
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Conformists and contrarians in a Kuramoto model with
identical natural frequencies

Hyunsuk Hong and Steven H. Strogatz
Phys. Rev. E 84, 046202 — Published  4 October 2011

DOI: 10.1103/PhysRevE.84.046202

http://dx.doi.org/10.1103/PhysRevE.84.046202


Conformists and contrarians in a Kuramoto model with identical natural frequencies

Hyunsuk Hong1 and Steven H. Strogatz2

1Department of Physics and Research Institute of Physics and Chemistry,
Chonbuk National University, Jeonju 561-756, Korea

2Department of Mathematics, Cornell University, New York 14853, USA
(Dated: September 15, 2011)

We consider a variant of the Kuramoto model, in which all the oscillators are now assumed
to have the same natural frequency, but some of them are negatively coupled to the mean field.
These “contrarian” oscillators tend to align in antiphase with the mean field, whereas the positively
coupled “conformist” oscillators favor an in-phase relationship. The interplay between these effects
can lead to rich dynamics. In addition to a splitting of the population into two diametrically opposed
factions, the system can also display traveling waves, complete incoherence, and a blurred version of
the two-faction state. Exact solutions for these states and their bifurcations are obtained by means
of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this system
of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its
counterpart with heterogeneous natural frequencies.

PACS numbers: 05.45.Xt, 89.75.-k

I. INTRODUCTION

The Kuramoto model [1] of coupled oscillators has
been used to shed light on many diverse systems of phys-
ical interest, particularly those involving synchronization
transitions. Examples include Josephson junction ar-
rays [2], charge-density waves [3], laser arrays [4], col-
lective atomic recoil lasers [5], bubbly fluids [6], neutrino
flavor oscillations [7], electrochemical oscillators [8], and
human crowd behavior [9].

Originally, however, the Kuramoto model had no
known physical applications; these were only discovered
years later. Kuramoto was led to his model solely by con-
siderations of mathematical tractability. He was seeking
an exactly solvable many-oscillator system displaying a
phase transition to mutual synchronization, in hopes of
illuminating this novel critical phenomenon seen earlier
by Winfree in his simulations of biological rhythms [10].

In that same spirit, we have begun investigating a fam-
ily of simple models that generalize the Kuramoto model
in one key respect: they include both positive and neg-
ative coupling in the same system. Positive coupling,
analogous to a ferromagnetic interaction, tends to align
the oscillators in phase. Negative coupling, analogous to
an antiferromagnetic interaction, drives oscillators apart
and favors a phase difference of π. When both types of
coupling are present, the system becomes frustrated. In
this case very little is known about what sorts of dynam-
ics and equilibrium states might follow.

Even the mean-field version of such systems remains
mysterious. Twenty years ago, in pioneering work, Daido
found evidence that Kuramoto models with mixed pos-
itive and negative coupling could undergo a glass tran-
sition [11], but the existence and properties of such an
“oscillator glass” remain unclear [12]. Other models with
mixed attractive/repulsive interactions have since been
explored by several authors, who were also motivated by
analogies to spin glasses, as well as to neural networks

with mixed excitatory and inhibitory connections [13].
In each instance it has been difficult to understand the
behavior of these models because of their inherent nonlin-
earity, quenched random interactions, and large numbers
of degrees of freedom.

Inspired by Kuramoto’s success in explaining Win-
free’s synchronization transition through the use of a
toy model, we wondered whether Daido’s oscillator glass
transition might be similarly rationalized by studying
much simpler models with mixed coupling. In this paper
we analyze the behavior of one such model and find, un-
fortunately, that this particular simplification does not
exhibit an oscillator glass. Nevertheless, this negative
result still provides valuable information. It shows that
certain types of frustration are insufficient to produce
an oscillator glass, and thereby constrains the possible
mechanisms at work.

Furthermore, the model does display some interesting
new dynamical phenomena, as we discuss below. And
although we are unaware of any physical realization of
the model studied here, we suspect that such realizations
may exist, given the model’s simplicity, and given the
history of the Kuramoto model itself, whose physical rel-
evance was established only after the model had been
proposed on theoretical grounds.

The governing equations for the model are

φ̇
(s)
j = ω +

Ks

N

N∑
k=1

sin(φk − φ(s)
j ), j = 1, . . . , N (1)

where φ
(s)
j is the phase of the jth oscillator in the s-

subpopulation, ω is its natural frequency, and N is the
total number of oscillators. The oscillators in subpopu-
lation 1 are assumed to have positive coupling (K1 > 0)
to all the other oscillators in the system, whereas those
in subpopulation 2 have negative coupling (K2 < 0).

Equation (1) differs from the classic Kuramoto model
in that the distributed natural frequencies ωj have been
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replaced by a uniform natural frequency ω, and the sin-
gle positive coupling constant K has been replaced by
a two-valued coupling constant Ks. In an earlier paper,
we considered the case in which ωj was kept heteroge-
neous [14]. As we will see here however, the long-time
dynamics is actually more complicated for the homoge-
neous case. This finding is consistent with previous stud-
ies of identical oscillators (see Refs. [15, 16] for example).

What is unusual about this model is that its pairwise
interactions need not be symmetric. For example, oscil-
lator k could be coupled positively to oscillator j while j
is coupled negatively to k in return. This leads to a novel
type of frustration. Although unfamiliar, it may be phys-
ically realizable in certain kinds of series arrays of Joseph-
son junctions [2] or in liquid crystal spatial light mod-
ulators suitably coupled by global optoelectronic feed-
back [17]. Because of its asymmetry, this form of cou-
pling is non-variational; no energy function exists, and
the dynamics do not correspond to relaxation or gradi-
ent descent down an energy landscape. While this might
seem unnatural in some physical settings (e.g., magnetic
spin systems), it is more plausible in certain social or po-
litical contexts. In particular, if we set ω = 0 (as can
be done without loss of generality by going into a suit-
able rotating frame, or equivalently, by replacing φj with
φj+ωt), the model starts to resemble some of the existing
models of social opinion formation [18].

To see the connection, imagine a spectrum of opin-
ions or attitudes that can be laid out as points on a cir-
cle, rather than as points on a line. For instance, Bin-
more [19] has argued that political attitudes are more
properly represented this way than as the usual linear
continuum from left wing to right wing. Now consider
a population of indifferent individuals who have no pre-
ferred phase along the circle, or, to continue the analogy,
no inherent political preference. All that matters to them
is what other people think. Such an individual updates
his or her political “phase” continuously, based on where
he or she stands in relation to the prevailing sentiment.
Some individuals – the conformists – want to be in phase
with conventional wisdom, whatever it happens to be,
whereas contrarians reflexively oppose it.

The question is: depending on the relative proportions
of conformists and contrarians, and depending on how
intensely they react to the prevailing opinion, what will
this population do in the long run? Split into two camps?
Fail to reach any consensus at all? Or cycle through
all attitudes periodically? As we’ll see, all of these are
possible long-term outcomes, depending on the choice of
model parameters.

Let p denote the fraction of oscillators with positive
coupling; thus the system consists of pN conformists and
qN contrarians, where q = 1 − p (Fig. 1). When p = 0,
all the oscillators repel one another, a case explored in
Ref. [20].

In what follows, we will examine the dynamics of this
system as its parameters are varied. We will continue to
use the metaphorical language of conformists and con-

0 1p

FIG. 1: A schematic plot of a set of eight identical oscillators
with positive and negative coupling. Open circles represent
oscillators with negative coupling to all the others; filled cir-
cles denote oscillators with positive coupling. When p = 0, all
oscillators are contrarians. However, as p is increased, con-
formists begin to appear and eventually replace all contrarians
as p approaches 1.

trarians, although perhaps we should stress that we do
not intend the model to be taken literally as a descrip-
tion of real social situations. It is a toy model. Like the
Kuramoto model itself, it is being offered on theoretical
grounds, without any particular physical realization in
mind. The goal is to clarify the dynamical consequences
of mixed coupling, by investigating a particularly simple
and tractable special case. Our hope is that such an in-
vestigation may bring us a step closer toward solving the
puzzle of “oscillator glass” [11–13].

II. DIMENSIONAL REDUCTION

The dynamical system given by Eq. (1) enjoys a highly
non-generic structure. It has N − 6 constants of motion,
for all N > 6. In geometrical terms, its phase space is fo-
liated by an (N −6)-parameter family of six-dimensional
invariant manifolds.

These results can be seen explicitly by using a theoreti-
cal device discovered by Watanabe and Strogatz [21], and
recently generalized by Pikovsky and Rosenblum [22].
Rewrite Eq. (1) as

φ̇
(s)
j = f +Ksg cosφ

(s)
j +Ksh sinφ

(s)
j , (2)

where f = ω, g = (1/N)
∑N
k=1 sinφk and h =

−(1/N)
∑N
k=1 cosφk. As discussed above, assume that

ω = 0 without loss of generality. Watanabe and Strogatz
showed that all solutions φj(t) of Eq. (2) can be expressed
as

tan

[
φ

(s)
j (t)−Θs(t)

2

]
=

√
1 + γs(t)

1− γs(t)
tan

[
ψ

(s)
j −Ψs(t)

2

]
,

(3)

where the ψ
(s)
j in Eq. (3) are constant, and γs(t), Ψs(t),

and Θs(t) evolve according to the ordinary differential
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equations

γ̇s = −(1− γ2
s )Ks(g sin Θs − h cos Θs),

Ψ̇s = −
√

1− γ2
s

γs
Ks

(
g cos Θs + h sin Θs

)
, (4)

Θ̇s = −Ks

γs

(
g cos Θs + h sin Θs

)
.

Here again the variables φ
(s)
j (t) denote the oscillator

phases in the s-subpopulation, where s = 1, 2. The

constants ψ
(s)
j represent a set of fixed phases on which

the transformation operates. For example, if we set
γs(0) = Ψs(0) = Θs(0) = 0, then the ψj are just the
initial phases φj(0). Since the variables γs(t), Ψs(t), and
Θs(t) are the same for all j within each subpopulation,
the flow governed by Eq. (4) is effectively 6-dimensional,
as claimed. It describes the dynamics restricted to the
invariant manifold labelled by the choice of the constants

ψ
(s)
j , of which N − 6 turn out to be independent [21].
A further reduction is possible in the continuum limit

N → ∞, in the special case where the phases ψj are
uniformly distributed around the circle. Then the trans-
formation Eq. (3) maps old phases ψj to new phases φj
such that for each subpopulation, a uniform distribu-
tion of the ψj maps onto a Poisson kernel distribution
of φj [15, 21–23]. This implies that the set of states in
which each subpopulation is distributed like a Poisson
kernel is dynamically invariant (see Ref. [15, 16, 21–23]
for more about this). From here on, we will refer to this
distinguished invariant manifold as the Poisson subman-
ifold.

Incidentally, these considerations underlie the (other-
wise seemingly miraculous) ansatz discovered by Ott and
Antonsen [16]. They found that Poisson kernels are also
dynamically invariant for the original Kuramoto model,
where the oscillator frequencies are non-identical. This
beautiful invariance property has its origin in group the-
ory [23] and has allowed many new insights to be gained
into the dynamics of the Kuramoto model and its rela-
tives [16, 24–26].

On the Poisson submanifold, two of the equations in
the system (4) decouple from the other four. Thus, as we
will see in detail below, the dynamics become effectively
four-dimensional there. And because of an additional
rotational symmetry (stemming from the fact that the
right hand side of Eq. (1) involves only phase differences,
not absolute phases), the flow can be further reduced to
a three-dimensional system, which appears later in this
paper as Eq. (9).

III. SIMULATION OF THE REDUCED SYSTEM

We now numerically explore the dynamics of the six-
dimensional system given by Eq. (4) to get a sense of
its equilibrium states. To do so, we recall that p is the

fraction of the N oscillators that are conformists, and we
define C as the relative intensity of the conformist cou-
pling: C = K1/(K1 − K2). Thus, values of C close to
1 mean the conformists are much more intense in their
desire to be like everyone else, as compared to the rel-
atively mild obstinacy of the contrarians. On the other
hand, when C is close to 0, the conformists are tepid
while the contrarians are passionate.

For our initial conditions, we choose each γs(0), Ψs(0)
and Θs(0) uniformly at random from [0, 1), [−π, π) and
[−π, π), respectively. In addition, we set the N constants
ψj such that each subpopulation is evenly spaced on the
interval [−aπ, aπ) for a ≤ 1. For example if the pN con-
formists are indexed first and the qN contrarians after,
we set ψj to be

ψj =


2aπ(j − pN/2)

pN
j = 1, . . . , pN,

2aπ(j − pN − qN/2)

qN
j = pN + 1, . . . , N.

(5)

As we noted in the previous section, choosing a = 1 con-
fines the trajectories to a distinguished submanifold of
the phase space in which the new phases φj for each sub-
population are distributed like a Poisson kernel. Choos-
ing a < 1 instead gives an initial condition off this special
manifold and therefore allows the system to explore other
parts of phase space [21, 27].

We begin by numerically integrating Eq. (4) from ini-
tial conditions on the Poisson submanifold. After tran-
sients have decayed we compute the final phase density
P (φ) and order parameter Z, defined by

Z ≡ Reiθ =
1

N

N∑
j=1

eiφj . (6)

We also compute the final order parameters of each sub-
population:

Zs ≡ rseiθs =
1

Ns

∑
j∈Js

eiφj , (7)

where J1 = {1, . . . , pN} and J2 = {pN+1, . . . , N}. Here
rs represents the degree of synchronization of the subpop-
ulation s, and θs denotes its average phase. Likewise, Ns
is the number of oscillators in this subpopulation. The
integration itself is done using Heun’s method with a time
step of 0.01.

Out of the whole 105 time steps, the first 7× 104 time
steps are discarded as transients, after which the quan-
tities of interest were measured and averaged for the re-
maining time steps. The system generally seems to end
up in one of four states (Fig. 2):

(a) The incoherent state, in which both the conformists
and contrarians are uniformly distributed around
the unit circle in the complex plane, yielding r1 =
r2 = 0. In terms of the political analogy discussed
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(a) incoherent state 

−π π

P(φ)

φ

(b) blurred π-state 

−π π

P(φ)

φ

(c) traveling wave state

−π π

P(φ)

φ

(d) π-state

FIG. 2: (Color online) Four states commonly observed in the
long-time behavior of numerical trials on the Poisson subman-
ifold. The integration was performed for N = 104 oscillators
and the final states are presented as histograms with a bin size
of 0.01. Conformist oscillators are shown in blue (dashed line)
and contrarian oscillators in red (solid line). The four states
shown are (a) the incoherent state at (p, C) = (1/20, 2/3),
(b) a blurred π-state at (p, C) = (1/4, 2/3), (c) a travel-
ing wave state at (p, C) = (1/4, 2/3) and (d) a π-state at
(p, C) = (4/5, 2/3).

earlier, this means that no predominant attitude
emerges in the population. All points on the polit-
ical spectrum are equally represented.

(b) A one-parameter family of blurred π-states, corre-
sponding to non-uniformly distributed populations
of conformists and contrarians on the unit circle.
The peaks of their phase distributions are blurred
and separated from one another by an angle of π.
Here the political interpretation is that two main
factions have emerged, in diametrical opposition to
one another. They could lie anywhere on the polit-
ical spectrum, but once they emerge, the contrar-
ians oppose the conformist view. And because of
the blurred nature of both peaks, “fringe” views
are also present on either side of the two main at-
titudes.

(c) A traveling wave state, in which the conformists
and contrarians exhibit full and partial phase syn-
chrony, respectively, with the peaks of their phase
distributions offset by an angle less than π. Here
the conformists are unified in their views, yet that
consensus view keeps changing, periodically cycling
through all possible points on the political spec-
trum. Meanwhile the contrarians oppose them, but
not quite diametrically, and their opinions remain
dispersed throughout.

(d) The π-state, in which the conformists and contrari-
ans are completely synchronized into two antipo-

-1

1

-1 1

ImZ

ReZ

(a)

-1

1

-1 1

ImZ

ReZ

(b)

-1

1

-1 1

ImZ

ReZ

(c)

-1

1

-1 1

ImZ

ReZ

(d)

FIG. 3: Trajectories of the order parameter Z(t) both (a) on
and (b)-(d) off the Poisson submanifold. The specific param-
eter values (p, C, a) for these states are (a) (1/2, 2/3, 1), (b)
(2/5, 2/3, 1/2), (c) (1/2, 2/3, 1/2) and (d) (11/20, 2/3, 3/10).

dal delta functions (and thus r1 = r2 = 1 and
|θ2 − θ1| = π). This simple state represents im-
placable polarization between two unified and un-
changing factions.

The offset by an angle less than π for the traveling wave
state induces a nonzero wave speed. Hence Z traces out
a circular orbit, as shown in Fig. 3(a). Interestingly, the
traveling wave state has been also found in analogous
systems with heterogeneous natural frequencies [14].

The long-time dynamics of Z becomes substantially
more complicated when we evenly space the constants
ψj on the interval [−aπ, aπ) for a < 1, corresponding
to initial conditions lying off the Poisson submanifold.
Typical trajectories appear either quasiperiodic or pos-
sibly chaotic in these cases, as shown in Figs. 3(b)-(d).
Similarly non-periodic behavior off the Poisson subman-
ifold has been seen in other systems of oscillators with
identical frequencies [15, 21, 22].

IV. ANALYSIS OF THE REDUCED SYSTEM

According to Refs. [15, 27], the Watanabe-Strogatz
transformation is the real part of the Möbius transfor-
mation. Additionally, we can convert γs in Eq. (4) to rs
via the relation γs = −2rs/(1 + r2

s) to obtain

ṙs =
1− r2

s

2
KsRe(Ze−iΘs),

Ψ̇s =
1− r2

s

2rs
KsIm(Ze−iΘs), (8)

Θ̇s =
1 + r2

s

2rs
KsIm(Ze−iΘs),
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where Re and Im denote the real and imaginary parts of
their arguments. We here note that the relation between
γs and rs works only on the Poisson submanifold. It is
not satisfied elsewhere (see details in Ref. [15]). Using
the fact that Z = pZ1 + qZ2 and defining δ = θ2 − θ1,
Eq. (8) becomes

ṙ1 = C(1− r2
1)(pr1 + qr2 cos δ),

ṙ2 = −(1− C)(1− r2
2)(pr1 cos δ + qr2), (9)

δ̇ = sin δ

[
p(1− C)

(
r1

r2
+ r1r2

)
− qC

(
r2

r1
+ r1r2

)]
.

By a fixed point analysis of Eq. (9), we can show that
the four states found above by simulation are in fact the
only generic equilibrium states of the reduced system re-
stricted to the Poisson submanifold [27]. We summarize
several interesting points of this analysis in the remain-
der of this section and compute the order parameter R
for the four different states. We do the latter by mak-
ing repeated use of the relation Z = pZ1 + qZ2. De-
composed more fully, this is Z = pr1e

iθ1 + qr2e
iθ2 or

Z = (pr1 + qr2e
iδ)eiθ1 .

A. Incoherent state

We start with the easiest case: The incoherent state
has r1 = r2 = 0, so its order parameter R is zero. By
a linear stability analysis [27], we find that this state is
stable when p < 1−C. This gives us our first bifurcation
value of p: pb = 1− C.

B. Blurred π-states

The one-parameter family of blurred π-states is given
by the following fixed points of Eq. (9): δ = π and
pr1 = qr2 (where r1, r2 6= 0). By our above equations
for Z, this implies R = 0. Linear stability analysis then
shows that the blurred π-states farthest from the incoher-
ent state begin to lose stability at pa = (1−

√
2C − 1)/2,

whereas loss of stability for the entire set of blurred π-
states occurs as p nears pb = 1 − C. Hence, there are
stable blurred π-states on the same region that the inco-
herent state is stable.

C. Traveling wave state

Next we turn to the traveling wave state. From
Fig. 2(c), it is clear that the conformists are fully syn-
chronized (r1 = 1) for this state, so Eq. (9) reduces to

ṙ2 = −(1− C)(1− r2
2)(p cos δ + qr2),

δ̇ = sin δ

[
p(1− C)

(
1

r2
+ r2

)
− 2qCr2

]
, (10)

where sin δ 6= 0. If we then solve for the fixed points of
this system, we obtain:

r2 =

√
p(1− C)

2qC − p(1− C)
, δ = cos−1(−qr2/p). (11)

This solution can only exist for 0 < r2
2 < 1, which implies

that the traveling wave state exists only for p greater than
pa = (1−

√
2C − 1)/2 and less than pc = C. Within this

region of existence, we can determine the order parameter
R for the traveling wave state using the fact that Z =
pr1e

iθ1 + qr2e
iθ2 . Since by definition Z = Reiθ, we know

that R2 = ZZ̄, or

R2 = p2 + 2pqr2 cos δ + q2r2
2. (12)

Substituting Eq. (11) into Eq. (12) gives

R =

√
p2 − p(1− p)2(1− C)

2C − p(1 + C)
, (13)

which goes to zero at p = pa, as the numerical data
suggests.

D. The π-state

Lastly, we consider the π-state. As Fig. 2(d) suggests,
the subpopulations are both synchronized (r1 = r2 = 1)
and antipodal to each other (δ = π). Substituting r1 =
r2 = 1 and δ = π into Z = pZ1 + qZ2 yields

R = 2p− 1 (14)

which can only be positive for p ≥ 1/2. A more system-
atic stability analysis of the π-state shows that it is stable
for p > max{C, 1/2} [27]. For example, when the con-
formist coupling is twice the magnitude of the contrarian
coupling (e.g. K1 = 1 and K2 = −1/2, and so C = 2/3),
Eq. (14) implies that the π-state is stable for p greater
than pc = 2/3. Interestingly, this agrees with the pc be-
yond which the traveling wave state does not exist. Yet
pc is not a bifurcation point since δ is always π for the
π-state but does not approach π for the traveling wave
state as p approaches pc. Instead, the r2 = 1 nullcline
corresponding to ṙ2 = 0 and a parallel nullcline corre-
sponding to δ̇ = 0 approach each other as p approaches
pc until they coincide and form a line of fixed points at
p = pc [27].

The above analysis indicates that the stable states
of the reduced system reach their boundaries of sta-
bility (and sometimes also existence) at three transi-
tional points: pa = (1 −

√
2C − 1)/2, pb = 1 − C, and

pc = max{C, 1/2}. We can verify this by first comput-
ing R for the numerically discovered fixed points found
at various values of p, and then plotting the theoretical
curves that we found above on top of these numerical
data. The results in Fig. 4 illustrate the level of agree-
ment between simulation and theory.



6

0

0.2

0.4

0.6

0.8

1

0 1

R

p

I II III IV

pa pb pc

FIG. 4: (Color online) Behavior of the order parameter R
for the four different types of equilibrium states as a function
of the conformist fraction p. Parameter values: C = 2/3,
N = 104 oscillators. The different symbols denote R values
of the different fixed points found in numerical simulations
of Eq. (1), for initial conditions on the Poisson submanifold.
Asterisks denote both the incoherent state and blurred π-
states; open squares denote the traveling wave state; filled
squares denote the π-state. The solid curve for pa < p < pc
traces the theoretical value of R for the traveling wave state
where it exists, and the line for p > pc gives the theoretical R
for the π-state on its domain of existence.

We finish by summarizing which states lie in which
regions delimited by the transitional points pa, pb and
pc. In general, there are four regions of behavior, and for
C = 2/3, their boundaries are pa = (1−

√
1/3)/2 ≈ 0.21,

pb = 1/3 and pc = 2/3. On these regions, we have found
the following states:

I: On 0 < p < pa, both the incoherent state and all
of the blurred π-states are stable.

II: On pa < p < pb, the incoherent state, some of the
blurred π-states, and the traveling wave state are
stable.

III: On pb < p < pc, only the traveling wave state is
stable.

IV: On pc < p < 1, only the π-state is stable.

To be more precise, the notion of stability being used
above is that of stability within the Poisson submanifold,
not stability within the full phase space. All states within
the Poisson submanifold are neutrally stable to pertur-
bations off the submanifold, because such perturbations
carry the system onto another invariant manifold of the
foliation discussed earlier.

V. SUMMARY

In this paper, we considered a system of identical os-
cillators with positive and negative global coupling and

investigated how the interplay between the positive and
negative interaction affected the collective dynamics and
equilibrium states of the system. We reduced the dynam-
ics of our system from N dimensions to six by means of
the Watanabe-Strogatz transformation, and found that
in the infinite-N limit there are four types of equilibrium
states of the system on a special submanifold of the phase
space (the invariant manifold of phase distributions given
by Poisson kernels). Using both numerical and analyti-
cal techniques, we characterized each of these equilibrium
states, paying particular attention to the illustrative case
in which the conformists were coupled twice as strongly
to the mean field as the contrarians were. Even for this
slice of parameters, however, we found that a menagerie
of complicated states exist throughout the phase space.
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