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Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators
from measured data. We use two phase modeling methods to quantify the dynamics of pairs of
coupled electrochemical oscillators, based on the phases of the two oscillators independently and the
phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to
the one-dimensional approach using phase difference. We quantify the dependence of the coupling
functions on the coupling magnitude and coupling time delay. We show differences in synchronization
predictions of the two models using a toy model. We show that the two-dimensional approach
reveals behavior not detected by the one-dimensional model in a driven experimental oscillator.
This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially
where intrinsic oscillator sensitivity and coupling evolve with time.
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I. INTRODUCTION

Systems of coupled oscillators have been investigated in a variety of fields. Examples include coupled lasers [1],
population dynamics [2], chemical reactions [3], and cardiorespiratory interactions [4, 5], among others. A theoretical
description of the system can be obtained in two ways: either write the model equations for the coupled systems
starting from the first principles, or reconstruct the model equations from observations. In many cases, e.g. in
biological systems, use of the former approach is greatly impeded by underlying complexity and lack of knowledge
about oscillation generation and coupling mechanisms.
In this paper we follow the second approach and reconstruct the interaction between a pair of experimental nonlinear

electrochemical oscillators. We discuss the basic theory, which we apply for our system of two oscillators with
weak coupling. The system is represented in terms of two phases, which in many cases may be simplified to a
single variable, the phase difference [6]. We show that phase models that preserve dependence on individual phases
generally provide a more detailed description of the interactions between two oscillators than do those based on the
phase difference. We compare results of the two modeling methods and discuss limitations of models based on phase
difference. We calculate from experimental data a two-phase model using a previously introduced technique [7]. Our
results experimentally verify phase reconstruction in a system with noise and connect the two-dimensional and one-
dimensional models [6, 8, 9]. We calculate the natural oscillator frequencies, changes in coupling directionality and
coupling time delay from the experimentally determined phase models. We also present experiments where coupling
functions exhibit higher order terms, and show that these terms are not captured by the one-dimensional model.

II. THEORY

Suppose we observe two interacting oscillators described by

~̇xi = ~Fi(~xi) + ε~pi(~xi, ~xj) , (1)

where i = 1, 2, j = 2, 1, and the parameter ε describes the strength of the interaction. Generally, the functions ~Fi are
different; moreover they can be of different dimension. The coupling functions ~pi can be different as well. We assume
that both systems when uncoupled, i.e. when ε = 0, possess stable limit cycles in their phase spaces. The asymptotic
dynamics of each oscillator (after transients die out) can be then described by a single variable, the phase [6, 9, 10].
Even when the Eqs. (1) of the coupled oscillating system are known their analytical treatment can be quite

complicated, if at all possible. An essential simplification can be made in the case of weak coupling, where applied
perturbations are small compared to the negative Lyapunov exponent(s) of each oscillator. For this case the oscillators
remain near their closed orbits and the dynamics of a pair of coupled systems is confined to the two-dimensional torus
in the phase space. Correspondingly, the dynamics can be parameterized by two phases [6, 9, 10],

φ̇i = ωi +Q(i)(φi, φj) . (2)

Here φi is the phase of oscillator i, φj is the phase of the other oscillator and ωi is the natural angular frequency of the

oscillator i, i.e. the frequency of the uncoupled system. The functions Q(i) describe the coupling between the systems.
The only a priori assumption about these functions is that they are 2π-periodic with respect to both arguments; in
particular, they can contain a constant term.
If the dynamical Eqs. (1) are known, the coupling functions Q(i) can be represented in the form of the power series

by means of a perturbative expansion [6],

Q(i)(φi, φj) = εQ
(i)
1 (φi, φj) + ε2Q

(i)
2 (φi, φj) + . . . , (3)

where the subscripts on Q(i) correspond to the order of approximation. Computation of the high-order terms repre-
sents, to the best of our knowledge, an unsolved problem, whereas the first-order phase approximation is widely used
in various applications [6, 8]. The first-order coupling functions can be written as

Q
(i)
1 (φi, φj) = ~Zi(φi) · ~hi(φi, φj) , (4)

where ~Z is the phase-dependent response function of the oscillator and ~h = ~p(~xi(φi), ~xj(φj)) is the applied stimulation.
In the simplest case when the scalar driving is independent of the phase of the driven system and enters the state-space
Eqs. (1) as an additive term, the coupling function can be represented as a product of two functions of one variable,

Q
(i)
1 (φi, φj) = Zi(φi)hi(φj). The phase description Eq. (2) can be valid for not-so-weak coupling as well: as long as a
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stable invariant torus in the phase space exists, the motion on it can be parametrized by the phases and the dynamics
can be written in the form of Eq. (2).
A large body of work concerns the description of two interacting oscillators as a function of the phase difference [11].

Theoretical studies and numerical simulations show that these one-dimensional phase models capture the important
synchronization properties of populations of similar oscillators with weak interactions [12–18]. Phase difference based
phase models also predict system behavior in electrochemical experiments [19]. The one-dimensional approach is
suitable, because the long-term dynamical effects, such as synchronization, depend mainly on the averaged coupling
functions q, discussed below.
The reduction to a one-dimensional description can be made if the coupling is also weak compared to the natural

frequency, i.e. the norm of the coupling function ||Q(i)|| ≪ ωi, and the natural frequencies of two systems are close
to a resonance condition, mω1 ≈ nω2. In this case one can introduce a slow variable, phase difference,

ψ = nφ2 −mφ1,

and average Eq. (2) over the common oscillation period T = 2πn/ω1 ≈ 2πm/ω2. In the case of similar oscillators
(m = n = 1), ψ reduces to φ2 − φ1. The averaged equations have the form [6],

φ̇i = ωi + q(i)m,n(ψ) , (5)

where the new, averaged coupling function qm,n is a function of the phase difference only,

q(i)m,n(ψ) =
ε

2π

∫ 2π

0

Q(i)(φ1,
m

n
φ1 +

ψ

n
)dφ1 . (6)

Thus, a description in terms of phase difference is possible only in vicinities of the resonant frequency ratios. For
each of the resonant tongues one should establish an averaged coupling function qm,n. Thus, although a complete
description of the coupled system for any frequency ratio can be achieved with one pair of two-dimensional functions
Q, a large set of one-dimensional coupling functions is required to provide the same result.
We illustrate the difference in synchronization predictions between two- and one-dimensional phase models by an

analysis of the following toy model of a harmonically driven oscillator

φ̇1 = ω1 + ε[cos(φ1) + cos(2φ1)] sin(φ2) (7)

φ̇2 = ω2. (8)

Averaging Eq. (7) using Eq. (6) yields two nontrivial one-dimensional coupling functions q1,1 = ε
2 sin(φ2 − φ1) and

q2,1 = ε
2 sin(φ2 − 2φ1); all other functions qn,m = 0. Thus, the averaged description of Eq. (7) predicts locking only

when ω1 ≈ ω2 and 2ω1 ≈ ω2, with triangular Arnold tongues. However, the tongues obtained by numerical simulation
of the full model (7) differ from the triangular shape when ω2 is farther from the resonance frequencies, as shown in
Fig. 1A and B. Furthermore, numerical analysis of Eq. (7) shows many locking regions, as seen in Fig. 1C, in contrast
to prediction of the reduced model. We explore the applications of the two-dimensional method and compare the one-
and two-dimensional methods in the following sections.

III. EXPERIMENTAL SETUP

Experiments were performed on an electrochemical cell consisting of two Ni working electrodes (99.98% pure), a
Pt mesh counter electrode, and Hg/Hg2SO4/K2SO4 (sat) reference electrode, with a 3M H2SO4 electrolyte, shown in
Fig. 2A. The cell was enclosed in a jacketed glass vessel maintained at a temperature of 11◦C. An ACM Instruments
multi-channel potentiostat was used to individually set the electrode potential Vi of each electrode such that the
electrodes undergo transpassive dissolution.
A 650 Ω resistor was attached to each electrode, causing the dissolution current to oscillate [20]. The resulting

dissolution currents were measured using a zero resistance ammeter attached to a real time data acquisition system,
Fig. 2A. The shape of the electrochemical oscillator waveform depends on applied voltage. Smooth oscillations with
a natural frequency of about 0.5 Hz are observed at potentials of approximately 1.105 V. Relaxational oscillations
with a frequency of about 0.35 Hz are observed around 1.20 V [21]. As the applied voltage of each electrode in the
experimental system can be chosen independently, any combination of smooth or relaxation oscillators is accessible.
Relaxational and smooth oscillations are shown in Fig. 2B and Fig. 2C, respectively. Here, oscillator 1 refers to the
more relaxational oscillator (V1 = 1.180 V) with a natural frequency of ν1 = 0.405 Hz ± 0.005 Hz, while oscillator 2
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FIG. 1. (a) Main synchronization tongue for the two-dimensional model Eq. (7) (solid line) and the tongue predicted by the
one-dimensional model q1,1 (dashed line). (b) The second tongue at ω2 ≈ 2 for the two-dimensional model (solid line) and for
the one-dimensional model q2,1 (dashed line). Here the averaging works well and the difference is pronounced only far from

resonance, see inset. (c) Devil’s staircase for the toy model Eq. (7) with ω1 = 1, for ε = 0.3; here Ω = 〈φ̇〉 where 〈·〉 is time
average. Locking regions at Ω/ω2 = 2, Ω/ω2 = 1, Ω/ω2 = 2/3, and Ω/ω2 = 1/2 are seen. Zoom of the plot (not shown) exhibits
further locking ratios, e.g. 3/2, 4/5, 3/4, and 3/5.

(V2 = 1.105 V) refers to the smooth oscillator with a natural frequency of ν2 = 0.479 Hz ± 0.002 Hz, where ν = ω/2π.
The range is due to the slow drift over time of the natural frequencies of the oscillators as an inherent property of the
system.

Negligible intrinsic electrical interactions exist between the uncoupled oscillators. The startup or shutdown of
an oscillator does not alter the behavior of the second oscillator. Furthermore, the oscillator dynamics have no
interdependence when both oscillators are functioning in the uncoupled state.
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FIG. 2. (a) Experimental apparatus with multi-channel addressable voltage and feedback. (b) Time series of relaxational
oscillations at V = 1.210 V. (c) Electrochemical dissolution time series showing smooth oscillations at a potential of V = 1.105 V.

Interactions were introduced using real-time coupling of the form:

∆V1(t) = K[k1x2(t− τ)] (9)

∆V2(t) = K[k2x1(t− τ)] (10)

where ∆V1,2 are the changes in the circuit potentials of the elements, K is the fixed overall coupling gain, k1 and k2
are the coupling gains on oscillator 1 and oscillator 2, respectively, such that 0 6 ki 6 1, and τ is the coupling time
delay. The scaled potentials of the elements as a function of time xi(t) are,

xi(t) = Vi(t)− Ii(t)Rp, (11)

where Vi are the applied potentials, Ii are the normalized currents, and Rp = 650 Ω is the channel resistance. Only
linear coupling is considered here, with and without time delay [22, 23].

IV. METHODS

The only information required by the phase models in Eqs. (2) and (5) is the instantaneous phases. The instan-
taneous phases are calculated directly from the electrochemical current time series using the phase space angle, as
shown in Fig. 3. Other definitions of phase are equally applicable provided they yield a one-to-one correspondence
between phase and location on the closed orbit [8, 24, 25]. For example, phase defined from percentage of trajec-
tory length between consecutive Poincaré surface of section crossings is useful for more complicated oscillations (e.g.
electrocardiograms) [7].
Electrodissolution currents of each element are measured at 250 Hz, filtered with a 129 point fourth order Savitsky-

Golay filter, and used to calculate the genuine phases. The Savitsky-Golay filter preserves the structure of the
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FIG. 3. Time series in Hilbert space; θi indicates protophase (a) for the relaxational oscillator, (b) for the smooth oscillator.
Note that although the phase portraits look very much alike, the distributions of θi are different, as shown in Fig. 4B.

FIG. 4. (a) Wrapped protophase of oscillator 1 (relaxational, V1 = 1.180 V) versus protophase of oscillator 2 (smooth,
V2 = 1.105 V) obtained via the Hilbert transform. (b) Phase transformation function, σ. σ(θ1) is dash-dotted, and σ(θ2) is
solid. (c) Wrapped genuine phases of the two oscillators, φ1 and φ2.

oscillation while removing nonphysical phase velocities caused by noise in the system. Although the maximum
amplitude of the relaxation oscillator (oscillator 1) tends to be underestimated, the phase is well-preserved; the
difference between the phases calculated from filtered and unfiltered signals is delta correlated.

Note that definitions of phase based on the Hilbert transform have inherent deviations in phase velocity as a function
of phase. These deviations arise from the non-sinusoidal nature of the oscillations. This introduces strong dependence
on phase into oscillator phase velocity in the absence of perturbations. Such a dependence contradicts the definition
of phase lying at the basis of Eq. (2), as in this equation phase increases uniformly in the absence of interactions.
Moreover, this dependence swamps the effect of perturbations on the instantaneous rate of phase advance, see Fig. 4A.
These phases obtained directly from the embeddings in Fig. 3 are thus referred to as θ, the protophases. In order to
isolate phase velocity changes resulting from perturbations, phase must be defined as increasing linearly in the absence
of perturbations. A nearly linearly increasing phase is obtained with the help of the protophase probability density
distribution (2π)−1σ(θi) [7], which is the inverse of the average instantaneous velocity of the oscillator through the
limit cycle, see Fig. 4B. The genuine phases φ result from the transformations dφi/dθi = σ(θi), and exhibit non-linear
phase advance in response to coupling or feedback only. This is evident in Fig. 4C, where the overall phase advance
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is uniform while localized excursions remain.
From the transformed, genuine phases φi we find the coupling functions Q, following the methods of [7]. First,

the phase of each oscillator is cleansed of nonuniform phase advance. Then the phase velocities are fit with a two-
dimensional Fourier expansion, Eq. (18) in [7] (when the phase space is not well-covered, phase velocities are instead
fit with a two-dimensional kerneling function). The coupling functions are then further cleansed using the method
in Section IV, part B in [7]. Numerics demonstrate that satisfactory results can be obtained already after the first
cleansing, since the second cleansing is small compared to the first. Note two limitations of the method (see [7] for
details): (i) if the coupling function contains a component dependent only on the phase of the driven system, it will
be cleansed; (ii) generally the coupling function contains a constant term which cannot be separated from the natural
frequency; this may be done only if several observations with different yet unknown coupling strength are available.
A matlab implementation of the techniques employed for the data analysis may be found online [26].
There is more than one way obtain the one-dimensional coupling functions, q(i). These can be obtained as in

Eq. (6), by averaging from the two-dimensional coupling functions Q(i), or they can be obtained directly from the
time series [3]. The methods are conceptually equivalent, and yield nearly identical results. The latter is easier to
implement numerically, and we use it here to obtain q(i). First, the periods of each oscillation are calculated. The
inverse of the period is the average frequency over the oscillation. Next, we calculate the average phase difference
over each oscillation. Here we express phase difference as obtained from the genuine phases; phase differences from
the protophases distort the coupling function if the oscillators are dissimilar. Finally, q(i) is obtained by fitting the
average frequency as a function of phase difference. The fitting can be performed with a Fourier series or a kerneling
function.

V. RESULTS

Experiments were performed using the two-oscillator electrochemical system described in Section III. Oscillator 1
has a relaxational waveform (V1 = 1.180V) and oscillator 2 has a smooth waveform (V2 = 1.105V). The oscillators
are coupled using the form in Eqs. (9) and (10). Phase models of the two oscillators are then reconstructed from the
genuine phase time series according to Eq. (2) or the procedure for the one-dimensional reconstruction discussed in
Section IV.

FIG. 5. Coupling function for oscillator 2 based on phase difference, q(2)(φ1 − φ2). (a) No time delay, τ = 0. (b) Time delay
equal to roughly three quarters of oscillator 2 natural period, τ = 1.8s.

In order to highlight the advantages of the two-dimensional coupling function, we compare the coupling functions
of the one- and two-dimensional models with symmetrical coupling with and without time delay. Fig. 5A shows
the one-dimensional coupling function of oscillator 2 based on phase difference. The phase model of oscillator 1 is
obtained in a similar fashion, but is not shown. This coupling function quantifies the oscillator’s average change in
frequency over a period. For example, when ∆φ = π/2 the frequency of oscillator 2 increases relative to its natural
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FIG. 6. Coupling function in Hz for oscillator 2 based on each phase independently, Q(2)(φ2, φ1). (a) No time delay, τ = 0.
(b) Time delay equal to three quarters the natural period of oscillator 2, τ = 1.8s.

frequency. Fig. 6A shows the two-dimensional coupling function of oscillator 2 based on each phase independently.
The one-dimensional phase model, Fig. 5A, is the average of this two-dimensional model over trajectories between
two crossings of φ2 = 0, i.e. one period. Note that the amplitude of the one-dimensional coupling function is an
order of magnitude smaller than the two-dimensional due to the averaging. The two-dimensional function provides
a mapping between instantaneous changes in phase velocity and the state of each system. For example, oscillator 2
advances most rapidly near φ1 = π/2 and φ2 = 3π/2.

Further experiments were performed in order to quantify the effects of time delay. From the definitions of the
coupling function in Eqs. (4) and (6), time delay is expected to shift the stimulation function in the phase of the
perturbing oscillator. Fig. 5B shows the coupling function of oscillator 2 based on phase difference for symmetric
coupling and time delay of τ = 1.8s. The phase model based on individual phases for this case is shown in Fig. 6B.
Notice that both coupling functions are translated as expected. However, the two-dimensional coupling function
clearly distinguishes between shifts in the two phases: Fig 6B becomes nearly identical to Fig 6A if one shifts the
phase of the forcing oscillators φ1 by τν12π = 4.58 rad. Therefore, changes in coupling time delay are measurable from
the two-dimensional model to within an additive factor of 2π. Time delay may be recovered from the one-dimensional
model provided that the response function is known to be time-invariant.

Now we investigate the effect of changing coupling magnitude on the phase models. Focus is placed on the two-
dimensional model, as it provides a more complete description of the system. Oscillator 1 is a relaxational oscillator
(V1 = 1.210 V) with a natural frequency of 0.42 Hz ± 0.02 Hz and oscillator 2 is a smooth oscillator (V2 = 1.105 V)
with a natural frequency of 0.53 Hz ± 0.01 Hz. Fig. 7 shows the coupling functions of oscillators 1 and 2 as a function of
the genuine phases. The means of the coupling functions are less than one percent of the natural frequency, indicating
a negligible change in average frequency due to coupling. Three coupling combinations (k1:k2) are shown: symmetric,
asymmetric (1:2) and highly asymmetric (1:10). As expected from Eq. (4), the amplitude of the surface variations
decreases with diminishing stimulation magnitude. Also note that the functional dependence of each coupling function
on its own phase is characteristic of the oscillator’s response function [19].

The magnitude of an oscillator’s response is quantified by the L2-norm of its coupling function, Q. Fig. 8 shows
the dependence of the coupling function norms on the coupling strengths k1 and k2. In this series of experiments
the coupling strength to oscillator 2 was held constant at k2 = 1.0 while the strength of the coupling to oscillator
1, k1, was increased incrementally from zero to 1.0. In a subsequent series of experiments with the same oscillators,
the coupling strength on oscillator 1 was held constant at k1 = 1.0 and k2 was decremented from 1.0 to zero. Fig. 8
shows that the norm of the coupling function increases linearly with increasing coupling strength. This experimentally
confirms that the coupling of electrochemical oscillators in the range of parameters studied is predominantly described
by first-order terms in the coupling strength, i.e. we are in the regime of linear response.
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FIG. 7. (top row) Q(1)(φ1, φ2) (bottom row) Q(2)(φ2, φ1). k2 = 1.0 for all plots, (a,d)k1 = 1.0, (b,e) k1 = 0.5, (c,f) k1 = 0.1.

The relative magnitudes of the coupling functions indicate the coupling directionality between the oscillators. In
the electrochemical system described above, the values of k1 and k2, and therefore the relative coupling magnitude,
are known from the experimental setup. The applied directionality is,

dA =
k1 − k2
k1 + k2

. (12)

Thus, dA varies between -1 and 1. The more positive the directionality, the stronger k1 is relative to k2. A directionality
of zero indicates equal coupling strengths, i.e. k1 = k2. We can compare this quantity with the observed directionality,
defined as

dO =
C1 − C2

C1 + C2
, (13)

where Ci = ||Q(i)||/ωi. As shown in Fig. 8, the relaxational oscillator has a greater response to the same coupling
gain and thus less voltage perturbation, according to Eq. (9). Therefore dA and dO are generally different. When the
norms are scaled by the response slope from Fig. 8, one restores dO = dA. Here we know k1,2 and thus can obtain
the response slopes; in general, k1,2 may not be known.

Next we carried out experiments on an electrochemical oscillator with adjustable harmonic forcing. Fig. 9 shows
the coupling functions, Q(1) and q(1), when the forcing frequency is 5% faster (A and C), and when the forcing
frequency is 5% slower (B and D) than the natural frequency of the oscillator for a smooth (V = 1.105V) oscillator.
We see that the two-dimensional coupling function varies with forcing frequency, while the change is not detectable
in the one-dimensional coupling function. The observed dependence of the two-dimensional coupling functions on the
frequency of the driving has also been observed numerically with the harmonically forced van der Pol and periodic
Rössler oscillators.
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FIG. 8. (a) Relaxational oscillator: Norm versus gain k1, linear fit: ||Q(1)||= 0.045 k1 + 0.003, R2 = 0.998, (b) smooth

oscillator: Norm versus gain k2, linear fit: ||Q(2)|| = 0.032 k2 + 0.001, R2 = 1.000, where R2 is the square of the correlation
coefficient.

VI. DISCUSSION

In this paper we evaluate the coupling functions for two coupled nonlinear electrochemical oscillators directly from
measured signals. We evaluate both the one- [3, 29] and two-dimensional [7] coupling functions and compare the results
of the models. While both models may recover changes in coupling time delay, only the two-dimensional model clearly
distinguishes between changes in oscillator character and changes in time delay. We show that the relative magnitudes
of the coupling functions quantify the directionality of coupling [27, 28]. Using a toy model we show that the two-
dimensional model predicts more synchronization regions and predicts the synchronization gain more accurately than
the one-dimensional model. With an experimental oscillator driven by a harmonic voltage perturbation, we show that
the two-dimensional model captures changes in the coupling function that are not detected by the one-dimensional
coupling function.
We changed the coupling time-delay and calculated the one- and two-dimensional coupling functions (Figs. 5 and 6).

The two-dimensional function indicates the precise configurations of both phases that correspond to maximum and
minimum phase advance. Phase models based on generalized phase difference average out dependence of phase
advance on the individual phases. Therefore in a one-dimensional coupling function, a shift may be due to changes
in time delay or in oscillator characteristics. Systems where the coupling and intrinsic system properties evolve
with time include physiological and medical applications. Unless the oscillator is known to be time-invariant, the
two-dimensional coupling function is the preferable model for inferring time delay.
We performed experiments in which we varied the ratio of the coupling components, k1 and k2 in Eqs. (9) and (10).

We then calculated the two-dimensional coupling functions. Deviations from linear phase advance indicate points in
phase space where an oscillator is susceptible to perturbation and is stimulated. This is nicely visualized in the top
row of Fig. 7 which shows the instantaneous frequencies of the relaxational oscillator. There is a dominant ridge in
the middle of the surface corresponding to maximum amplitude of the smooth oscillator, and therefore the greatest
stimulation. A similar result is seen for the smooth oscillator in Fig. 7C. The largest instantaneous frequency on the
ridge occurs near φ1 = 3π/2, which corresponds to the large amplitude in the oscillator phase-dependent response
curve [19]. From the coupling functions, the coupling directionality was calculated, as in Eq. (13). The nearly linear
increase in the norms of the coupling functions with gain, shown in Fig. 8, is a verification of the two-dimensional
reconstruction.
Using the toy model of Eq. (7), we highlight the differences of the predictions of the one- and two-dimensional

models. We construct two Arnold tongues, and show that the synchronization gains predicted by the two models
differ increasingly as the forcing frequency becomes farther from the resonance condition. Additionally, we show
that the two-dimensional model predicts many regions of synchrony in a Devil’s staircase; the one-dimensional model
predicts only two regions of synchrony. The differences between the predictions of the two models in a relatively
simple and explicitly defined system illustrate how the two models may differ in more complex systems.
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FIG. 9. Experimental results, (a) Q(1) with ν/ω = 0.95, (b) Q(1) with ν/ω = 1.05, (c) q
(1)
1,1 with ν/ω = 0.95, (d) q

(1)
1,1 with ν/ω

= 1.05.

Finally, we show from experimental data that the two-dimensional coupling function depends upon the forcing
frequency, while the one-dimensional coupling function does not (Fig. 9). As already mentioned, the phase approxi-
mation is valid if the cycle is sufficiently stable and therefore the amplitudes can be considered as fixed. For this case
the coupling function Q(i) can be reconstructed from data. If the coupling is sufficiently small, this function can be

approximated by only one term of the series Eq. (3), i.e. Q(i)(φi, φj) ≈ εQ
(i)
1 (φi, φj), and in this approximation the

function depends solely on the phases, but not on the frequencies. However, the condition when the first approxi-
mation suffices is not yet known, and if it is not fulfilled, we can expect a dependence on the frequency and on the
amplitude of the forcing. In this experiment, neither the stimulation function nor the response function changes, so
we may infer according to Eq. (4) that the first-order approximation does not hold. The effect of forcing frequency
on the coupling function was not previously predicted or shown; this effect as well as the range of applicability of the
first-order approximation represent opportunities for further study.
An interesting and practically important problem is determination of the response function Zi(φi) from the obser-

vation of the driven system. The ability to separate stimulation and response could be useful in any system where
coupling evolves over time, such as system where learning occurs [30, 31]. When the first order approximation is

valid, as in Eq. (4), the coupling function can be represented as a product Q
(i)
1 (φi, φj) = Zi(φi)hi(φj). Because there

is indication of significant higher order terms in the coupling function, the first-order approximation is not valid here
and the deconvolution is not possible. We can suggest an alternative explanations for this; the driving may enter the
state-space Eqs. (1) as a multiplicative term, e.g. as f(x1)g(νt); in the process of phase reduction this term yields a
function of two phases which cannot be written as a product of two one-dimensional functions. This important issue
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also requires further studies.
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