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Solving mazes is not just a fun pastime: they are prototype models in several areas of science and
technology. However, when maze complexity increases their solution becomes cumbersome and very
time consuming. Here, we show that a network of memristors - resistors with memory - can solve
such a non-trivial problem quite easily. In particular, maze solving by the network of memristors
occurs in a massively parallel fashion since all memristors in the network participate simultaneously
in the calculation. The result of the calculation is then recorded into the memristors’ states, and
can be used and/or recovered at a later time. Furthermore, the network of memristors finds all
possible solutions in multiple-solution mazes, and sorts out the solution paths according to their
length. Our results demonstrate not only the first application of memristive networks to the field of
massively-parallel computing, but also a novel algorithm to solve mazes which could find applications
in different fields.

PACS numbers: 87.18.Sn, 73.63.-b, 73.50.Fq

I. INTRODUCTION

Mazes are a class of graphical puzzles in which, given
an entrance point, one has to find the exit via an intri-
cate succession of paths, with the majority leading to a
dead end, and only one, or few, correctly "solving" the
puzzle. Mazes - sometimes also called labyrinths - have
been known since ancient times, the oldest presumably
being the one created by Daedalus in Crete, as passed
on by Greek mythology a few thousand years ago. They
are used as prototype models in graph theory, topology,
robotics, traffic optimization, psychology, and in many
other areas of science and technology [1–8]. The ability
to solve a maze is particularly important for transporta-
tion and robot control systems, e.g., to find the shortest
path from a given point to another. In neuroscience, dif-
ferent maze solving algorithms could be compared with
the approaches used by humans to solve mazes. In this
way we could better understand the functioning of the
human brain and advance new modeling of neural pro-
cesses.

Algorithms to solve mazes vary from the simplest -
and extremely slow - "random mouse" to mathematical
search algorithms that operate on a sequential fashion
to find the exit. However, all these methods suffer from
very slow solution times when the complexity of the maze
increases, with solution times sometimes increasing dra-
matically with increasing local connectivity of the net-
work. Moreover, some researchers have demonstrated
that certain biological and chemical systems can solve
mazes [4, 9]. For instance, in Ref. [4] an unexpected
behavior of a primitive organism was revealed by show-
ing that an amoeba finds the minimum-length path be-
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tween two points in a labyrinth connecting separate food
sources. Such methods, however, are also slow and do
not seem to be suitable for large mazes with complex
connectivity.

In this paper, we suggest and demonstrate a new strat-
egy for solving mazes that is instead based on massively-
parallel computation as afforded by a network of mem-
ristors (short for memory resistors) [10]. Memristors are
resistors whose resistance depends on the state history of
the system, and can therefore record their past dynam-
ics. These systems, which belong to the larger class of
memory circuit elements - that includes also memcapaci-
tors and meminductors [11] - are attracting considerable
attention due to their usefulness in diverse research ar-
eas [12] ranging from memories [13, 14] to neuromorphic
computing and learning [15–17].

A network of memristors, complemented by some other
standard electronic elements (such as field effect transis-
tors), forms a memristor processor that, at the present
level of technology, can be fabricated experimentally. In
this work, instead, we use numerical simulations to ex-
plicitly show that a memristor processor is able to solve
mazes. Most importantly, unlike existing approaches, the
memristor processor requires only one step to find the
maze solution. We emphasize though that the type of
massive parallelism used in the memristive processor can
be thought of as analog parallelism. It is essentially differ-
ent from that used in conventional computers, and rather
shows some similarity with massively parallel computing
with organic layers demonstrated recently [18].

It is also worth noting here that we could perform maze
solving with a network of meminductors or memcapaci-
tors. We choose to work with memristors since they are
the most studied so far, and can be easily realized exper-
imentally, thus allowing a practical and straightforward
implementation of our algorithm.

The remainder of this paper is organized as follows.
In Sec. II, we introduce the main part of our proposal,
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FIG. 1: (Color online) Maze mapping into a network of memristors (a.k.a. memristive processor). Right panel. The maze is
covered by an array of vertical and horizontal lines having the periodicity of the maze. Left panel. Architecture of the network
of memristors in which each crossing between vertical and horizontal lines in the array (in the right panel) is represented by a
grid point to which several basic units consisting of memristors and switches (field-effect transistors) are linked in series. The
maze topology is encoded into the state of the switches such that if the short line segment connecting neighboring crossing
points in the array crosses the maze wall then the state of the corresponding switch is "not connected" (shown with red (dark
grey) symbols). All other switches are in the "connected" state. The external voltage (V ) is applied across the connection
points corresponding to the entrance (V ) and exit (ground, GND) points of the maze.

namely, the memristive processor. We discuss all impor-
tant operation details of the memristive processor includ-
ing its initialization, maze mapping and, finally, finding
the maze solution. Sec. III illustrates dynamics of maze
solving by the memristive processor. In this section, we
first introduce a mathematical model of the unit part of
the processor, the memristor. Numerical simulations of
solutions of both single-path and multiple-path mazes by
the memristive processor are presented. It is important
to note that in the case of multiple-path mazes, the mem-
ristive processor not only finds all solutions but also sorts
them out according to their length. We conclude with
some final remarks and considerations on the proposed
approach.

II. MEMRISTIVE PROCESSOR

Let us then start by mapping a given maze into a net-
work of memristors. This is shown in Figure 1. First
of all, we superimpose periodical arrays of vertical and
horizontal lines on the maze. The period of this ar-
ray corresponds to the intrinsic period of the maze (for
non-periodic mazes, the period of line arrays should be
selected in such a way to take into account all impor-
tant maze features). The crossing points of vertical and
horizontal lines define grid points of the memristive net-
work. The network consists of basic units (memristors
plus switches) connecting grid points. Since the direction

of current flow in the network is not known a priori, the
polarity of adjacent memristors (indicated by the black
thick line in the memristor symbol in Figure 1) is chosen
to be alternating. It is assumed that external signals can
be applied to any grid points for the purpose of initial-
izing the memristors’ states as well as to read the cal-
culation results. The externally-controlled switches are
used to define the topology of the maze: a maze wall is
modeled by a switch in the "not-connected" state. Such
an architecture allows modeling different mazes on the
same memristive processor without the need to fabricate
a specific processor for each maze.

The processor initialization can be done by simultane-
ous application of GND, V1 voltages in a chessboard-like
pattern to all grid points of the memristive network (see
Fig. 2a). The calculation performed by this memristive
processor occurs when a constant voltage V is applied
across the two grid points corresponding to the entrance
and exit points of the maze as shown in Figure 1. In this
case, the current flows only along those memristors that
connect the entrance and exit points. The state of these
memristors is changed by the current, thus the maze is
solved in a massively parallel way, since all memristors
in the network participate simultaneously in the calcula-
tion. Specifically, assuming that by the initial moment of
time all memristors were initialized in the high resistance
("OFF") state, as time passes, every other memristor
along the solution path changes its resistance, eventually
switching into the low-resistance ("ON") state. There-
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FIG. 2: (Color online) a) Initialization of the network of mem-
ristors can be performed by a simultaneous application of
GND and appropriately selected V1 voltages in a chessboard-
like pattern to all grid points for a sufficiently long period of
time to securely switch memristors to the "OFF" state. Note
that since the memristors’ polarities are alternated in the net-
work, the corresponding voltage polarities are also alternated.
During the initialization, all switches should be in the "con-
nected" state or should already encode the maze (as shown
on the plot). b) In order to read a memristor’s state, such a
memristor (shown in the center) can be disconnected from the
rest of the circuit putting the corresponding switches to the
"not-connected" state (shown with red (dark grey) symbols)
and its own switch to the "connected" state and tested by
the application of a short small-amplitude voltage pulse (or
double bi-polar voltage pulse to minimize the disturbance of
the memristor’s state) of an amplitude V2.

fore, the chain of memristors in the "ON" state (or in
an intermediate state if memristors did not have enough
time to completely switch to the "ON" state) connecting
the entrance and exit points represents the maze’s solu-
tion. A possible approach to read the calculation result
is described in Fig. 2b.

Furthermore, the states of the memristors connecting
the entrance and exit points represent a solution at any
given finite time after the initial one. If there are multiple
paths, then the shortest one would contain less memris-
tors and thus offers less resistance than the longest one,
with all intermediate paths (in terms of length) offer-
ing a proportionate resistance. Therefore, since current
flows in inverse proportion to the resistance of a path,
at any given time, the change of state of a given path
is proportional to the current in the path. The different
paths of the maze can then be identified by the different
state their memristors have during (or after) the switch-
ing process. In the next section, we explicitly discuss this
solution feature. Here, we only point out that the mem-

a.

b.

FIG. 3: (Color online) Solution of a single-path maze. a, Net-
work state at t = 0.075s. The chain of memristors in the low-
memristance state (shown by red (dark grey) dots connected
by a red (dark grey) line) clearly connects the entrance and
exit points of the maze (note that memristors in the "OFF"
state - when R

M
ij (t = 0) > 90 Ohms - are not shown). Here,

every other memristor along the solution path is in the low-
memristance state. b, Network state at t = 0.12s. Note that
at t = 0.1s the sign of the applied voltage has been changed.
At t = 0.12s, each memristor along the solution path shows
the maze solution. The resistance is in Ohms, the voltage is
in Volts, and the current is in Amperes.

ristive processor can be reduced to a network of standard
resistors and, in principle, this could also solve a maze.
However, in this case, additional external memory and lo-
cal voltage measurement hardware will be required as the
resistive network does not store the calculation results.
In addition, in the case of a standard resistive network,
previous calculation results can not be easily used in sub-
sequent calculations. Finally, a network of memristors is
a complex non-linear dynamical system that can be po-
tentially used to solve a larger class of problems, of which
optimization ones - as those described in this paper - are
only a small class.

Experimentally, the suggested network could be fab-
ricated using, e.g., CMOL (Cmos+MOLecular-scale de-
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vices) architecture [19] combining a single memris-
tor layer with a conventional CMOS (complementary
metal-oxide-semiconductor) layer. It was demonstrated
in the past that many different classes of materials
and systems exhibit memristive behavior including bi-
nary oxides (TiO2, CuO, NiO, CoO, Fe2O3, MoO,
VO2) [20–25], perovskite-type oxides (Pr1−xCaxMnO3,
SrTiO3:Cr) [26–30], sulfides (Cu2S,Ag2S) [31–33], semi-
conductors (Si, GaAs, ZnSe-Ge) [34–36], spintronics ma-
terials [37–39] and organics [40–42]. Moreover, hybrid
memristor-CMOS integrated circuits for reconfigurable
logic applications as well as memristive memory chips
combining memristive materials with transistors were re-
cently developed experimentally [14, 43]. Therefore, fab-
rication of a memristive processor is possible at the cur-
rent level of technology. A small-scale version of a mem-
ristive processor can be built using memristor emulators
[44].

III. NUMERICAL SIMULATIONS

A. Model

In this section, we present numerical simulations of the
dynamics of memristive processors. Numerical modeling
of memristive networks is easily implemented and thus
offers by itself a practical computational algorithm for
maze solving. This computational approach, however,
requires multiple computational steps (see below) as op-
posed to the real memristive processor discussed in the
previous section which needs only a single step to perform
the whole computation.

For the sake of clarity, we use a simple model of mem-
ristor [45] whose memristance (memory resistance) is
given by

RM
ij = RONxij +ROFF (1− xij) , (1)

where RON and ROFF are minimal and maximal values
of memristance, xij is the dimensionless internal state
variable bound to the region 0 ≤ xij ≤ 1, and (i, j) are
grid indexes of a memristor to identify its location in the
network. Similarly to Ref. 45, we choose the dynamics
of xij to be given by

dxij

dt
= αIij(t), (2)

where α is a constant and Iij(t) is the current flowing
through the memristor (ij). At each time step, the po-
tential at all grid points is found as a solution of Kirch-
hoff’s current law equations obtained using a sparse ma-
trix technique. The corresponding change in the mem-
ristors’ states was computed using Eq. (2).

All numerical results reported in this paper were
obtained using model parameters RON = 10 Ohms,
ROFF = 100 Ohms, RM

ij (t = 0) = 91 Ohms, x(t =

0) = 0.1 and α = 104/(s·A) for all memristors. The

 

FIG. 4: (Color online) Solution of a multiple-path maze. Net-
work state at t = 0.047 s. The maze solution contains two
common segments (red (dark grey) dots connected by a red
(dark grey) line), and two alternative segments of different
lengths close to the left bottom corner. The memristance in
the shorter segment (blue (very dark grey) dots connected by
a red (dark grey) line) is smaller than that in the longer seg-
ment (green (light grey) dots connected by a red (dark grey)
line) since the current through the shorter segment is larger
and, consequently, the change of the memristors’ state along
this segment is larger. The arrow at the bottom indicates
where a modification of the maze from Fig. 3 has been made
(position of the removed segment of the wall). The resistance
is in Ohms, the voltage is in Volts and the current is in Am-
peres.

applied voltage was selected to be equal to 50V during
the first 0.1 s time interval, and -50V at t > 0.1s. The
sign of the applied voltage was changed in order to bet-
ter represent the maze solution as discussed below. Two
types of mazes were considered: a single-path maze, and
a multiple- (two-) path maze.

B. Results

We have applied the computational scheme described
above to several mazes. In all cases, the correct maze
solutions were found. Examples of our calculations are
shown in Figures 3 and 4. These mazes have been
mapped on a n × n square memristive processor with
n = 30. Here, n2 gives the total number of grid points. It
is evident that the square geometry selected for this par-
ticular case is not generally required. Mazes of any shape
(e.g., rectangular, circular, irregular) can be mapped on
a square memristive processor of sufficient size.

Figure 3 presents results of solution of a single-path
maze (see also Supplementary Movie 1 [46]). We have
found that with these parameters it takes approximately
0.06s to switch every other memristor along the solution
path into the low-resistance "ON" state. The resulting
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sequence of memristors in the low-resistance state repre-
sents the maze solution as shown in Figure 3a. This maze
solution can be better seen if we change the sign of the
applied voltage and wait some time. Then, the resistance
of memristors - along the solution path - that are in the
"ON" state will increase, and the resistance of memris-
tors in the "OFF" state will decrease. Figure 3b captures
a specific moment of time when these memristances are
equal. At this moment of time, every memristor along
the solution path is in the same intermediate state and
thus the solution of the maze is better visible.

A two-path maze whose solution is given in Figure 4
was obtained from the maze shown in Figure 3 by remov-
ing a single segment of the wall (its location is shown by
an arrow in Fig. 4). In this maze, the current flow-
ing through a common segment (red (dark grey) dots
in Figure 4) splits between two possible paths according
to their resistances. Therefore, memristors in the com-
mon segment change their resistance faster than those
in the two possible paths (see Figure 4 and also Supple-
mentary Movie 2 [46]). Moreover, comparing memristors
from two possible paths, memristors in the shorter path
change their resistance faster than those in the longer
path. As discussed previously, this allows sorting all pos-
sible solutions according to their length in such a way
that the resistances of the memristors along shorter paths
are smaller.

We note that the type of memristors and simulation
parameters (such as α and V ) have been selected for the
sole purpose of demonstration of our idea. The resulting
switching time (of the order of 0.05s, see the above dis-
cussion) is much longer than the typical switching times
of nanoscale memristive devices that can be as short as
5ns (see, for example, parameters of nanoionic resistive
random access memories in Refs. [12, 47]). Since with
an appropriate choice of voltage/current magnitude the
switching time of all the memristors along the solution
path is on the order of the switching time of a single mem-
ristor, we can argue that the minimum time required to
solve a maze of arbitrary complexity by our method can
be as short as few nanoseconds or even less, since, as
discussed above, full switching is not required to find a
solution. Moreover, only one step (a single voltage pulse)
is needed to find the solution. Therefore, the approach
we suggest is a priori more efficient than any multi-step
algorithm of present use. In addition, in simulations with
memristors described by Eqs. (1)-(2) we have always ob-
served the system evolution toward a unique (for a given
maze) stable solution. Therefore, the success rate of cor-
rect solution is 100% in our scheme.

Regarding the time complexity of the numerical mod-
eling algorithm, it is mainly determined by the solu-
tion of a set of linear Kirchhoff’s current law equa-

tions. The best theoretical estimate for a linear system
(the Coppersmith-Winograd algorithm [48]) is O(n2.376).
This estimate thus provides the theoretical time complex-
ity of the numerical maze solving algorithm suggested in
this paper. We note that the time complexity of the
breadth-first search algorithm that can be used to find
the shortest path is only slightly better. In particular,
it is given by O(V + E) ∼ O(n2), where V and E is the
number of vertices and edges, respectively [49]. However,
we would like to emphasize once more that the hardware

implementation of the memristive processor requires a
single computational step, and thus outperforms all ex-
isting maze solving algorithms.

IV. CONCLUSION

In conclusion we have shown how a network of mem-
ristors - a memristive processor - can solve mazes in a
massively-parallel way. This approach can be realized
experimentally with available systems and devices, or
simply implemented on a computer. The hardware im-
plementation of the memristive processor is superior to
any existing maze solving methods and therefore it is
ideal when the complexity of the maze increases with in-
creasing local connectivity of the graph. Although we
have considered a processor based on memristors, a net-
work of memcapacitors or meminductors [11] can also be
used for massively parallel calculations. As of now, sev-
eral experimental systems exhibiting memcapacitive and
meminductive properties are known [12]. Electronically,
memcapacitive and meminductive circuits can be emu-
lated using memristors [50, 51].

Moreover, we anticipate that the memristive processor
can facilitate the solution of - or solve - many other com-
putational problems. Examples of such problems include
the traveling salesman problem, graph theory problems,
etc. The memristive processor can then be used as a com-
plete computational device, or as a supplemental tool
for traditional computing hardware. Since memristors
(as well as memcapacitors and meminductors) are gen-
erally asymmetric devices, unidirectional graphs can also
be easily realized on appropriate memristive processors.
We thus envision their use in a large set of applications
in both basic science and technology.
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