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Abstract

We describe a new method for performing isothermal-isobaric Monte Carlo simulations of crys-

talline solids. This new method uses thermodynamics to estimate appropriate scaling of coordinates

relative to their nominal lattice sites in order to increase the probability of acceptance of volume

changes. We test this coordinate scaling with three systems: hard spheres; Lennard-Jones spheres;

and hard dumbbells. In all cases, we find that the move allows for both a larger step size and faster

convergence of calculated properties, in comparison to the conventional algorithm. The improve-

ment is more dramatic for hard potentials, where compressing the system naively (even a small

amount) will almost always cause an overlap.
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I. INTRODUCTION

Molecular simulation of model systems at constant pressure has long been studied via

Metropolis Monte Carlo simulations using the algorithm developed by McDonald [1]. The

algorithm has been applied to fluids and solids for various models [2–4], and it is also required

when used in connection to phase-equilibrium calculations such as the Gibbs ensemble [5],

Gibbs-Duhem integration [6, 7], and the NPT+test particle method [8]. A variation of the

method important in application to solid phases is the allowance of changes in box shape

(first developed by Parrinello for molecular dynamics [9]), which may be needed to relieve

shear stresses in the crystal [4, 10]. NPT Monte Carlo methods have also been used in

searching for stable crystal structures[11] and finding densest packing of polyhedra[12, 13].

Apart from these extensions and applications, the basic approach has not changed much

from its initial implementation, notwithstanding an occasional prescription to take steps in

lnV instead of the volume V itself [14], and perhaps the use of a virial bias [15].

An unfortunate side-effect of the volume changes proposed during the NPT Monte Carlo

simulations is that the configuration encountered after a trial volume change tends to be far

from typical for the new volume. When attempting to decrease the volume, molecules tend

to end up too close to one another, and conversely after a volume increase they tend to be too

far apart. The net effect is that trial volume changes must be relatively small, or be rarely

accepted. However, the nature of solids, specifically the existence of a nominal position

for each atom (or nominal values for molecular coordinates in multi-atomic molecules),

provides some guidance on how to transform the molecular coordinates during a volume

scaling. By scaling the atom coordinates back toward the lattice site upon compression we

can put the system in a configuration that is more appropriate for the higher density, and

thereby increase the likelihood of accepting the move. What remains is then to determine

the appropriate amount of coordinate scaling when changing the volume.

The approach we take to this question is to assume that the total change in phase-space

volume associated with the volume perturbation can be equally distributed among the molec-

ular degrees of freedom, each defined with respect to a perfect lattice. To determine the

change in phase-space volume, we relate it back to the partition function and use thermo-

dynamics to express how the partition function changes with volume, in terms of the lattice

energy and pressure. Although the method is formulated using an assumption about the
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connection between phase-space volume and molecular degrees of freedom, the algorithm is

rigorous because the Monte Carlo acceptance criteria accounts for any deviation from those

assumptions.

The remainder of this paper is divided into three sections. In Section II, we describe the

thermodynamics that allows us to relate the pressure to the coordinate scaling and how these

relate to proposed Monte Carlo trials and acceptance criteria. In Section III we describe

the results of applying this Monte Carlo move in isothermal-isobaric simulations of hard

spheres, Lennard-Jones spheres and hard dumbbells. Finally, in Section IV, we end with

some conclusions.

II. FORMALISM AND METHOD

A. Monte Carlo Trial

In order to improve the coordinate scaling using in a volume-change trial, we first consider

how the volume of phase space accessed by the system, Θ, depends on the system volume,

V . We define phase-space volume to be the integral,

Θ ≡ 1

ΛDN

∫

e−β(U−Ulat)drN (1)

where U is the configurational energy, Ulat is the lattice energy, Λ is the de Broglie wave-

length, N is the number of molecules, and D is the spatial dimension. We use coordinates r

that are each defined with respect to a nominal position on a perfect lattice, and with each

integrating over V .

We can relate the phase-space volume directly to the canonical-ensemble partition func-

tion, Q,

Θ = Q/e−βUlat . (2)

The volume dependence of the partition function is known in terms of the pressure,

P = kT

(

∂lnQ

∂V

)

N,T

(3)
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We are interested only in the small perturbations in volume that are attempted in Monte

Carlo trials, and for such small changes we can ignore variation of the pressure when inte-

grating Eq. 3, to yield

βPV + C = lnQ, (4)

where β = 1/kT and C is a constant of integration. Rearranging, we can identify the general

dependence of Q on volume

Q ∝ eβPV . (5)

We can now substitute back into Eq. 2, yielding

Θ ∝ eβ(PV+Ulat). (6)

From this expression we can estimate the change in the phase-space volume resulting

from a volume-change Monte Carlo trial. We consider Θ to be composed of contributions

from D center-of-mass (COM) motions (ΘCOM = V ) and ND−D motions with fixed center

of mass. We can then write

Θfixed =
1

V
Θ (7)

We assume that the change in Θfixed is distributed equally to the ND − D configuration-

space dimensions, meaning that the range of values sampled by a coordinate at the new

V is increased or decreased in proportion to (Θfixed,new/Θfixed,old)
1/(ND−D). This can be

recognized by introducing a reduced coordinate, s, in terms of the deviation from the lattice

site, r, normalized by Θ
1/(ND−D)
fixed ,

r =

(

1

V
eβ(PV+Ulat)

)1/(ND−D)

s, (8)

and performing volume-change trials keeping all s unchanged.

In this context we should mention that the placement of the lattice sites proceeds from

specification of the volume, and thus the lattice expands and contracts in proportion to V ,

independent of any issues of scaling of r.

We note that this same prescription (Eq. 8) could be arrived at by appeal to any number

of non-interacting cell models (e.g. Einstein crystal). The approach we have used here is
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simply based on the degrees of freedom, and assumes that changes to the phase-space volume

are distributed equally to all of them. Arguably, this is more general than a derivation based

on a specific cell model. If there is reason to expect significant disparity in the scaling of

different degrees of freedom, it might be worthwhile to modify the approach to reflect this

behavior.

Within an NPT simulation, we can take P to be the set pressure. While this value

will not provide the optimal scaling for some densities seen within an NPT simulation, it

provides a good estimate in the absence of other information. The lattice energy must be

computed for each density, but can be computed easily for power-law pair potentials and

interpolated between precomputed values for other potentials.

B. Monte Carlo Acceptance Criteria

The probability density in the isothermal-isobaric (NPT ) ensemble is (for fixed COM)

π
(

V, rN
)

=
1

∆
e−βU(rN )−βPV δ(Σr), (9)

where ∆ is a normalization constant, and δ is the Dirac delta function which enforces the

COM constraint. In the conventional approach to conducting Monte Carlo simulations in the

NPT ensemble, the coordinates are scaled by the simulation box length L = V 1/3 (assuming

a cubic box), which can be interpreted as defining the ensemble in terms of the coordinates

V and σ, such that r = σL. Moreover it is sometimes decided to use lnV rather than V as

the volume variable. In terms of these quantities, the probability density is

π
(

lnV,σN
)

=
1

∆
e−βU(σN ,V )−βPV V Nδ(Σσ). (10)

where we have used δ(Σr) = 1
V
δ(Σσ). Then in the Metropolis algorithm sampling on these

variables, the acceptance probability for a change from V old to V new is

pacc = min [1, χ] , (11)

where

χ = exp
[

−β(∆U + P∆V ) +N ln(V new/V old)
]

, (12)
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and ∆ here indicates the change in the quantity from the old to the new configuration.

In the context of the new Monte Carlo trial, we scale r in terms of s as defined in Eq. 8;

the new limiting distribution is

π
(

lnV, sN
)

=
1

∆
e−βU(sN ,V )−βPV

(

(

1

V
eβ(PV+Ulat(V ))

)1/(ND−D)
)(ND−D)

V δ(Σs)

=
1

∆
e−βU(sN ,V )−βPV eβ(PV+Ulat(V ))δ(Σs)

=
1

∆
e−β(U(sN ,V )−Ulat(V ))δ(Σs). (13)

Accordingly, the acceptance parameter in Eq. 11 for a Monte Carlo volume trial is

χ = e−β(∆U−∆Ulat). (14)

Remarkably, pressure no longer enters in the acceptance decision, as its influence has been

made in the rescaling of the coordinates. Additionally, for any athermal potential, we will

be able to accept any trial that would not cause any overlap.

To summarize, a volume-change move in the proposed algorithm proceeds as follows:

1. A trial value of V is selected as lnVnew = lnVold + q(δ lnV )max, where q is a ran-

dom value selected uniformly on (−1, 1), and (δ lnV )max is tuned to achieve a target

acceptance rate, typically 50%.

2. All lattice-site positions r0 are scaled from their current values as done in a conventional

NPT algorithm, i.e. ri,0,new = ri,0,old (Vnew/Vold)
1/D; the corresponding change in the

lattice energy is ∆Ulat.

3. All distances r from the lattice sites (as given in the pre-trial configuration) are scaled

as indicated by Eq. 8, so ri,new = ri,old

(

Vold

Vnew
eβ(P∆V+∆Ulat)

)1/(ND−D)

.

4. Each molecule i is placed in a new position, ri,0,new+ ri,new; the change in the configu-

rational energy ∆U from the original to the this new trial configuration is computed.

5. The new volume is accepted with probability given by Eqs. 11 and 14.
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C. Simulation Details

We have tested the volume change move in three systems. First, we consider an fcc

system of hard spheres. Second, we consider an fcc system of Lennard-Jones spheres to test

applicability to soft vs. hard potentials. Finally, we consider hard dumbbell close-packed

structures[16–19] in order to test the move’s ability to handle orientation as an additional

degree of freedom when scaling coordinates.

For the system of hard spheres (of diameter σ), we consider a system size of N = 256.

We performed NPT simulations using either the conventional volume change move or the

new volume change move, all at a pressure Pσ3/kT = 23.3, which yields a density close to

ρσ3 = 1.2. Atomic displacement moves were chosen with N times greater likelihood than

volume changes. In order to keep the center of mass fixed, we moved two atoms (chosen

randomly) with each atomic displacement, applying the opposite translation to the second

molecule. To better understand the behavior of the volume changes, we have also performed

NV T simulations at densities (ρσ3) ranging from 1.15 to 1.25 at intervals of 0.01. During

the NV T simulations, we monitored the mean squared displacement of atoms from their

lattice sites as well as the maximum amount of compression that could applied to the system

(with a traditional volume change move) without causing overlap.

For the system of Lennard-Jones spheres (with size and energy parameters σ and ǫ,

respectively), we considered a system of size N = 500 with potential interactions calculated

using neighbor lists truncated at rc = 0.46L. The neighbor lists are constructed at the

beginning of the simulation and are not updated during the simulation (no diffusion occurs).

No other truncation of the potential is applied (the potential is calculated for atom pairs

that are neighbors and not calculated for atom pairs that are not neighbors, regardless of

separation distance). We have used a long-range correction equal to Ulat−Ulat,rc , where Ulat

is

Ulat/ǫN = c2(ρσ
3)2 + c4(ρσ

3)4 (15)

with c2 = −14.45392093 and c4 = 6.065940096 [20]. For the purpose of the Ulat,rc , we

use Eq. 15 again, but with constants refit for the truncated potential, c2 = −14.29850064

and c4 = 6.065922568. We conducted the NPT simulation at kT/ǫ = 1.0 and a pressure

Pσ3/ǫ = 20.4, which yields a density close to 1.2. We performed additionalNV T simulations
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at densities from 1.15 to 1.25 to measure the mean squared displacement of atoms from their

lattice sites.

The third system we have considered is a hard dumbbell crystal (each molecule formed

as two hard spheres of diameter σ and separated by a rigid bondlength ℓ), which can adopt

various periodic and aperiodic structures, depending on the packing of the atomic layers

(fcc vs. hcp) and the orientations of the dumbbells. Vega et al. found that the various

close-packed ordered structures had indistinguishable properties [16], and so for this study

we have chosen to examine the so called CP2 structure, which has the dumbbell atoms

arranged ABAB hexagonal layers and all dumbbells having the same orientation. The unit

cell is defined by vectors a, b and c where the atomic hexagonal layers exist in the a-b plane

and ‖a‖ =
√
3‖b‖, while cx/σ = ((ℓ/σ)2 − 1)/

√
3 and cz/σ = (ℓ/σ)

√

1− (ℓ/σ)2/3 +
√

2
3
.

We have set the bond length to ℓ/σ = 0.6 and have conducted simulations of 144 dumbbells

at Pd3/kT = 45, where d is the diameter of a sphere having a volume equal to the dimer

(d/σ = 1.792 for ℓ/σ = 0.6) and also Pd3/kT = 100. At the close-packed density, the

molecules lie in the xz plane with an angle of θ0 = sin−1(ℓ/3σ) from the z axis, pointing

toward the positive x direction. We have employed two rotation moves, one that varies the

angle from the z axis, taking steps in cos θ. The second move changes the second angle, φ,

defined as the angle of rotation around the z axis from the nominal orientation, by rotating

the molecule around the z axis with a step size proportional to sin θ.

We have found that the molecules within a plane can rotate together such that φ averaged

within the plane is some multiple of 60◦. These rotations correspond to planar defects which

would be unstable in a bulk crystal. Accordingly, we prevent the molecules in a plane from

rotating together by adopting a constraint that prevents the value of φ averaged within a

plane from exceeding 30◦.

We perform three types of moves related to the size and shape of the simulation box

during the simulation of the hard dumbbells. First, we use an isotropic volume change that

takes steps in lnV . In order to allow the box shape to change, we have also included a move

that takes a step in ln ‖a‖ which is also applied to ln ‖b‖ so that the ratio ‖a‖/‖b‖ remains

fixed; ‖c‖ is also adjusted so that the volume is constant. In the third move, steps in ln cx

are taken in order to allow the box angle to vary without changing the volume. When using

the “improved” scaling in the moves, we apply the scaling to both translation and rotation

in the isotropic move (now distributing the scaling to N(D+2)−D degrees of freedom). For
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rotation, we apply the scaling to cos θ and φ/ sin θ. For the shape-change moves, we do not

apply any scaling. While we might apply scaling for the the first shape-change move based

on its tendency to decrease vibrations in one dimension while increasing them in another

direction, thermodynamics does not provide the type of guidance we have for the isotropic

move. Additionally, several different approaches to perform the scaling did not significantly

increase the step size and the fluctutation of ‖a‖/‖c‖ is relatively small.

For all systems, we have conducted simulations of 109 steps, taking data every N steps,

grouping the data into 100 blocks for error analysis. We have optimized the Monte Carlo

move maximum step sizes so that 50% of the trials are accepted.

III. RESULTS AND DISCUSSION

A. Hard Spheres

The results of NPT simulations of hard spheres at a pressure, Pσ3/kT = 23.3 are

reported in Table I. The density from the two approaches agree within uncertainty limits,

with the uncertainty limit from the simulation using the conventional Monte Carlo move

being about 30 times larger. This is partly explained by the difference in Monte Carlo step

sizes (in terms of lnV ) used for each move. The step size for the move using coordinate

scaling was 38 times larger than the step size for the conventional move, and more than

two times larger than even the standard deviation of lnV , σV /V . This indicates that the

move is able to easily jump within the full range of volumes appropriate for the set pressure.

The step size for the standard move was much smaller because every configuration tends to

have at least one pair of atoms that are very close. The system can be compressed only a

small amount before those atoms would overlap. We have also examined a larger system of

N = 864 atoms and find that the performance of the standard move decreases considerably,

with the uncertainty of the density more than doubling. The uncertainty obtained using

the improved move also increases but only marginally. Finally, we also consider a system at

Pσ3/kT = 47.6 with N = 256, which yields ρσ3 ≈ 1.3. We find that the improved move’s

uncertainty is 34 times lower than the standard move, which is slightly higher than the ratio

of uncertainties obtained for the lower pressure.

Although the larger step size of the new move helps to improve the precision of the
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TABLE I. Results from NPT simulation of hard spheres

Standard move Improved move

N = 256, Pσ3/kT = 23.3
〈

ρσ3
〉

1.1997(3) 1.200042(11)

max step size 0.000336 0.0127

σV /V 0.00547 0.00549

N = 864, Pσ3/kT = 23.3
〈

ρσ3
〉

1.2004(7) 1.199641(12)

max step size 0.000100 0.00538

σV /V 0.00323 0.00300

N = 256, Pσ3/kT = 47.6
〈

ρσ3
〉

1.30015(18) 1.299894(5)

max step size 0.000175 0.00803

σV /V 0.00292 0.00288

average density measurement, it does not fully explain the improvement. The remaining

difference is then due to longer correlation time within the simulation using the traditional

move. To better understand this, we have conducted NV T simulations, examining the

root-mean-squared distance of atoms from their lattice sites, d.

d =
〈

(r− r0)
2〉1/2 (16)

In Figure 1, we present d(ρσ3)/d(ρσ3 = 1.2) vs. ρσ3. We also consider starting from ρσ3 =

1.2 and proposing a Monte Carlo volume change trial and plot the value of d(ρnewσ
3)/d(ρσ3 =

1.2) using both the standard and improved scaling. While the standard deviation of the

density is only 0.0066, we have extended the range of the x axis to illustrate the performance

of the scaling even out to relatively large fluctuations in the volume. The standard scaling is

described by d(ρσ3)/d(ρ0σ
3) = (ρ0σ

3/ρσ3)1/3 while the improved scaling is described by Eq.

8. We can see that the standard scaling provides only a small fraction of the total amount of

scaling that is needed to arrive in a configuration with the atoms at an appropriate distance

from the lattice sites. Once a move is accepted, many steps of displacement moves must occur
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1.17 1.18 1.19 1.20 1.21 1.22 1.23

ρσ3

0.8

0.9

1.0

1.1

1.2

d(
ρσ

3 )/
d(

ρσ
3 =

1.
2)

standard scaling

measured

improved
scaling

FIG. 1. Normalized root-mean-squared (rms) deviation of atoms from their lattice sites as a

function of density for a system of hard spheres. The solid curve corresponds to the measured rms

deviation at different densities, while the dashed and dotted-dashed curves show the rms deviation

expected to result from scaling of the displacements from those encountered at a density of 1.2, as

prescribed by standard and improved move, respectively.

before the configuration can reach a configuration with typical atomic displacements. On

the other hand, the improved scaling results in configurations with much more appropriate

amount of scaling of the atoms from their lattice sites. The result is that the improved move

puts atoms at distances appropriate for the new density and additional re-equilibration is

unnecessary.

B. Lennard-Jones Spheres

The results of NPT simulations of Lennard-Jones spheres at a pressure, Pσ3/ǫ = 19.9 are

reported in Table II. The density from the two approaches agree within uncertainty limits,

with the improvement in uncertainty limit being 68%. While still a substantial improvement,

this is much less than what we found for hard spheres. Likewise, the Monte Carlo step size

(in terms of lnV ) used in the improved volume change was only 10% larger than the step

size used for the standard move; both step sizes are nearly 3 times larger than the standard

deviation in lnV .

We have again measured the deviation of the atoms from their lattices sites and present

this plotted against density in Fig 2. As in Fig 1, we have added curves for the scaling
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TABLE II. Result from NPT simulation of 500 Lennard-Jones spheres at Pσ3/ǫ = 19.9

Standard move Improved move
〈

ρσ3
〉

1.199894(12) 1.199894(7)

max step size 0.0104 0.0113

σV /V 0.00386 0.00388

1.17 1.18 1.19 1.20 1.21 1.22 1.23

ρσ3

0.95

1

1.05

1.1

d(
ρσ

3 )/
d(

ρσ
3 =

1.
2)

standard scaling

measured

improved
scaling

FIG. 2. Same as Fig. 1, but for a system of Lennard-Jones spheres.

using the standard and improved scaling. As with hard spheres, we find that the improved

coordinate scaling matches the measured deviations very well. However, we also note that

the scaling is somewhat flatter than what we found for hard spheres, which means that the

standard scaling is closer to the appropriate scaling.

C. Hard Dumbbells

The results of NPT simulations of hard sphere dumbbells at pressures, Pd3/kT = 45

and 100 are reported in Table III. As in the previous cases, we see that the improved move

yields the same densities as the standard move, but with improved precision (about 3 times

better for Pd3/kT = 45 and 6 times better for Pd3/kT = 100). The average density at

Pd3/kT = 45 also matches 〈ρd3〉 = 1.279(13) reported in Ref. 16. As we saw with hard

spheres, the maximum step size (in lnV ) is 17 times smaller than σV /V for the standard

move. The improved move is again able to take larger steps although the improvement is less
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TABLE III. Results from NPT simulation of 144 hard dumbbells in the CP2 crystal

Standard move Improved move Standard move Improved move

Pd3/kT 45 45 100 100
〈

ρd3
〉

1.2827(4) 1.28329(12) 1.39643(19) 1.39613(3)

max step size 0.000325 0.00188 0.000156 0.00136

σV /V 0.00569 0.00557 0.00254 0.00258

dramatic for hard dumbbells, and the resulting step size is still two to three times smaller

than σV /V .

In Fig. 3 we plot the root-mean-squared deviation of the hard dumbbells from their lattice

coordinates as a function of density. For the purposes of scaling, we have taken 〈ρd3〉 = 1.283

as the nominal density to scale from. The standard scaling for the translational motion is the

same as before for the spherical models, but the standard move does not scale the rotation

at all. The improved move applies the same scaling to translation and rotation. We see

that the measured tranlation matches the scaling used by the improved move while φ sin(θ)

varies more and cos(θ) varies less than predicted by the scaling. This signals a breakdown of

our assumption that the change in phase space volume is evenly distributed. We attempted

additional NPT simulations where we distributed the scaling unevenly in order to match

the measured variations, but the results were not significantly better than our results with

the evenly distributed scaling.

IV. CONCLUSIONS

We have presented an improved method for performing Monte Carlo simulation of crystals

in the isothermal-isobaric ensemble. The technique is simple and computationally inexpen-

sive to implement, yet very effective. The approach is most advantageous in application

to hard potentials, and the improvement it offers over the conventional algorithm increases

with the size and density of the simulated system. Performance in application to molecules

with molecular flexibility has yet to be determined. Still, given its simplicity and effective-

ness, the new method is worthwhile to consider when conducting NPT simulations of any

crystalline phase.
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1.26 1.27 1.28 1.29 1.3

ρd
3

0.9

0.95

1

1.05

1.1

1.15

d(
ρd

3 )/
d(

ρd
3 =

1.
28

3)

measured translation
measured φ sin(θ)
measured cos(θ)

standard rotation scaling

standard translation scaling

improved scaling

FIG. 3. Same as Fig. 1, but for a system of hard dumbbells. Also displayed are rms deviations for

orientational coordinates (where θ is the inclination angle and φ is the azimuth angle, both with

respect to the average orientation). The standard scaling for rotation is horizontal because the

standard move does not alter the orientations of molecules. A single line represents the effect of

the improved scaling method on translational and orientational deviations.

The sampling strategy presented in this work could find application in other contexts

involving system perturbations in ordered phases. The general scheme is to estimate the

effect of the perturbation on the accessible phase-space volume in an equilibrated system,

and to translate that change into a rescaling of appropriate degrees of freedom from their

nominal values (e.g., distance from lattice site in a crystal, rotation from a director in a

liquid crystal). The strategy might also help in amorphous solids where the “nominal”

coordinate could be taken as an average coordinate rather than a lattice site. However, the

strategy might be less effective in amorphous solids since the coordinates will be qualitatively

different from each other so that distributing the scaling equally to all of them is less likely

to be appropriate. In addition to the application to ensemble sampling presented here, the

general approach could also find use in perturbation- or work-based free-energy calculation

methods. A closely related technique for free-energy temperature perturbations in crystals

was presented recently [21], where it too was found to be very effective in trial applications.
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