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Despite extensive work on traffic dynamics and epidemic spreading on complex networks, the
interplay between the two types of dynamical processes has not received adequate attention. We
study the effect of local-routing based traffic dynamics on epidemic spreading. For the case of
unbounded node-delivery capacity where the traffic is free of congestion, we obtain analytic and
numerical results indicating that the epidemic threshold can be maximized by an optimal routing
protocol. This means that epidemic spreading can be effectively controlled by local traffic dynamics.
For the case of bounded delivery capacity, numerical results and qualitative argument suggest that
traffic congestion can suppress epidemic spreading. Our results provide quantitative insight into the
nontrivial role of traffic dynamics associated with local routing scheme in the epidemic spreading.
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Understanding various dynamical processes on com-
plex networks is a central theme in modern network sci-
ence [1]. Two types of dynamical processes that have
been studied extensively are epidemic spreading [2, 3]
and traffic dynamics [4]. Epidemic spreading is relevant
to problems ranging from disease propagation in a human
society to virus spreading on computer networks. Traffic
dynamics concern mainly how information or “packets”
can be delivered efficiently from one location to another
on a network and the conditions under which congestion
may emerge.

The focus of previous works on spreading was mainly
on how the network topology affects the epidemics. In
fact, a typical approach in this area is to associate a
link with certain probability of infection. That is, if
two nodes, one infected and another susceptible, are con-
nected, then the susceptible node has certain probabil-
ity to be infected. The effect of network topology on
epidemic spreading can then be conveniently character-
ized by the epidemic threshold, the critical probability
of infection below which the virus dies out. What might
happen in a realistic situation is that, even when there
is a path connecting two nodes, infection will not prop-
agate unless some kind of “packet” is delivered between
the nodes. For example, a computer virus can spread
through email exchanges. Without such an actual “de-
livery” or transportation process, even if there is a path
linking two computers, an infected computer will not be
able to infect the other one. Another example is air
travel, which by acting as effective traffic shortcuts may
accelerate the propagation of annual influenza [5].

The first attempt to incorporate traffic dynamics in
epidemic spreading was made recently by Meloni et al.
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[6], who introduced a theoretical approach to study-
ing the result of an epidemic spreading process driven
by transport of virus. In particular, they cast the
susceptible-infected-susceptible (SIS) model [7] in a flow
scenario where contagion is carried by packets traveling
across the network. A susceptible node is more likely to
be infected if it receives more packets from infected neigh-
bors, and packets are forwarded following the shortest
path or the greedy algorithm [8].

In this Rapid Communication, we study traffic-driven
epidemic spreading dynamics but under the assumption
of local-routing protocol [9, 10] in the sense that a node
has knowledge only about its nearest neighbors’ degrees.
Our approach is to take one of the previously studied
local-routing schemes and incorporate the resulting traf-
fic dynamics into the SIS model for epidemic spreading.
We find that the routing scheme can affect the epidemic
dynamics in a significant manner. Quantitatively, our
result can be explained, as follows. Let α be a general
parameter characterizing the local-routing process, e.g.,
determining the probability that a packet is sent to which
neighboring node. The issue of how traffic dynamics af-
fects epidemic spreading can then be addressed by inves-
tigating how the epidemic threshold depends on α. We
find numerically and analytically that, when the network
is free of traffic congestion, the epidemic threshold is not
a monotonic function of α. In fact, the threshold can be
maximized by a proper choice of α. From the standpoint
of control, our result means that a suitably designed or
controlled local traffic-routing scheme can suppress the
emergence of large-scale epidemic on the network. Traf-
fic congestion, on the other hand, tends to suppress epi-
demic spreading.

Our model can be described, as follows. (i) Local rout-
ing protocol. Given a network, at each time step, R new
packets are generated with randomly chosen sources and
destinations, and each node can deliver at most C pack-
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FIG. 1: Average packets traveling time 〈T 〉 as a function
of α for different values of γ. Each data point results from
an average over 100 different realizations. The curve is the
theoretical prediction derived from Eq. (2) for γ = 3.

ets towards their destinations. To transport packets, each
node performs a local search among its neighbors. If a
packet’s destination is found within the searched area,
the packet is delivered directly to its target and then
removed from the network. Otherwise, the packet is for-
warded to node i, one of the neighbors of the search-
ing node, according to the preferential probability [10]:
Πi = kαi /Σjk

α
j , where the sum runs over the neighbors

of the searching node, ki is the degree of node i, and α is
an adjustable parameter characterizing the local-routing
scheme. For α > 0(< 0), the packet has a larger probabil-
ity to be delivered to a larger (smaller)-degree neighbor
of the searching node. When α = 0, the packet is for-
warded to a randomly chosen neighbor. The queue length
of each agent is assumed to be unlimited and the first-
in-first-out principle holds for the queue. (ii) Epidemic
dynamics. After a transient time, the total number of de-
livered packets at each time will reach to a steady value,
then an initial fraction of nodes ρ0 is set to be infected
(e.g., we set ρ0 = 0.1 in numerical experiments). The in-
fection spreads in the network through packet exchanges.
All packets in an infected node are infected while all pack-
ets in a susceptible node are uninfected. A susceptible
node has the probability β of being infected every time
it receives an infected packet from a infected neighbor.
With probability 1 − β, the virus in an infected packet
will be killed by anti-virus software in a susceptible node.
The infected nodes are recovered at rate µ (here, we set
µ = 1).

We study our model on scale-free networks which fol-
low a power-law degree distribution: P (k) ∼ k−γ . We
construct scale-free networks by the uncorrelated config-
uration model (UCM) [11]: (i) Assign to each node i, in
a set of N initially disconnected nodes, a number ki of

stubs, where ki is drawn from the probability distribution
P (k) ∼ k−γ and subject to the constraintsm ≤ ki ≤

√
N

and
∑

i ki even. (ii) Construct the network by randomly
choosing stubs and connecting them to form edges, re-
specting the preassigned degrees and avoiding multiple
and self-connections.
In this Rapid Communication, we set m = 5 and the

network size N = 2000. In the UCM, the maximum con-
nectivity of any node kc =

√
N . Using again the continu-

ous k approximation, the normalized connectivity distri-
bution has the form P (k) = (γ− 1)(m1−γ −k1−γ

c )−1k−γ .
We first consider the case where the node delivering ca-

pacity is unbounded: C → ∞, so that traffic congestion
will not occur in the network. Numerically, we have ob-
served that, for a given value of α, the number of packets
Np in the network plateaus, say at Nsp, after a transient
time, where Nsp depends on α. A quantity that plays an
important role in epidemic spreading is the average trav-
eling time of a packet on the network, 〈T 〉, which can be
calculated analytically by treating the process of packet’s
wandering through the network as a biased random walk
[12]. The mean first-passage time from a node i to an
arbitrary node that belongs to the nearest neighborhood
of j is:

Tij = 1 +
N〈kα+1〉

kj

( 〈k〉
〈k2〉

)α+1

. (1)

We thus have

〈T 〉 =
∑

kj

P (kj)Tij = 1 +N〈kα+1〉〈k−1〉
( 〈k〉
〈k2〉

)α+1

.

(2)
The quantity 〈kθ〉 can be calculated by 〈kθ〉 =
∫ kc

m
P (k)kθdk. We then have 〈kγ−1〉 = (γ −

1)(m1−γ − k1−γ
c )−1 ln(kc/m) and 〈kθ〉 = (γ − 1)(m1−γ −

k1−γ
c )−1(kθ−γ+1

c −mθ−γ+1)/(θ − γ + 1) (for θ 6= γ − 1).
Substituting these relations into Eq. (2) yields 〈T 〉. Fig-
ure 1 shows 〈T 〉 as a function of α for different values of
γ. We see that 〈T 〉 is apparently not a monotonic func-
tion of α. In fact, 〈T 〉 attains its minimum for α ≈ 0.5,
which can be understood by noting that packets’ search-
ing areas will increase if they are delivered to hubs. As
a result, some proper positive value of α helps packets
find their destinations more quickly. However, too large
values of α make packets traverse among hubs, increasing
the traveling time. Note that, since the delivery capacity
is unbounded, at each time step each node can deliver
all packets in its queue. The value of Nsp can thus be
determined as Nsp = R〈T 〉.
We now simulate the epidemic process driven by traffic

dynamics. Figure 2 shows the density of infected nodes ρ
as a function of the spreading rate β for different values
of α. We observe that for each value of α, there exists an
epidemic threshold βc, beyond which the density of in-
fected nodes ρ is nonzero and increases as β is increased.
For β < βc, the epidemic dies out and ρ = 0. Figure
3 shows the dependence of βc on α for different values
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FIG. 2: (Color online) Density of infected nodes ρ as a func-
tion of the spreading rate β for different values of α. Each
curve results from an average over 100 different realizations.
The packet-generation rate is R = 50 and networks have
γ = 3.
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FIG. 3: (Color online) Epidemic threshold βc as a function
of α for different values of γ. The packet-generation rate
R = 50. Each data point results from an average over 100
different realizations. The curves are theoretical predictions
from Eq. (5). The solid, dash, dot curve corresponds to the
theoretical prediction for γ = 2.1, 3 and 4, respectively.

of γ. One can observe a non-monotonic behavior. For
different values of γ, βc is maximized for α ≈ −0.5 (we
have checked that the optimal value of α corresponding
to maximal βc is almost unchanged for 2 < γ < 5). In
the following we provide an analytic derivation of the
relation between βc and α.

Based on the heterogeneous mean-field theory [2], the

rate equations for the epidemic dynamics is dρk/dt =
−ρk(t) + βnk[1 − ρk(t)]Θ(t), where the first term is the
recovery rate of infected nodes, and the second term
represents the probability that a node with k links be-
longs to the susceptible class, [1-ρk], and gets the in-
fection via packets traveling from infected nodes. The
traveling process is determined by the spreading prob-
ability β, the number of packets nk received by a
node of degree k at each time step, and the proba-
bility Θ(t) that a packet travels through a link point-
ing to an infected node. The probability Θ(t) takes
the form Θ(t) = ΣkP (k)nkρk/ΣkP (k)nk. This expres-
sion, when combined with the stationary solution of ρk,
ρk = βnkΘ/(1+βnkΘ), gives the following self-consistent
equation for Θ:

Θ =
1

ΣkP (k)nk

∑

k

P (k)βn2
kΘ

1 + βnkΘ
. (3)

The trivial solution is Θ = 0. In order to obtain a non-
trivial solution, we impose the condition

1

ΣkP (k)nk

d

dΘ

(

∑

k

P (k)βn2
kΘ

1 + βnkΘ

)∣

∣

∣

∣

Θ=0

> 1, (4)

from which the epidemic threshold is obtained as βc =
〈nk〉/〈n2

k〉. From the analysis in Ref. [10], the rela-
tionship between the number of packets nk received by
a node and its degree k is nk = Ak1+α, where A is
a constant. Since the delivery capacity is unbounded,
at each time step, the total number of delivered pack-
ets can be written as Nsp =

∑

k NP (k)nk. Using the
relation Nsp = R〈T 〉, we obtain R〈T 〉 = AN〈k1+α〉,
which gives A = R〈T 〉/(N〈k1+α〉) and consequently,
nk = R〈T 〉k1+α/(N〈k1+α〉). Substituting this expres-
sion into βc = 〈nk〉/〈n2

k〉, we get the epidemic threshold
as

βc =
N

R〈T 〉
〈kα+1〉2
〈k2α+2〉 . (5)

Utilizing the formulas for 〈kγ−1〉 and 〈kθ〉 (for θ 6= γ−1),
we can calculate βc. The comparison between numerical
and theoretical values of βc is shown in Fig. 3 (we use
the numerical values of 〈T 〉 in Eq. (5) to better predict
numerical results).
When the node delivery capacity is finite, traffic con-

gestion can occur. There now exists a critical packet-
generating rate Rc, above which congestion can occur in
the sense that, for R ≤ Rc, Np reaches a constant value,
but for R > Rc, Np tends to increase continuously with
time. Figure 4 shows the epidemic threshold βc as a
function of R for finite and infinite C. One can see that,
βc scales inversely with the packet-generation rate R for
unbounded C, as predicted by Eq. (5). However, βc de-
creases to a steady value as R increases for bounded C.
For R ≤ Rc, βc is identical for bounded and unbounded
delivery capacities, which is understandable because of
the absence of congestion in both cases. Our theoretical
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FIG. 4: (Color online) Epidemic threshold βc as a function of
the packet-generation rates R for C = 15 and C → ∞. We
set α = −1 and γ = 3. The line is the theoretical prediction
from Eq. (5). For C = 15 and α = −1, the critical packet-
generating rate Rc = 40.

formula of βc for the unbounded delivery-capacity case
is thus applicable for the corresponding bounded case.
However, for R > Rc, we observe that the value of βc is
larger for the bounded than the unbounded case, indi-
cating that traffic congestion can suppress the epidemic
dynamics. Qualitatively, this can be understood by not-
ing that, once a node becomes congested, the number of
packets in its queue will exceed its delivery capacity be-

cause the node can deliver only C packets at each time
step. A decrease in the number of delivered packets can
slow down the process of epidemic spreading. To promote
spreading, the rate β must be correspondingly larger than
that for the unbounded delivery-capacity case.

In conclusion, we studied the effects of local-routing
scheme on traffic-driven epidemic spreading on scale-free
networks. For the case of unbounded node delivery ca-
pacity so that the traffic is never congested, we derived
a theory to predict the epidemic threshold as a function
of a basic parameter characterizing the routing process.
The relation was found to be non-monotonic, where an
optimal value of the routing parameter can maximize the
epidemic threshold. This means that epidemic spreading
can be controlled by fine-tuning the routing scheme. For
the case of bounded node delivery capacity in the pres-
ence of traffic congestion, we argued with numerical sup-
port that congestion can in fact be beneficial if one wishes
to suppress epidemic spreading. The interplay between
traffic dynamics and epidemic spreading turns out to be
quite interesting, and the possibility that the former can
be used to control/suppress the latter can be of broad
interest to a number of fields such as computer science
and public health.
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