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In this Comment, we reveal the falsehood of the claim that the lattice Bhatnagar-Gross-Krook
(BGK) model “is capable of modeling shear-driven, pressure-driven, and mixed shear-pressure-driven

rarified [sic] flows and heat transfer up to Kn = 1 in the transitional regime” made in a recent paper
[1]. In particular, we demonstrate that the so-called “Knudsen effects” described in [1] are merely
numerical artifacts of the lattice BGK model and they are unphysical. Specifically, we show that the
erroneous results for the pressure-driven flow in a microchannel in [1] imply the false and unphysical
condition that 6σKn < −1, where Kn is the Knudsen number, σ = (2− σv)/σv , and σv ∈ (0, 1] is
the tangential momentum accommodation coefficient. We also show explicitly that the defects of
the lattice BGK model can be completely removed by using the multiple-relaxation-time collision
model.
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In a recent paper [1], Ghazanfarian and Abbassi (GA hereafter) use the energy conserving lattice Boltzmann equa-
tion (LBE) with two sets of distribution functions to simulate “gaseous flow and heat transfer in planar microchannel

and nanochannel with different wall temperatures in transitional regime 0.1 ≤ Kn ≤ 1.” The paper includes four
test cases in two dimensions (2D): (a) the Fourier flow, (b) the Couette flow, (c) the Poiseuille flow, and (d) mixed
shear-pressure-driven flow in the developing and fully developed regions. Based on their numerical results, the authors
conclude that the lattice Boltzmann (LB) method they employed “is capable of modeling shear-driven, pressure-driven,

and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn = 1 in the transitional regime.” In
this comment, we would like point out that the results presented by GA in the paper [1] are erroneous and the above
claim is false.
Both the LB model and the flows studied by GA [1] are well understood. The lattice Boltzmann model used by

GA is the lattice Bhatnagar-Gross-Krook (BGK) equation with the so-called “diffuse scattering” boundary conditions
(DSBCs) [2]. By using a second-order Taylor expansion of the Maxwellian equilibrium distribution in the flow velocity
u (cf. Eq. (3) in [1]), the LB model used by GA is a solver for near incompressible Navier-Stokes equations. That
is, in principle the LB model is incapable of solving the Boltzmann equation, which is required for flows in the
transitional flow regime with the Knudsen number Kn ∼ 1. The reasons are obvious. First, under the diffusive scaling
δt ∼ δ2x ∼ ε2 [3–5], the LBE with a fixed set of discrete velocities tied to the underlying lattice, however large that
may be, converges to the following equation [4]:

∂tfi +
1

ε
ξi ·∇fi =

1

ε2
Ji, (1)

which is different from the Boltzmann equation. Moreover, the LBE solves the pressure p and the velocity u with
first-order and second-order spatial accuracy, respectively, and first-order temporal accuracy [4]. That is, the LBE
so formulated cannot solve the evolution equations of the moments of the distribution function f beyond the second
order in ε — it is inherently a second-order Navier-Stokes solver and not a solver for kinetic equations. In addition,
the LBE lacks the necessary symmetries required by the higher-order tensorial moments as a direct consequence of
its discrete nature, unless a large number of discrete velocities are used [6]. This limits the validity of the LBE to
the slip-flow regime at best but not beyond. While the lattice Boltzmann equation in general, as formulated in [1],
is bounded by the aforementioned limitations, regardless of specifics in its collision model or implementations, there
are additional defects which are specifically inherent to the lattice BGK model used by GA [1] and others [7], and it
is these defects that lead to the erroneous results of GA [1], which will be discussed in detail in this Comment.
The “diffuse scattering” boundary conditions used by GA can be recast as combinations of the bounce-back (BB)

and specular-reflective (SR) boundary conditions (BCs) [8]. For athermal (or isothermal, as referred by GA) flows, the
lattice BGK (LBGK) model with various BCs can be solved analytically for the Poiseuille flow when the streamwise
direction aligns with the lattice line and the flow is driven by a constant body force [8–13]. It is well understood
that the LBGK model with the bounce-back type of boundary conditions, including the DSBCs, is inaccurate to deal
with the Dirichlet boundary condition. Specifically, the precise locations where the Dirichlet boundary condition is
satisfied depend on the relaxation parameter τ in the LBGK model [8–14]. Consequently, the effective channel width
H also depends on τ . In particular, this defect of the LBGK model with the bounce-back type of BCs has been
studied in detail analytically and numerically for the microchannel flow [8] and other cases [13–15]. It has been shown
repeatedly [8, 16, 17] that the results of the 2D microchannel flow obtained by using the LBGK with the bounce-back
type of BCs are indeed erroneous not only quantitatively, but also qualitatively, as attested by the results of GA [1],
which will be further dissected later in this Comment.
The flow through a long microchannel in 2D has been studied extensively [18–23]. The analytic solution of the

compressible isothermal flow through a long microchannel in 2D can be obtained by solving the steady, isothermal
compressible Navier-Stokes equations in 2D perturbatively. The small parameter ε := H/L ≪ 1 is the aspect ratio
of the channel height H and the channel length L (cf. e.g., [18]). The dimensionless parameters in the flow are the
Reynolds number Re, the Mach number Ma and the Knudsen number Kn, all defined by the outlet flow conditions:

Re :=
ρoutUoutH

µ
,

Ma :=
Uout√
γRT

,

Kn =

√

πγ

2

Ma

Re
=

√

πRT

2

µ

Hpout

,

where ρout and Uout are the averaged density and the averaged streamwise velocity at the channel outlet, µ is the
dynamic viscosity, γ is the heat capacity ratio, and R and T are the gas constant and temperature, respectively.
The equation of state for an ideal gas, p = ρRT , is also used in the analysis. It must be emphasized that the above
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relationship between Kn, Ma, and Re is basically the von Kármán relationship based on the Navier-Stokes equation,
which implies that Kn must be small, i.e., Kn = O(ε), ε ≪ 1, and Re = O(εα), α ≥ 0, thus Ma = O(ε1+α).
The compressible Navier-Stokes equations are analyzed with the following boundary conditions. At the walls, the

spanwise velocity v vanishes and the streamwise velocity u is governed by a first-order slip velocity model [24]:

u|wall = σKnH∂yu|wall , σ :=
(2− σv)

σv
, (2)

where σv ∈ (0, 1] is the tangential momentum accommodation coefficient, which is assumed to be 1 here (hence
σ = 1). The averaged pressures at the inlet and outlet are pin and pout, respectively. In the leading orders of ε, the
solutions for the pressure p(x) along the channel center line, the streamwise velocity u(y), and the spanwise velocity
v(y) are:

p(x) =
[

a2 + (1 + 2a)x+ ϑ(ϑ+ 2a)(1− x)
]1/2 − a , (3a)

u(x, y) = − εRe

8γMa2
p′
(

1− 4y2 + 4σ
Kn

p

)

, (3b)

v(x, y) = − ε2Re

8γMa2
1

p

[

1

2
(p2)′′

(

1− 3

4
y

)

+ 4σKnp′′
]

y , (3c)

where p is normalized by pout, both u and v are normalized by Uout, x and y are normalized by L and H , respectively.
Hence x ∈ [0, 1] and y ∈ [−1/2, +1/2]; p′ := dp/dx, p′′ := d2p/dx2, ϑ := pin/pout > 1, and a := 6σKn > 0. Clearly,
the pressure p(x), which is of O(1), deviates from the solution of the incompressible Navier-Stokes equation, which
is a straight line, i.e., p0 := ϑ − (ϑ − 1)x. The streamwise velocity u, which is of O(ε), is predominantly a parabola
with a slip velocity linearly proportional to Kn. The spanwise velocity v, which is of O(ε2), is antisymmetric about
the channel center line y = 0. In most papers, if not all, which use the LBGK model to simulate the microchannel
flow, only u(y) and p(x) are shown, but rarely v(y) (cf. [7, 8] and refs. therein); few demonstrate the convergence of
the results as the mesh resolution N is increased, with fixed Re, Ma, and Kn.
The deviation of p(x) from its (normalized) incompressible counterpart p0(x) = ϑ− (ϑ− 1)x is

δp(x) :=
[

a2 + (1 + 2a)x+ ϑ(ϑ+ 2a)(1− x)
]1/2 − (a+ ϑ) + (ϑ− 1)x , (4)

and the gradient of δp(x) is

δp′(x) =
(1 + 2a)− ϑ(ϑ+ 2a)

2 [a2 + (1 + 2a)x+ ϑ(ϑ+ 2a)(1− x)]1/2
+ (ϑ− 1) . (5)

By solving the equation of δp′(x) = 0, i.e.,

(1 + a)2 − (ϑ+ a)2 = 2(1− ϑ)
[

a2 + (1 + 2a)x+ ϑ(ϑ+ 2a)(1− x)
]1/2

, (6)

we see that δp(x) has a unique maximum located at

xc =
1

2
+

(ϑ− 1)

4(ϑ+ 2a+ 1)
, (7)

and 1/2 < xc < 3/4 for 1 < ϑ < ∞. Because

δp′(0) =
(ϑ− 1)2

2(ϑ+ a)
> 0 , (8a)

δp′(1) = − (ϑ− 1)2

2(1 + a)
< 0 , (8b)

therefore δp(x) is positive and convex in the interval 0 ≤ x ≤ 1. This has been confirmed by experiments [25–27],
direct Monte Carlo simulations (DSMC) [16], and the MRT-LB scheme [8].
The MRT-LBmodel with various BCs can be solved analytically for the Poiseuille flow [8], which is a perfect parabola

linearly superposed with a slip velocity at the boundary depending on specifics of particle-boundary interactions. With
the DSBCs, the slip velocity Us measured at the δx/2 beyond the last fluid nodes is [8]:

Us =
Gδt
4

[(

1

sq
− 8− sν

2− sν

)

+ 6Ny

]

, (9)



4

where G is the constant acceleration, Ny is the number of grid points across the channel, and sν and sq are the
relaxation rates of the shear-stress and the energy-flux moments [28]. For LBGK model, sν = sq = 1/τ , thus

Us =
Gδt
4

[(

τ − 8τ − 1

2τ − 1

)

+ 6Ny

]

. (10)

With G = 8νUm/H
2, H = Nyδx, ν = c2s(τ − 1/2)δt, Re = UmH/ν, and Ma = Um/cs, Eq. (10) can be re-written as

Us

Um

= 2

(

Ma

Re

)2 [

1 +
6Ny(2τ − 1)− 5τ

(2τ − 1)2

]

. (11)

In the LB simulations, both Re and Ma remain as constants, and so does Kn. As the resolution Ny increases, so does
τ , in order to maintain a constant Re. Consequently the slip velocity Us depends on both τ and Ny. This shows that
the slip velocity obtained by the LBGK model is indeed a numerical artifact.
In contrast, for the MRT-LBE with the bounce-back-diffusive (BBD) boundary conditions, the slip velocity is [8]:

Us =
Gδt
4

[(

1

sq
− 8− sν

2− sν

)

+ 6Ny
(1− β)

(1 + β)

]

, (12)

where 0 ≤ β ≤ 1, and β = 1 and 0 correspond to the bounce-back and diffusive boundary conditions, respectively.
First and foremost, the MRT model allows the freedom to set sq = 8(2− sν)/(8− sν), so that the first term in Us of
Eq. (12) vanishes exactly. Second, by setting

β =
3µ−KnHcρ̄out

3µ+KnHcρ̄out

, (13)

where c := δx/δt, one has

Us =
ReKnH

3δtUout

, (14)

which depends only on Kn and other relevant physical parameters [8]. The above result proves that the MRT model
is imperative to obtain accurate and convergent results in slip-flow regime [8, 29], because the LBE requires two
independent relaxation rates to attain the consistent solution for the Poiseuille flow. We note that the LBGK models
are only special cases of their MRT counterparts and that the implementation of the MRT models is just as simple
as their LBGK counterparts. Thus, there is no reason not to use the MRT models.
As clearly exhibited in Fig. 6 of GA [1], when Kn = 1.0, δp(x) becomes negative and concave with δp′(0) < 0 and

δp′(1) > 0, which is physically impossible, because that implies a = 6σKn < −ϑ < −1 (cf. Eqs. (8)). In fact, δp(x)
already becomes unphysical when Kn = 0.8, where δp′(1) > 0, which implies 6σKn < −1. Because ϑ := pin/pout > 1,
the defective symptom of δp′(1) > 0 (or equivalently 6σKn < −1) always appears first as Kn increases, as seen in [1]
and a similar previous work [30].
Some comments are in order at this point. First, in principle simple slip-velocity models are invalid in the transitional

flow region [31]. The LBGK model with the DSBCs used by GA implicitly assumes a slip-velocity model, which by
definition is only valid for slip flows with small Knudsen number [31]. To accurately approximate flows in the
transitional flow region, more sophisticated models are necessary [31]. Second, it is impossible for the LBE to resolve
the Knudsen layer, because it is a Navier-Stokes solver. The LB solution is the exact linear superposition of a perfect

parabola, i.e., the solution of the incompressible Navier-Stokes equation, and a slip velocity at the channel walls [8],
which is inconsistent with the Boltzmann solution in general (cf., e.g., Fig. 9-1 in [32]). Finally, we notice that a vast
portion of the streamwise velocity profile u(y) can be well approximated by a parabola, and this observation has been
exploited to justify the claim that the LBGK model is capable of modeling rarefied flows in transitional flow regime
with Kn ∼ 1 (cf. [1, 7] and refs. therein), in spite of its fatal defects noted in the literature [8, 14, 16, 17].
Our comments can be summarized as the following. First, for the Poiseuille flow with a constant body force, we

can prove that the LBGK scheme with bounce-back type of boundary conditions, including the DSBCs used by GA
[1], cannot yield the correct solution [8]. For the most part, the slip velocity obtained by using the LBGK model is
a numerical artifact depending on both the relaxation parameter τ and the resolution Ny. Second, for the pressure
driven compressible flow in a long channel, the LBGK scheme used by GA [1] yields qualitatively unphysical results
in the transitional flow regime with Kn ∼ 1. In both cases, we demonstrate that the MRT-LB model is imperative to
obtain correct results [8]. The so-called “Knudsen effects” observed by GA [1] are merely numerical artifacts of the
LBGK model or unphysical at times. The claim by GA that the LBGK model “is capable of modeling shear-driven,
pressure-driven, and mixed shear-pressure-driven rarified [sic] flows and heat transfer up to Kn = 1 in the transitional
regime” is clearly false.
The author would like to acknowledge the support from the National Science Foundation of the US through the

Grant DMS-0807983. The author is also grateful to Mr. John Gounley for editorial assistance.
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