress exceeding certain critical values, and thus 

are confined due to diffusion. Since the process of diffusion usually is much slower 

than that of wrinkling, the development of wrinkles depends on when and where the 

compressive stress exceeds the buckling threshold. This paper studies nonlinear 
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evolution of diffusion-coupled wrinkles. The main goal is to explore the effect of 

diffusion-mediated actuation strain on the formation and transition mechanisms of 

such wrinkling patterns as hexagonal ordered, dimple or peanut structures. To this end, 

we propose a continuum model integrating phase field microelasticity (PFM) [49] and 

Föppl-von Kármán plate theory [50] to track the temporal evolution of a 

film/substrate system driven by an arbitrarily distributed diffusion-mediated swelling 

actuation strain. Our numerical simulations show how and why the interplay between 

diffusion and buckling can lead to a rich variety of wrinkling patterns.  

 

II MODELING 

As shown in Figure 1, we consider an elastic thin film of thickness h on a soft elastic 

substrate. It is assumed that a certain solvent may be adsorbed and diffuse in the film, 

causing the film to swell. Such an effect of solvent adsorption can be characterized by 

a hydrostatic actuation strain (swelling strain). In general, the distribution of the 

actuation strain is both position- and time-dependent, inducing inhomogeneous stress 

in the film. Therefore, when the compressive stress somewhere in the film exceeds the 

critical value, wrinkles appear there due to elastic buckling. The goal of this section is 

formulate a dynamic model for the diffusion-mediated wrinkling phenomenon. For 

convenience, a coordinate system is introduced as in Fig. 1, and the usual summation 

convention is adopted for repeated indices, with Greek and Latin ones runing from 1 

to 2 and 1 to 3, respectively. A comma stands for differentiation with respect to the 

suffix index.  
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We model the film as an isotropic von Karman plate and substrate as an 

elastically isotropic half-space. At any time t , the actuation strain at a point x  in 

the film is denoted by ( ), tαβε ∗ x . Since the film is very thin, one can expand 

( ), tαβε ∗ x  with respect to the thickness coordinate up to the first order, i.e.  

( ) 1 2 3 1 2, ( , , ) ( , , )T Tt x x t x k x x tαβ αβ αβε ε∗ = +x . Clearly, ( )1 2, ,T x x tαβε  is the in-plane 

eigenstrain in the mid-plane 3 0x = , and ( )1 2, ,Tk x x tαβ , possessing the dimension of 

reversed length, is interpreted as the eigencurvature induced by solvent adsorption. 

We assume that both ( )1 2, ,T x x tαβε  and ( )1 2, ,Tk x x tαβ  are proportional to the solvent 

concentration ( )1 2, ,c x x t  in the mid-plane, thus express ( ), tαβε ∗ x  by  

( ) ( )3
0 0 1 2, , , ,xt c x x t

hαβ αβε ε ε δ∗ ⎛ ⎞′= +⎜ ⎟
⎝ ⎠

x                     (1) 

where 0ε  and 0ε ′  are two constants related to the hydrostatic actuation strain, and 

αβδ  is the Kronecker delta which equals 1 for α β=  and vanishes for α β≠ . The 

total strain in the film is the sum of the elastic strain eαβ  and the actuation strain αβε ∗ , 

i.e. 

.eαβ αβ αβε ε ∗= +                              (2) 

According to the Kirchhoff hypothesis, the displacement components at any point in 

the thin film, iu (i=1-3), can be written as 

( )
3 ,

3 1 2

,

, .

u u x w

u w x x
α α α= −

=
                            (3) 

in which uα  and w  are the in-plane and out-of-plane displacement components of 

the mid-plane. The total strain in the Föppl-von Kármán sense reads 

( ), , 3, 3,
1 1 .
2 2

u u u uαβ α β β α α βε = + +                       (4) 
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Substitution of Eqs.(1)-(3) into (4) gives the elastic strain 

( ) ( )3
, , , , 3 , 0 0 1 2

1 1 , , .
2 2

xe u u w w x w c x x t
hαβ α β β α α β αβ αβε ε δ⎛ ⎞′= + + − − +⎜ ⎟

⎝ ⎠
      (5) 

We now consider the energy of the system. The energy of the film consists of the 

concentration-dependent chemical free energy and the strain energy, and can be 

represented by 

( ) ( )/2 2
1 2 3/2

1 .
2

hfilm
ch

F f c c e dx dx dxαβ αββ σ
∞ ∞

− −∞ −∞

⎛ ⎞= + ∇ +⎜ ⎟
⎝ ⎠∫ ∫ ∫          (6) 

In the integrant of the above equation, the first term ( )f c  is the chemical energy 

density. Treating the film with solvent absorption as a binary solid solution and using 

the regular solution approximation, we have 

( ) ( ) ( ) ( ){ }1 ln 1 ln 1 ,Bf c k T c c c c c c= Λ Ω − + + − −⎡ ⎤⎣ ⎦              (7) 

in which Ω  is a dimensionless parameter characterizing the atom exchange 

interaction energy in terms of Bk TΛ , Λ  denotes the number of atoms per unit 

volume, Bk  is Boltzmann’s constant, and T stands for absolute environment 

temperature. The second term, ( )2
c cβ ∇ , is the gradient chemical energy due to the 

nonuniform concentration, with cβ  being the gradient coefficient. The third term is 

the elastic energy density, where the stress αβσ  relates to the elastic strain by the 

Hooke law 

( )2
1 ,

1
f

f f
f

v e v e
vαβ αβ γγ αβ

μ
σ δ⎡ ⎤= − +⎣ ⎦−

                  (8) 

with fμ  and fv  being respectively the shear modulus and Poison ratio of the film. 

With the aid of Eqs. (5) and (8), Eq. (6) becomes 
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( ) ( )( )2
1 2 ,film film film

c s bF h f c c dx dx E Eβ
∞ ∞

−∞ −∞
= + ∇ + +∫ ∫            (9) 

in which film
sE  is the stretching energy given by 

2 2 2
11 22 11 22 12 1 22 2(1 ) ,

1
ffilm

s f f
f

h
E e e v e e v e dx dx

v
μ ∞ ∞

−∞ −∞
⎡ ⎤= + + + −⎣ ⎦− ∫ ∫          (10) 

with 

( ), , , , 0
1 1 ,
2 2

e u u w w cαβ α β β α α β αβε δ= + + −                  (11) 

and film
bE  is the bending energy expressed by 

( )
23

20 0 0
,11 ,22 ,12 1 2

2 2(1 ) ( )( ) .
12(1 )

ffilm
b f

f

h c c cE w v w w w dxdx
v h h h

μ ε ε ε∞ ∞

−∞ −∞

⎧ ⎫⎡ ⎤′ ′ ′⎪ ⎪⎛ ⎞ ⎡ ⎤= Δ + − − + + −⎢ ⎥⎨ ⎬⎜ ⎟ ⎢ ⎥− ⎝ ⎠ ⎣ ⎦⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫ ∫   (12) 

The elastic energy of the substrate can be written by using the Gauss divergence 

theorem as  

1 2
1 ,
2

sub s s
i iF T u dx dx

∞ ∞

−∞ −∞

= ∫ ∫                        (13) 

where s
iT and s

iu  are the interfacial traction and displacement components at the 

film/substrate interface. For simplicity, we assume that the substrate is elastically 

incompressible, with the Poison’s ratio 0.5sv = . By invoking the Green function for 

semi-infinite elastic half-space, the expression of s
iT  can be obtained as  

 
( ) 1 22

1 ,
2

i xs s
i ij jT M u e d dα αξ ξ ξ

π
⋅= ∫                      (14) 

where sμ  is the shear modulus, αξ  is the components of the Fourier vector, ijM  is 

a matrix defined by 

2
1 1 2

2
1 2 2

1 0
1 0 ,

0 0 2
ij s

n n n
M n n nμ ξ

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

                      (15) 

with 
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( )1/22 2
1 2 1 1 2 2, / , / ,n nξ ξ ξ ξ ξ ξ ξ= + = =                   (16) 

and s
ju  denotes the Fourier transform of s

ju  

( ) 1 1 2 2( )
1 2 1 2( , ) .i x xs s

j ju u x x e dx dxξ ξ
∞ ∞

− ⋅ + ⋅

−∞ −∞

= ∫ ∫ξ                    (17) 

Obviously, if there is no interfacial debonding during the wrinkling process, the 

displacement vector is continuous across the film/substrate interface, i.e.  

.s
i iu u=                                (18) 

The total energy of the system has the form 

.tot film subF F F= +                          (19) 

At mechanical equilibrium, the variation of totF  with respect to uα  and w  must 

vanish. The condition / 0totF uαδ δ =  gives the in-plane equilibrium equation 

, ,sTαβ β ασ =                              (20) 

where αβσ  defined in the following is the components of membrane force in the film 

( )2
1 .

1
f

f f
f

h
v e v e

vαβ αβ γγ αβ

μ
σ δ⎡ ⎤= − +⎣ ⎦−

                   (21) 

By using Eqs. (11), (14), (18), and (21), it is inferred from Eq. (20) through Fourier 

transformation that  

1 ,u Cα αβ βρ−=                              (22) 

in which 

( ) 1 1 2 2( )
1 2 1 2( , ) ,i x xu u x x e dx dxξ ξ

α α
− ⋅ + ⋅= ∫ξ                      (23) 

( ) ( )2 21 1 ,
1 1

f f
f s f s

f f

h h
C v v n n

v vαβ αβ α β

μ μ
ξ μ ξ δ ξ μ ξ

⎡ ⎤ ⎡ ⎤
= − + + + +⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

       (24) 

0
, 1 2 3 ,i x

k ke dx dx M wα αξ
β β βρ σ − ⋅= −∫                         (25) 
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( ) ( ) ( )0
, 0 , , , , ,2 1 1 1 .

1
f

k k f f k k f kk
f

h
v c v w w v w w

vβ β β β

μ
σ ε⎡ ⎤= − + + + + −⎣ ⎦−

        (26) 

This result, when inserted in Eq. (11), leads to the expression of in-plane elastic strain   

( ) ( )
( )

.
2

1 2 0 , ,2ξ 0

1 1, ξ ,
2 22

i
k k ki G G e

e x x e d c w wα β β α
αβ αβ αβ α β

ξ ξ ρ
ε δ

π≠

+ ⎛ ⎞= + − −⎜ ⎟
⎝ ⎠∫

ξ r

 (27) 

where 0eαβ =  for the case of the thin film bonded on a thick substrate, and 

1G Cαβ αβ
−=  is given by 

( ) ( )
( ) ( )

2

2 2 2

1 1
.

2 1
f f f s

f s f s f f s

h v v n n
G

h h h v
α βαβ

αβ

μ ξ μ ξδ
μ ξ μ ξ μ ξ μ ξ μ ξ μ ξ

⎡ ⎤+ + −⎣ ⎦= −
+ ⎡ ⎤+ + −⎣ ⎦

        (28) 

In the meantime, the condition / 0totF wδ δ =  is reduced to the out-of-plane 

equilibrium equation of the film  

( )02
, 3

(1 )
, 0,f sv D

D w c w T
h αβ α β

ε
σ

′+
Δ + Δ − + =           (29) 

with ( )3 / 6 1f fD h vμ ⎡ ⎤= −⎣ ⎦  being the bending rigidity.  

The coupled integral equations (27) and (29) determine the deformations of the 

film and substrate at equilibrium, but they are very difficult to be solved directly. For 

this reason, we replace Eq. (29) by the Ginzburg-Landau kinetic equation 

,
totw F

t w
δ
δ

∂ = −Γ
∂

                         (30) 

where Γ is a kinetic coefficient which characterizing the relaxation rate of the 

wrinkling process in the over-damped dynamics. Apparently, Eq. (30) recovers Eq. 

(29) in the steady state, and governs the equilibrium solution of the out-of-plane 

displacement ( )1 2, ,w x x t . To determine the concentration ( )1 2, ,c x x t , two diffusion 
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processes with conservative and non-conservative solvent mass must be distinguished. 

The evolution of ( )1 2, ,c x x t  is described by  

,
totc FM

t c
δ

δ
∂ = ∇ ∇
∂

                        (31) 

in the former case, while by 

,
tot

c
c F
t c

δ
δ

∂ = −Γ
∂

                         (32) 

in the latter case. Here M and cΓ  are the related kinetic coefficients. Once 

( )1 2, ,w x x t  and ( )1 2, ,c x x t  are obtained, the equilibrium in-plane deformation can 

be solved numerically from Eq. (27) with the help of the Fast Fourier Transform 

technique.  

 

III SIMULATIONS AND RESULTS 

A. Size- and shape-dependent wrinkles 

We will presume mass conservation of the solvent and solve the coupled 

equations (27), (30), and (31) numerically by using a spectral method [51]. These 

equations are scaled so that all physical lengths are measured in unit l (r′=r/l, l=h) and 

the time t in unit τ  (t′=t/τ , / shτ μ= Γ ). The size of the periodic computational 

domain is set as 512l×512l. The semi-implicit algorithm is adopted, and the iterative 

schemes of Eqs. (30) and (31) are written as 

( )
( ) ( ) ( )( )

( )
2

0 ,
1

* 4

/
,

1 2

nn n
s

n
w t A c i w h

w
t D

β αβ α ξ
ε ξ ξ σ μ

ξ ξ
+

⎡ ⎤′ ′+ Δ +⎢ ⎥⎣ ⎦=
′+ Δ +

             (33) 
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( )

( )
( ) ( )

( ) ( )( )* 2 20
0 0

1
* * 4

1 2

,
1 2

n n
n n n

s sn

fc t M A w c
c h

c
t M

αα

ξ

σ εξ ε ξ ε
μ μ

β ξ
+

⎡ ⎤⎛ ⎞∂′ ′ ′⎢ ⎥− Δ − + − +⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦=
′+ Δ

    (34) 

where the notation ( )ξ  or an overwave stands for the Fourier transform, t′Δ  is the 

scaled time increment, ( )* / 6 1f f sD vμ μ⎡ ⎤= −⎣ ⎦ , ( ) *1 fA v D= + , ( )* 2/ shβ β μ= , 

and * /M M= Γ . Throughout the paper, the values of input parameters are taken as 

0.3fv = , * 1β = , / 6B sk T μΛ = , 2.4,Ω =  / 525f sμ μ = , 0.2t′Δ = , and * 0.01M =  

(unless otherwise noted). The choice of * 1M <<  reflects the fact that wrinkling 

usually takes place much faster than solvent diffusion.  

To test our modeling, we consider sinusoidal wrinkling of the film bearing a 

uniform and constant actuation strain *
preαβ αβε ε δ= . The problem has been studied 

analytically, with the equilibrium wavelength cλ , critical buckling strain cε , and 

amplitude of out-of-plane displacement δ  given by [48] 

( )
( )

1/3
1

2 3 1
f sc

s f

v
h v

μλ
π μ

⎡ ⎤−
= ⎢ ⎥

−⎢ ⎥⎣ ⎦
,  ( )

2
1 2

4 1c
cf

h
v

πε
λ

⎛ ⎞
= ⎜ ⎟+ ⎝ ⎠

,   
1/ 2

1 .pre

ch
εδ
ε

⎛ ⎞
≅ −⎜ ⎟
⎝ ⎠

     (35) 

Setting 1c = , 0 preε ε= , 0 0ε ′ = , and * 0M = , we simulate the wrinkling 

phenomenon based on Eqs. (27) and (30). It is found that 0.0077cε =  and 

/ 31.6c hλ = , which are very close to the analytical predictions. As plotted in Figure 2, 

equilibrium amplitudes of sinusoidal wrinkles at compressive strains larger than cε  

are also obtained numerically and compared with the analytical results. The good 

agreement manifests the capability of the present model in the simulation of nonlinear 

wrinkles.  

 



 

12 
 

We then turn our attention to the case when the film is under inhomogeneous 

compression. Assume that a constant swelling strain preε  is prescribed within a 

circular domain of radius R  in the film. In this situation wrinkling can only initiate 

in the domain as preε  exceeds a critical value cε ′ , because outside that region the 

film is under tension. Figure 3 plots the simulated critical strain, cε ′ , for the confined 

wrinkling as a function of the reduced domain size, / cR R λ′ = . It is found that, for 

1R′ < , the critical strain cε ′  is significantly higher than that for the sinusoidal 

wrinkling, cε . The wrinkling patterns under various domain sizes at 0 3pre cε ε ε= =  

are shown in Figure 4. With the decrease of R′ , the pattern becomes severely 

confined, leading to a size-dependent morphology ranging from labyrinth form, 

checkerboard, to dimple structures. These simulated morphologies are very close to 

the observation in [19]. Usually, the shape of the compressive domain can be changed 

by solvent diffusion. Figure 5 illustrates wrinkling patterns as well as the strain 

distributions induced by uniform swelling strains given in a square or a rectangular 

domain in the film. We see that close to the boundary the maximum compression 

always appears in the direction parallel to the boundary, and the wrinkles tend to be 

aligned perpendicular to the direction of maximum compression. This may provide an 

explanation for experimental observations that the wrinkles tend to grow 

perpendicular to the diffusion front [22,27]. In addition, Figure 5 (c) also shows the 

formation of stripe wrinkle along y axis because in most part of the domain the 

maximum compression is along x axis, as marked red in Figure 5 (d). This 

demonstrates a shape-dependent wrinkle: a large aspect ratio of the diffusion domain 

promotes a uniaxial compression, and thus is favorable for the stripe wrinkle 

formation.  
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B. Formation of hexagonal wrinkling pattern 

Previous analysis indicates that a chessboard-like wrinkle will be formed when 

the film undergoes equal-biaxial homogeneous compression slightly above the critical 

value [47]. When the wrinkling is coupled to diffusion, however, a hexagonal pattern 

is observed at the value of /pre cε ε  just above unity [23, 25, 26]. In our simulation, 

checkerboard pattern is recovered as shown in Figure 6(a) when the input parameters 

0.4,c =  0 0.02,ε =  0 0.008pre cε ε= = , 0.0077cε = , 0 0ε ′ = , and * 0M =  are chosen 

so that the film is under homogeneous pre-compression slightly above the critical 

value. If, however, diffusion is allowed ( * 0.01M = ) and / 0.008 / 0.0077pre cε ε =  is 

fixed, the simulated wrinkling patterns in Figure 6(b)-(f) deviate significantly from 

the checkerboard. Figure 6(b) corresponds to vanishing eigencurvature (i.e. 0 / 0hε ′ = ) 

induced by solvent absorption is zero, and no hexagonal pattern is formed in this case. 

Figures 6(c)-(f) illustrate wrinkling patterns formed at eigencurvatures ranging from 

0 0.001ε ′ =  to 0.05. It is apparent that increasing positive eigencurvature promotes the 

formation of hexagonally arrayed islands. Similar wrinkling pattern of hexagonal 

order has been observed in [25, 26]. The concentration profiles corresponding to the 

diffusion-coupled wrinkles in Figure 6(a)-(f) with miscibility gap ( 2Ω > ) are plotted 

in Figure 7. We see that the wrinkles occur only in the concentration-rich area where 

the compressive stress exceeds the buckling threshold. The inhomogeneous 

distributions of concentration and out-of-plane displacement tend to be commensurate 

with each other to reach a low energy configuration. In particular, the eigencurvature 

induced by solvent diffusion is found to play an important role in the formation of 
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hexagonal wrinkle patterns. Figure 8 further demonstrates the result for a film with 

negative eigencurvature ( 0 0.05ε ′ = − ). Very close to the experimental observation [23] 

which is also shown in Figure 8(a), Fig. 8(b) reveals that the negative eigencurvature 

facilitates formation of a hexagonal dimple structure. Previous study indicates that, in 

absence of mass diffusion, the wrinkling pattern of the film evolves from chessboard 

to herringbone pattern with increasing equal-biaxial supercritical compression [45]. 

Nonetheless, recent experiments show that, if the compression is induced by solvent 

diffusion, the wrinkling pattern appears in the sequence from hexagonal order, to 

peanut structure, and finally to herringbone pattern with the increase of solvent 

absorption [25, 26]. Similar transitions of such wrinkling patterns are confirmed in 

Figure 9, where the simulated wrinkles and concentration profiles are visualized under 

different average solvent concentrations at 0 0.02ε = , and 0 0.02ε ′ = . When the 

average compression induced by solvent absorption is slightly above the buckling 

threshold, finite concentration fluctuation driven by diffusion leads to an 

inhomogeneous wrinkle in the diffusive domain with the compression exceeding a 

critical value, as shown in Figures 9(c) (f). If the average compression is significantly 

higher than the critical value, the diffusion-induced concentration fluctuation becomes 

less important because the wrinkle can almost occur everywhere. This is why the 

simulated wrinkling pattern in Figure 9(d) is very close to herringbone structure, 

although there is a finite concentration fluctuation due to diffusion.  

 

C. Cascade evolution of diffusion-controlled wrinkles 
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Before onset of buckling, the membrane strain in the film is determined by the 

solvent concentration. There exists thus a critical concentration cric  of solvent 

absorption, above which the membrane strain is larger than the critical buckling strain 

and the film wrinkles. In other words, whether the film is wrinkled or not can be 

tracked by probing concentration-dependent free energy of the film-substrate system. 

For sinusoidal wrinkling [48] mentioned before, the total free energy in Eq. (5) 

becomes 

( ) ( ) ( ){ }
( )

( )
( ) ( ) ( )22

1 ln 1 ln 1

2 1 1
,

21

tot

B

f f f
pre pre c pre c

f

F k T c c c c c c
hS

v v
H

v

μ
ε ε ε ε ε

= Λ Ω − + + − −⎡ ⎤⎣ ⎦

⎡ ⎤+ +
+ − − −⎢ ⎥

− ⎢ ⎥⎣ ⎦

        (36) 

where S  is the area of the film, 0pre cε ε= , cε  is the critical buckling strain defined 

in Eq. (35), and ( )pre cH ε ε−  is the Heaviside function. The flat configuration of the 

film possesses similar form of total energy as in Eq. (36), except the second term on 

the right side is replaced by ( ) ( )22 1 / 1f f pre fv vμ ε+ − . Figure 10 plots the variations 

of the total energies for the flat and wrinkled film configurations with solvent 

concentration. It is found that there are two concentration ranges, A and B, separated 

by a critical concentration cric . The value of cric  is determined by equating the total 

energy of the flat configuration to that of the sinusoidally wrinkled one:  

( )
( )
( )

2/3

0

3 11 .
14 1

s f
cri

f sf

v
c

vv

μ
με

⎡ ⎤−
= ⎢ ⎥

−+ ⎢ ⎥⎣ ⎦
                (37) 

In the range A, cric c< , the free energy of the flat configuration is lower than 

that of the wrinkled configuration. As a result, the system can reduce the free energy 

only by diffusion-controlled concentration separation, i.e. phase separation. After the 
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concentration in the solvent-rich area exceeds the critical concentration, cric , local 

wrinkling can develop. However, in the range B where cric c> , the film can 

spontaneously evolve into a wrinkled configuration without concentration changes. 

This is the first step of system equilibration to reduce the free energy. The second step 

can start by concentration separation in the wrinkled configuration. Such a step takes 

much longer time than the first one because it involves long-range diffusion. 

Therefore, we can see that the evolution process of the diffusion-coupled wrinkle has 

a cascade feature, analogous to the discussion of the transformation sequences in the 

cubic tetragonal decomposition [52-56]. There are two ranges of solvent 

concentration, within which the sequences of the wrinkling pattern formed are 

different. Figure 11 shows the evolution sequence of the wrinkling pattern and 

concentration profile in the range A, where the computing parameters are taken as 

0 0.015ε = , 0.0077cε = , 0 0ε ′ = , 0.51cric = , and 0.4c = . The evolution involves 

two stages. In the first one, diffusion-driven concentration separation occurs but the 

film remains flat. The second stage starts when a concentration-rich domain attains 

the critical size through growth and coarsening. The domain of sufficiently large size 

undergoes confined wrinkling transition as 0/cri cc c ε ε′ ′> = . cε ′  is a size-dependent 

critical wrinkling strain with c cε ε′ > and 0.51cri cric c c′> > =  (see the related result in 

Figure 3). This is confirmed by the simulation result in Figure 11, where the localized 

wrinkling occurs when the size of concentration-rich domain is above a critical value. 

Another evolution sequence of the wrinkling pattern and concentration profile in the 

range B with cric c>  is shown in Figure 12, where 0 0.05ε = , 0 0ε ′ = , 0.154cric = , 
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and 0.4c =  are taken. The system first evolves into a labyrinths wrinkle without 

concentration change. The wrinkle significantly influences the subsequent 

concentration separation, resulting in a concentration profile commensurate with the 

wrinkling morphology.  

 

IV DISCUSSIONS AND CONCLUSIONS 

In the current model, the coupling between solvent diffusion and wrinkling 

originates from heterogeneous actuation strain caused by solvent diffusion, similar to 

the case of thermal expansion. Driven by an osmotic pressure, the solvent absorption 

may be inhomogeneous along both the direction of film thickness and its lateral 

direction. The overall effect of any variation of the actuation strain induced by solvent 

absorption through the direction of film thickness can be always specified as 

eigenstrain, 
T
αβε , and eigencurvature, Tkαβ , on the middle plane [50]. 

( )

( )
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3 33 /2
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dx
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k x dx
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ε ε
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−

∗

−

=

=

∫

∫

x

x
                    (38) 

If the inhomogeneity of the solvent concentration along the direction of film thickness 

are small or symmetrically distributed across the middle plane, 0Tkαβ = . Otherwise, 

there is a nonzero Tkαβ . For a film with gradient elastic moduli on soft substrates, i. e. 

a confined hydrogel layer with gradient cross-linking density, the solvent 

concentration along the direction of film thickness increases with the decrease of the 

shear modulus in the film since the distribution of the solvent through the thickness is 

roughly determined by the balance between the osmotic pressure and the compressive 
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stress by solvent swelling in the film. Thus positive (negative) stiffness gradient along 

3x direction induces a negative (positive) Tkαβ . In the experiment [23], the solvent 

absorption in the film with increasing stiffness from bottom to top of the film is 

corresponding to producing a negative Tkαβ , while in the experiments [25,26], solvent 

diffusion occurs in the film with increasing stiffness from top to bottom of the film, 

and there is a positive Tkαβ . As we have shown in Figures 6 and 8, positive Tkαβ  

facilitates formation of the hexagonal island array and negative Tkαβ  favors the 

hexagonal dimple structure. The simulated results are consistent with the 

experimental observation [23,25,26]. Although it seems that the assumption made in 

Eq. (1) could capture the main feature that solvent diffusion creates spatio-temporal 

actuation strain and results in confined wrinkling instability comparable to 

experimental observations, the real situation between the swelling actuation strain and 

solvent concentration is much more complicated, and further quantitative study 

requires a nonlinear theory of coupled diffusion and finite swelling deformation in the 

film-substrate system, similar to the theory of polymeric gels [57,58].    

 

In summary, nonlinear wrinkling of a thin film on a soft elastic substrate with 

diffusive solvent is explored through numerical simulation based on a continuum 

model. The results indicate that the solvent diffusion affects the wrinkling process in 

the following ways: (1) The diffusion-controlled actuation strain can regulate the 

distribution of the membrane stress, leading to size- and shape-dependent wrinkles; (2) 

The interplay between diffusion and wrinkle processes gives rise to spatio-temporal 
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frustrations, where a rich variety of wrinkling patterns with nonuniform concentration, 

such as hexagonal order and peanut-shape structures, can be formed, especially when 

the diffusion-controlled compression is slightly above the critical buckling strain; (3) 

The diffusion-controlled wrinkling process has a cascade feature. We hope that our 

study may be useful for engineering optimal surface wrinkles through manipulation of 

the diffusion process. 
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Figure Captions 
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Figure 1 A sketch of surface wrinkle in a film-substrate system with inhomogeneous 

actuation strain (in-plane expansion T
αβε  and eigencurvature Tkαβ ) induced by solvent 

absorption, (a) a flat configuration, (b) a locally wrinkled configuration 
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Figure 2 The amplitudes of equilibrium sinusoidal wrinkle as a function of the 

reduced eigenstrain /pre cε ε  from numerical simulation and analytical solution 

 
 
 
 



 

25 
 

 
 
 
 
 
 

0 1 2 3 4 5 6
1.0

1.5

2.0

2.5

3.0
ε c′/ε

c

R/λc  

Figure 3 The critical confined wrinkling strain /c cε ε′  as a function of the reduced 

domain size, / cR λ  

 
 
 
 
 

R'=0.2 R'=0.6 R'=0.8 R'=1.0

R'=1.2 R'=1.5 R'=2 R'=3  
Figure 4 The simulated wrinkling pattern as a function of the reduced diffusive 

domain size, / cR R λ′ =  under 0 3 cε ε= , 0 0ε ′ =  at 410t′ = , the black to white 

color mapping the value of w  from negative to positive. 
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Figure 5 (Color online) Simulated shape-dependent wrinkling pattern at 410t′ =  in (a) 

a square domain 3 cL λ= long, (c) a rectangular domain with 3 , 1.2x c y cL Lλ λ= = ; 

(b),(d) visualize the corresponding profile of the reduced ( ) /xx yy sσ σ μ−  in the 

domains before the onset of wrinkling respectively, with the blue to red color 

mapping its value from negative to positive.  

 

(a) (b) (c)

(d) (e) (f)  
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Figure 6 Simulated wrinkling patterns in the film obtained at 410t′ = for all cases 

with 0 00.4, 0.02c ε= =  and with additional parameters (a) * 0M = , 0 0ε ′ =  

(b) 0 0ε ′ = , (c) 0 0.001ε ′ = ,(d) 0 0.005ε ′ = ,(e) 0 0.01ε ′ = , (f) 0 0.05ε ′ = . 

 
 

(a) (b) (c)

(d) (e) (f)  

Figure 7 (a)-(f) are the corresponding simulated concentration profiles of the cases in 

Figure 6 (a)-(f) respectively. 

 

Figure 8 (Color online) Comparison between the observed wrinkling pattern in [23] 

with the simulated dimple pattern under the parameters, 0 0.4c = , 0 0.02ε = , and 

0 0.05ε ′ = − .  
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(a) (b) (c)

(d) (e) (f)  

Figure 9 Simulated patterns of surface wrinkles and concentration profiles in the film 

with different levels of solvent absorption. The top and bottom rows indicate the 

profiles of the out-of-plane displacement and the concentration at 

32 10t′ = × , 0 0.03ε = , 0 0.02ε ′ =  under (a) 0.95c =  (b) 0.6c =  (c) 0.4c = , 

respectively.  
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Figure 10 Typical total energy curves as a function of solvent concentration for the 

flat and sinusoidally wrinkled configuration in the film-substrate system. 

 
 
 
 
 
 

time  

Figure 11 Evolution sequence of the wrinkling pattern (top row) and concentration 

profile (bottom row) in mode A under the parameters 0.4c = , 0 0.015ε = , and 

0 0ε ′ = .  

time  

Figure 12 Evolution sequence of the wrinkling pattern (top row) and concentration 

profile (bottom row) in mode B with the parameters, 0.4c = , 0 0.05ε = , and 0 0ε ′ = .  


