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Abstract: We demonstrate "hidden solvability" of the nonlinear Schrödinger (NLS) equation whose nonlinearity coefficient is 

spatially modulated by Hermite-Gaussian functions of different order and the external potential is appropriately chosen. By means of 

an explicit transformation, this equation is reduced to the stationary version of the classical NLS equation, which makes it possible to 

use the bright and dark solitons of the latter equation to generate solitary-wave solutions in our model. Special kinds of explicit 

solutions, such as oscillating solitary waves, are analyzed in detail. The stability of these solutions is verified by means of direct 

integration of the underlying NLS equation. In particular, our analytical results suggest a way of controlling dynamics of solitary 

waves by an appropriate spatial modulation of the nonlinearity strength in Bose-Einstein condensates, through the Feshbach resonance. 

PACS numbers: 03.75.Lm,  42.65.Tg,  05.45.Yv 

 

1. Introduction 

The nonlinear Schrödinger (NLS) equation is a ubiquitous model describing wave dynamics in dispersive nonlinear 

media [1, 2]. The universality of the NLS equation and the great number of its applications have been stimulating the 

search for soliton solutions of generalized NLS models, in which the coefficients accounting for the 

diffraction/dispersion effects and the strength of the nonlinearity depend on the spatial and/or temporal variables. 

Classical results in the form of bright solitons were obtained for the one-dimensional (1D) NLS equation with constant 

coefficients by means of the inverse-scattering-transform (IST) technique [1]. This was later generalized to discrete 

models, such as the celebrated Ablowitz-Ladik equation [1], and some other [3], and for the NLS equation with random 

coefficients [4]. Applications of the NLS equation to fiber optics have stimulated further studies of integrable 

inhomogeneous models, leading to the concepts of self-similar and non-autonomous solitons [5]. 

A particularly important setting for solitons is described by the 1D NLS equation with the harmonic potential and 

cubic nonlinearity. In this case the equation is usually named the Gross-Pitaevskii (GP) equation [6] and the harmonic 

potential may be time-dependent [7]. This equation has drawn a great deal of attention, due to its direct applications to 

the description of Bose-Einstein condensates (BECs) [6], photonic waveguides [2], and other stationary and 

nonstationary media [8]. Other applications include the study of nonlinear tunneling of spatial and temporal optical 

solitons in various materials, with a potential use in ultrafast photonic technologies [9]. 

As early as 1976, Chen and Liu [10] have extended the concept of soliton to the case of accelerated motion of solitary 

waves in linearly inhomogeneous plasma. It was shown that the IST method can be generalized to the NLS equation with 

a linear external potential, by allowing time-varying eigenvalues, which makes it possible to predict solitons with 

time-varying velocities but constant amplitudes. Although the generalized NLS equation studied in Ref. [10] can be 
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transformed back to the standard form of the equation, the use of the IST technique with the time-dependent spectral 

parameter makes it possible to extend the concept of integrability, especially to models in nonlinear optics, see Ref. [11] 

and references therein. On the other hand, Calogero and Degasperis [12] have introduced the general class of soliton 

solutions to the non-autonomous Korteweg–de Vries equation with varying nonlinearity and dispersion, which were 

constructed by means of a similar method. In a related context, the peculiarities of one- and multi-soliton dynamics in the 

discrete NLS equations were investigated in Ref. [13]. The ‘‘ideal’’ soliton-like interaction scenarios for 

non-autonomous solitons were studied in Refs. [14, 15] for the generalized NLS equations with varying dispersion, 

nonlinearity, and dissipation or gain. 

Matter-wave solitons in BEC have attracted a great deal of interest, too [16, 17]. The possibility of using the Feshbach 

resonance to control the effective nonlinearity [18] has stimulated analyses of diverse nonlinear phenomena induced by 

manipulations of the scattering length, either in time [19] or in space [20] (see recent review [21]). In nonlinear optics, 

recent developments [22, 23] have led to the prediction of another new class of solitary waves, the so-called optical 

similaritons, which arise when the interplay of nonlinearity, dispersion, and gain in a fiber amplifier causes the shape of 

an input pulse to converge to a self-similar asymptotic form. 

In this work, we go beyond previous studies, by considering the spatial modulation of the local nonlinearity coefficient 

in the form of Hermite-Gaussian functions. The usefulness of this approach stems from the fact that, because these 

functions represent the fundamental modes of the guided linear optical waves, the corresponding modulation profile can 

easily be induced by a laser beam illuminating the condensate and controlling the local strength of the optically-induced 

Feshbach resonance, see Ref. [21] and references therein. We demonstrate “hidden solvability" of this NLS equation, by 

utilizing the “resonance coupling technique," known in the BEC theory. The concept of "hidden integrability" refers to 

the procedure of transforming a new generalized equation into its classical integrable form, allowing one to generate 

exact soliton solutions of the new equation using the known solutions of the classical integrable equation. We report 

several types of explicit bright and dark solitary-wave solutions, including oscillating solitons, in the settings based on 

the experimentally feasible nonlinearity-modulation patterns.  

The paper is organized as follows. In Sec. 2, the model describing the wave propagation in the cubic nonlinear medium 

is presented and the transformation reducing it to the stationary 1D NLS equation with constant coefficients is reported. 

The corresponding exact solitary-wave solutions, found by means of an appropriate product ansatz, are also presented in 

Sec. 2. In Sec. 3, we consider the dynamics of the fundamental and higher-order solitary waves in detail, including the 

verification of their stability by means of direct integration. The latter is necessary, as the above-mentioned 

transformation is not valid for the nonstationary version of the target NLS equation with constant coefficients, hence the 

stability of the exact solutions is not guaranteed. Sec. 4 presents our conclusions. 

 

2. The model and solitary-wave solutions 

The one-dimensional NLS/GP equation with an external potential and a modulated nonlinearity can be written in the 

following scaled form: 
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where, in terms of nonlinear optics, ( )xzu ,  is the complex envelope of the electromagnetic field, z  is the propagation 

distance, and x  is the transverse coordinate. The x -dependent nonlinearity coefficient is taken in the special form,  
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                                       ( ) ( )xHkex n
x 22−=χ ,                                   (1b) 

where ( )xHn  are Hermite polynomials, and k  is a normalization constant, to be specified below. Further, ( )xzV ,−  

is the potential function depending on both the propagation distance and the transverse coordinate, which is determined 

by the choice of the nonlinear medium. The one-dimensional GP equation has the same form as Eq. (1a), but with the 

coordinate z replaced by time. It describes the evolution of the BEC wave function, and may also give rise to the 

solitary-wave solutions (see, e.g., Refs. [7, 17, 20-22, 24]). For 0=n , Eq. (1) was considered in Ref. [22]. In the 

analysis of matter waves in BEC, where the local nonlinearity may be controlled by an optical beam via the 

Feshbach-resonance technique [21], the choice of the modulation function in the form of Eq. (1b) is natural, as this 

profile corresponds to an exact solution of the linear transmission equation with the parabolic confining potential; see 

also Eq. (3) below. 

 Using “the resonance coupling technique," which has been widely used in the studies of BEC models (see, e.g., Refs. 

[25, 26]), we look for particular solitary-wave solutions of Eq. (1), in the form 0 1( , ) ( , )u u x z u x z= . Substituting this 

ansatz into Eq. (1), and assuming that the first function satisfies the linear Schrödinger equation with the 

harmonic-oscillator potential, 
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we arrive at the following equation for ( )zxu ,1 :  
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Commonly known solutions to Eq. (2a), subject to the normalization condition 12
0 =∫

+∞

∞−

dxu , are [27]: 
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where the normalization factor is π!21 nk n= ，and ,1,0=n  is a non-negative integer. Accordingly, Eq. (2b) 

becomes 
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  In this work, we focus on the analysis of Eq. (4) with space-dependent coefficients ( )xh  and ( )xg . Our first goal is 

to transform Eq. (4) into the simple stationary NLS equation, cf. Ref. [28]: 
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where both ( )θUU ≡  and ( )xz,θθ =  are real functions, E denotes the eigenvalue (which corresponds to the chemical 

potential in BECs or to the propagation constant in optics), and 1±=G . We use below the classical soliton solutions of 
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Eq. (6), namely the bright soliton for 0<E  and 1=G , 

( ) ( )θθ EEU 2sech2 −−= ,                       (7a) 

and the dark soliton for 0>E  and 1−=G , 

         ( ) ( )θθ EEU tanh= .                     (7b) 

    To achieve the objective of reducing Eq. (4) to (6), we follow Refs. [22, 28] and look for the solutions of Eq. (4) in 

the form: 

( ) ( ) ( )[ ] ( )xziexzUxzxzu ,
1 ,,, ϕθρ= ,                      (8) 

where ρ  and ϕ  are real functions. Substituting Eq. (8) into Eq. (4) and making use of Eq. (6), we arrive at the 

following set of coupled equations: 

                                          ( ) ( ) 0222 =++ xxxz h ϕρϕρρ ,          （9a） 
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where the subscripts stand for the partial derivatives.  

   With regard to the definition given by Eq. (5), Eq. (9c) can be integrated, to yield 

( )2

0 x

z
u
λ

ρ
θ

= ,                 （10） 

where ( )zλ  is an arbitrary function of z . Next, from Eqs. (9d) and (10) one obtains ( ) 332323
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where ( )zβ  is another arbitrary function of z . Substituting 2ρ  from Eq. (10) into Eq. (9a) and using Eq. (9b), we 

obtain 
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Further, it follows from Eq. (9b) that 
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Comparing Eqs. (12) and (13), we see that ( ) ( ) ( )zxzxxz z εδ
λ

λϕ ++−= 2

4
, ; here ( )zδ , and ( )zε  are additional 

arbitrary functions of z . Now, potential ( )xzV ,  can be expressed in terms of functions ( )zλ , ( )zδ , ( )zε  and ( )xz,θ , 

using Eq. (9e):  
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   Collecting the above results, we get the following particular solutions of Eq. (4): 
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from which the final form of the solutions for the solitary wave is obtained: 
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It follows from Eq. (16) that ( ) 0, →xzu  when ∞→x , if both the bright- and dark-soliton wave forms, (7a) and (7b), 

are substituted; hence this solution is always localized. In the next section, we exploit this fact to construct solitary-wave 

solutions exhibiting noteworthy behavior. 

 

3. Examples of the solitary waves 
  The solutions presented below are obtained for the negative eigenvalues [ 0<E , which correspond to the bright 

solitons (7a)] and for the positive ones [ 0>E , which give rise to dark waves (7b)]. Recall that the arbitrary functions β(z) 

and λ(z) are important in our solution procedure, as they modulate the amplitude, the phase, and the independent variable 
θ(z,x) of the general solution in Eq. (16). Considering different choices of the functions ( )zλ  and ( )zβ  brings widely 

different solutions; we single out two characteristic examples:  

                   ( ) 0λλ =z , ( ) ( )zaz 0cos ωβ = ,                        (17) 

where 00 ≠λ  is a constant, ( )1,0∈a , and 00 ≠ω  (cf. Ref. [29]); and  

                  ( ) 0ββ =z , ( ) ( )zAz 0cos1 Ω+=λ ,                        (18) 

where 0β  is a constant, ( )1,0∈A , and 00 ≠Ω .  

The former case deserves detailed consideration, as the corresponding solution (16) seems interesting. In Fig. 1, we 

plot examples of bright solitary-wave solutions, generated by the bright seed wave form (7a), which display a typical 
periodic behavior. The respective potential ( )xzV ,  is shown in the right column of the same figure. Thus, we can 

produce the bright solitary wave by adjusting the coefficients a  and 0ω , which suggests a possibility to control the 

amplitude of the solitary wave oscillations and the curvature of its trajectory. Of course, it is possible to use the 

parameters in different ways to control the evolution of solitary waves. We conclude that the frequency of oscillations of 
the bright solitary wave increases with the increase in 0ω , and the amplitude of the peak’s oscillation increases as the 
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modulation amplitude a  increases in Eq. (17).  
The nonlinearity coefficient ( )xχ , given by Eq. (1b), is drawn in Fig. 1(c) for two values of n . As seen, there exists 

one maximum and no zeros for the Gaussian distribution ( )0=n , while there are two extrema and one zero for 1=n . In 

general, there exist 1+n  extrema and n  zeros along the x  direction.  

 

Fig.1 
 

FIG. 1 (color online) Dynamics of the solitary wave (16) generated by the bright seed (7a), with 21−=E , 1=G , 10 =λ , 5.0=a , 0=ε , 

and 20 =ω . The intensity of the solitary wave (left) and the shape of the external potential (right) are displayed, for 0=n  and 1=n , in panels 

(a) and (b). (c) Nonlinearity coefficient ( )xχ  vs x  for 0=n  and 1 , see Eq. (1b). 

 

Now, we proceed to the solutions generated by the dark seed solitary wave (7b). In Fig. 2, we display the 

corresponding spatial distribution of the soliton's intensity for different values of n , according to Eqs. (16), (7b), and 
(17). The plots in Fig. 2(a) correspond to 0=n , 20 =ω , 2.0=a , 10 =λ , 1=E  and 1−=G , while Fig. 2(b) 

corresponds to 2=n  and 40 =ω ; other parameters are the same as in Fig. 2(a).  

Comparing Figs. 1 and 2, a difference in the shapes of solitons of order n , generated by the bright and dark seeds, 

becomes evident: while the solutions of both types are effectively localized, they feature 1+n  and 2+n  lobes, 

respectively. The extra lobe in the latter case appears due to the presence of the node in the center of the dark-soliton 

seed.  

 

Fig.2 
 

FIG. 2 (color online) Plots of the breathing solitary waves (16) generated by the dark seed (7b) (the corresponding parameters are given in the text). The 

setup here and in Figs. 3 and 4 below is the same as in Fig. 1(a)-(b).  

 

  Next, we proceed to the modulation functions taken as per Eq. (18). Specific higher-order solitary-wave solutions, 

given by Eq. (16), can be constructed in this case, if the modulation amplitude in Eq. (18) is small, 1<<A . In Fig. 3, we 
show the fourth-order ( 4=n ) bright solitary wave for the parameter set 00 =β , 1.0=A , 50 =Ω , 21−=E , and 

1=G . It is seen that the intensity displays five lobes. The amplitude of the oscillations of each lobe increases with the 

distance of the lobes from 0=x . Notice that the soliton's intensity is smallest at the center ( 0=x ), but it does not 

approach zero. It is observed that the local intensity displays 1+n  maxima for such a type of bright solitary waves.  

 

Fig.3 
 

FIG. 3 (color online) Fourth-order bright solitary wave. The corresponding parameters are given in the text. 

 

  As we have already demonstrated, Eq. (16) also produces higher-order solitary-wave solutions from the dark seed 
given by Eq. (7b). Here we consider a typical example for the following set of parameters: 00 =β , 1.0=A , 50 =Ω , 

1=E  and 1−=G , using the modulation according to Eq. (18). The fourth-order soliton generated by the dark wave 
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seed is plotted in Fig. 4. The comparison of Figs. 3 and 4 demonstrates the difference in the shape of the intensities of 

bright and dark solitary waves. Although the soliton obtained from the dark seed also displays five lobes, the intensity of 

the lobes increases with the distance from the center ( 0=x ). Note that the soliton's intensity vanishes at 0=x , as it 

should. 

We also see that, for the solitary waves generated by the dark seed, the properly chosen external potential is very 

different from its counterpart supporting the solitary wave from the bright seed, cf. Fig. 3. Namely, while the 

parabola-shaped potential attains its maximum at the center ( 0=x ) for the solitons of the latter type, the potential 

associated with the dark seed displays a double-well shape. 

 

Fig.4 
 

FIG. 4 (color online) Fourth-order ( 4=n ) solitary wave (16) generated by the dark seed-wave form (7b). The corresponding parameters are given in 

the text. 

 

One should note that the transformation leading to the NLS equation (6) is relevant only for the stationary form of this 

equation, hence it does not imply anything about the stability of the so-generated soliton solutions. To confirm the 

validity of solution (16) and test the stability of solitons, we have compared the analytical solution with the results of 

numerical simulations of the underlying equation (1). Figure 5 shows the comparison of the exact solution given by Eq. 

(16) with the results of simulations, produced by means of the split-step beam-propagation method [31]. The initial 

conditions were taken from the analytical solution (16) at 0=z . It is seen that the analytical solution is consistent with 

the numerical results, and the solitary waves are stable indeed. 

 

Fig.5 
 

Fig. 5. (Color online) Comparison of the analytical solution with the numerical simulations at different propagation distances. The black solid line is the 
analytical solution given by Eq, (16) and the dashed red line is the result of the simulation of Eq. (1). (a) The setup is the same as in Fig.1 (a), the 

propagation distance being 60,30,20,10=z  from left to right. (b) The same as in (a), except for 3=n ; the propagation distance is 

60,30,10=z  from bottom to top. 

 

   It is relevant to mention that the dynamical stability of the predicted analytical solutions also suggests the structural 
stability of the solutions reported above. Indeed, the solutions corresponding to the nonlinearity function and the potential 
slightly different from those selected for generating the exact solutions [see Eq. (5) and (14)] are expected to converge to 
the shapes only slightly different from those corresponding to the particular exact solutions. 
 

4、Conclusions 
In this work, we have extended previous works aimed at finding physically relevant special examples of the 

one-dimensional NLS/GP equation with the "hidden integrability", which means that it may be explicitly transformed 

into the classical integrable form, allowing one to find a broad class of exact soliton solutions. Here, we have 

demonstrated that this is possible for the NLS/GP equation with the spatial nonlinearity-modulation pattern based on the 

classical Hermite-Gaussian functions, which, in terms of BEC, can be realized by an external laser illumination via the 

Feshbach resonance, combined with the properly chosen harmonic trapping potential. The stability of the so-found 
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special solutions was verified by means of direct integration of the full underlying equation. 

The method elaborated here may be extended to the study of (2+1)-dimensional and (3+1)-dimensional models (cf. Ref. 

[28]), which are important for both matter waves and nonlinear optics [30]. 
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