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Bistability of bursting and silence regimes in a model of a leech heart interneuron

Tatiana Malashchenko, Andrey Shilnikov, and Gennady Cymbalyuk
Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA

Bursting is one of the primary activity regimes of neurons. Our study is focused on determining a generic
biophysical mechanism underlying the co-existence of the bursting and silent regimes observed in a neuron
model. We show that the main ingredient for this mechanism isa saddle periodic orbit. The stable manifold
of the orbit sets a threshold between the regimes of activity. Thus, the range of the controlling parameters,
where the co-existence is observed, is limited by the bifurcations’ values at which the saddle orbit appears and
disappears. We show that it appears through the sub-critical Andronov-Hopf bifurcation, where the equilibrium
representing the silent regime loses stability, and disappears at the homoclinic bifurcation. Correspondingly, the
bursting regime disappears in close proximity to the homoclinic bifurcation.

PACS numbers: 05.45.-a,87.19.ad,87.19.ll

INTRODUCTION

Cardiac cells and a variety of neurons have been shown to
exhibit bistability [1–5]. Certain perturbations of the state of
a bistable excitable cell may trigger a switch between two
co-existing regimes of activity, such as, for example, peri-
odic spiking and silence in a cardiac cell [5], and in the gi-
ant squid axon [6]. The mechanisms supporting multistabil-
ity in excitable cells are not well understood. The more such
mechanisms we know, the closer we will be to applying this
knowledge to the development of new biofeedback stimula-
tion treatments preventing the onset of pathological regimes
such as seizures, by inducing a switch back to a normal regime
[7–10]. Analysis of the dynamical mechanisms supporting
bistability is facilitated by the appropriate choice of an in-
vertebrate model system [11]. Such a system allows the in-
vestigation of bistability on a cellular level using identified
neurons [6, 12, 13]. For example, the hand-in-hand mod-
eling of and experiments on the neuron R15 from the mol-
lusc Aplysia demonstrated the bistability of bursting and tonic
spiking [12, 14]. Another classical example of such a sys-
tem is the celebrated squid giant axon made famous by the
studies of ionic currents by Hodgkin and Huxley [15]. These
two components - first, having a neuron which is identified so
that a researcher can always find it from preparation to prepa-
ration; and, second, having a biophysically accurate model
which describes the dynamics of these regimes - make it no
surprise that it is the number one system where the bistabil-
ity of tonic spiking and silence is studied with an exemplary
thoroughness. These studies have made the coexistence of
tonic spiking and silence into probably the most extensively
studied type of bistability [6, 16–19]. In a striking contrast,
there is a gap in our knowledge when it comes to understand-
ing the mechanisms supporting the bistability of bursting and
silence in the dynamics of a single neuron. In this work we de-
scribe the mechanism producing bistability in the leech heart
interneuron.

Several different classes of neurons displayed the coexis-
tence of tonic spiking and silence [1, 3, 4]. The coexistence
of regimes implies that their basins of attraction are separated
by a barrier created by an unstable regime. The mechanisms

supporting bistability can be classified in terms of the unsta-
ble regime involved. Models exhibiting coexistence of tonic
spiking and silence usually have either a saddle equilibrium or
saddle periodic orbit involved. A stable manifold of a saddle
separates the rest state and tonic spiking, setting a threshold
between these two attractors. Purkinje cells and motoneurons
were shown to exhibit the type of bistability based on a saddle
equilibrium [4, 20]. The Hodgkin-Huxley model has bistabil-
ity based on a saddle periodic orbit [19].

The saddle periodic orbit commonly appears through the
sub-critical Andronov-Hopf bifurcation, which is a ubiqui-
tous cause of bistability in different nonlinear systems. In the
Hodgkin-Huxley model a saddle orbit terminates at a saddle-
node bifurcation for periodic orbits, at which the stable and
unstable periodic orbits coalesce and disappear. The bifurca-
tions which determine the appearance and disappearance of
the unstable periodic orbit limit the range of the control pa-
rameter values for which the bistability exists. This bistabil-
ity investigated in the model has been clearly experimentally
identified in the squid giant axon under lowCa2+ bath con-
centration; by applying a single current pulse to a squid axon
the transition between tonic spiking and silence was shown
[6]. The unstable oscillatory regime was recorded for sev-
eral periods before the activity settled to one of the attract-
ing regimes. This example unites experimental and theoretical
studies and illustrates the advantages of studying the neuronal
dynamics of identified neurons.

Motor control of rhythmic movements commonly employs
specialized oscillatory neuronal networks, central pattern gen-
erators (CPGs) [11]. The leech heart beat CPG is one of the
best studied invertebrate neuronal networks, with a clearly
identified function, a set of identified participating neurons,
and well developed biophysically accurate models. It con-
sists of a small number of interneurons distributed over sev-
eral ganglia. Those located in ganglia 3 and 4 are responsible
for generating basic rhythm [22]. Here we focus on the dy-
namics of a single interneuron from either ganglion 3 or 4.
The predictions of this work could be tested in further stud-
ies since synaptic interaction within this CPG can be blocked
pharmacologically [21, 22]. These neurons are particularly
attractive for analysis in terms of the theory of dynamical sys-
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tems since their membrane ionic currents have been measured
and well described by a canonical model using the Hodgkin-
Huxley formalism [23]. The canonical model has proven it-
self as a powerful tool in predicting new phenomena [23, 24].
Depending on the value of the parameters, the model can ex-
hibit different regimes including tonic spiking, bursting, si-
lence, and subthreshold oscillations. The bistability of burst-
ing and silence has also been observed in this model [24]; and
the goal of this study is to describe the mechanism which sup-
ports it. We start by showing that the switch from silence
to bursting activity can be achieved by current perturbation.
We show the involvement of the unstable subthreshold oscil-
lations; and with one-parameter bifurcation analysis we de-
scribe the origin and disappearance of the subthreshold os-
cillations. Finally, we performed two-parameter bifurcation
analysis to show the range of leak current parameters where
bistability can be observed.

RESULTS

We studied the dynamics of the canonical leech heart in-
terneuron model. Bistability of bursting and silent regimes
had been demonstrated previously [24], but the mechanism
supporting it was not described. The model contained nine
voltage dependent currents: fast calcium current-ICaF , slow
calcium current-ICaS , fast sodium current-INa, delayed
rectifier-potassium current-IK1, persistent potassium current-
IK2, fast transient potassium current-IKA, hyperpolarization
activated cationic current-Ih, persistent sodium current-IP ,
and leak current-Ileak and was described by a system of 14
differential equations [23] (Appendix). The parameters of
the canonical model were tuned to produce activity with a
waveform close to the one experimentally observed [23, 24].
The trajectories of this model were obtained using the Matlab
ODE solver, ode15s. Absolute tolerance and relative tolerance
were10−9 and10−8. The integration and bifurcation analysis
were performed using the software package Content which is
freely available athttp://www.staff.science.uu.
nl/~kouzn101/CONTENT/ [25]. The integration of equa-
tions was done using the Runge-Kutta method of the 4-th or-
der with the tolerance of integration set as10−9. Bistability
was reported in the model with elevated conductance of the
leak current,gleak.

We were able to elicit a switch from silence to bursting
activity by applying a square pulse of current. The switch
could be triggered by either a negative or positive pulse
(Fig. 1). All parameters includingEleak were set to the
canonical values, butgleak was set to 10.7 nS; the canonical
value is 9.9 nS [23, 24]. The initial conditions of voltage
and gating variables were set so that the model initially
exhibited silence. We used square pulses with a duration
of 0.03 sec. In Fig. 1A a hyperpolarizing pulse of current
with the amplitude of 0.05 nA switched the activity from
silence to the bursting regime. By trying different amplitudes
of the pulse, we found that negative pulses within the range
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FIG. 1: Perturbation by a square pulse of current switches the regime
of activity from silence into bursting. A) A negative, hyperpolarizing
pulse of currentIinj = -0.05 nA switches activity from silence to
bursting. The minimum magnitude ofIinj which can induce the
switch is -0.02131 nA. B) A positive, depolarizing pulse of current
Iinj = 0.05 nA also initiates the bursting activity. For either polarity
of the pulse, the pulse duration was 0.03 sec. To switch the activity,
Iinj has to be larger than the value of 0.0175 nA. The parameters of
the leak current areEleak = -0.0635 V andgleak = 10.7 nS.

-0.0213 nA <Iinj < 0.0 nA did not switch silence into the
bursting regime, while negative pulses with an amplitude
larger than 0.0213 nA did switch the activity. Perturbations
of the initially silent neuron by the depolarizing square pulse
of current showed that only a pulse with an amplitude larger
than 0.0175 nA could switch the activity from silence to
bursting. Figure 1B shows the example of perturbation by a
positive pulse with the amplitudeIinj = 0.05 nA. For a pulse
duration of 0.03 sec, the critical values,Iinj = -0.0213 nA and
Iinj = 0.0175 nA, set two thresholds for the amplitude of the
pulse of current,Ith, for the switch from silence to bursting-
negative and positive. Repeating this analysis we found the
two thresholds for pulses with different durations (Fig. 2).
The longer the duration of the pulses was, the smaller the two
thresholds were. The two data sets obtained fit well to the
empirical Lapicque strength-duration formula describingthe
property of the minimum strength pulse triggering a spike in
an excitable cell [26–28]:

Ith = Irheobase
1−eT/τm

,

whereIrheobase is the asymptotic current’s threshold value for
the infinitely long pulse,T is the pulse duration, andτm is a
time constant characterizing the process of charging the cell’s
membrane.

Our previous study of the leech heart interneuron model
showed that the bistability of bursting and silence is associ-
ated with the Andronov-Hopf bifurcation [24]. These results
suggest that the separating barrier between the two attractors,
bursting and silent, is the stable manifold of a saddle periodic
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FIG. 2: The strength-duration relationships of the minimumdepo-
larizing (gray) and hyperpolarizing (black) square pulsesof current
switching the silent regime into the bursting regime. To toggle the
switch the pulse strength must be larger than the thresholds, Ith de-
termined by the relationships. The two data sets (dots) wereobtained
numerically and then fitted to the Lapicque formula (curves). The
parameters of the leak current are the same as in Fig. 1.

orbit. The Lapicque formula approximates well the strength-
duration relationship of a square pulse of current which is suf-
ficient to move a phase point from the stable stationary state
across the stable manifold into the basin of attraction of burst-
ing activity.

The unstable orbit disappears at a homoclinic bifurcation

We investigated the stability of the equilibria of the model
for Eleak = -0.0635 V. Evolution of the equilibria and their
stability were analyzed withgleak being varied as the bifur-
cation parameter in the Content software. The plot of the
membrane potential associated with each equilibrium versus
the bifurcation parametergleak exhibits a Z-shaped curve of
the equilibria branches. This curve has two branches made
of the equilibria which are the hyperpolarized and depolar-
ized rest states, separated by the saddle. First, we set a large
value ofgleak, so that the model stayed at the stable hyper-
polarized stationary state. We examined how the stability of
the hyperpolarized equilibrium changed in response to a de-
crease in the bifurcation parametergleak (Fig. 3). The hyper-
polarized equilibrium lost its stability through the sub-critical
Andronov-Hopf bifurcation. ForEleak = -0.0635 V, the bifur-
cation occurred atgAH

leak = 10.67 nS; and the stable rest state

became a saddle-focus. The sub-critical Andronov-Hopf bi-
furcation (AH) gave rise to an unstable periodic orbit with
zero amplitude and period 3.05 sec. As the bifurcation param-
etergleak was increased, the amplitude of the unstable orbit
grew proportionally to

√
gleak − 10.67 while gleak was close

to the bifurcation valuegAH
leak. As the parametergleak was

increased further the unstable orbit approached the saddlelo-
cated on the middle branch of the Z-shaped curve. To depict
this evolution of the orbit, we plotted the minimum, maximum
and average values of the membrane potential of the unsta-
ble orbit againstgleak together with the Z-shaped curve. In
the vicinity of the saddle, the period of the orbit grew log-
arithmically fast. For the range ofgleak from 10.85 nS to
10.873 nS (Fig. 3 B) the period of the orbit grew rapidly
from 7 sec to 100 sec. The graph was fitted by the func-
tion −1.198 ln(|10.873− gleak|). Neargleak= 10.873 nS the
amplitude of the oscillations stayed constant while the period
grew. At the valuegleak= 10.873 nS the homoclinic bifurca-
tion (Hom) occurred in the system. Concerning the unstable
subthreshold oscillations this analysis suggests that they could
be recorded experimentally.

We compared the unstable periodic orbit obtained using the
bifurcation analysis software Content with those recordedaf-
ter a square pulse of current with an amplitude which is very
close to the threshold value. Let’s consider again the canoni-
cal model with elevated leak conductance,gleak= 10.7 nS. We
set the initial conditions which corresponded to the bursting
regime. With these initial conditions the model would exhibit
bursting indefinitely; to confirm that the bursting regime is
the attractor, the system was integrated for several thousand
seconds. To perform the switch from bursting to silence, we
applied a negative pulse of current near the first spike of a
burst. Pulses with an amplitude of the current pulse close to
-0.010445 nA revealed unstable subthreshold oscillationsfor
several periods (Fig. 4 B,D). Now we plotted together the
saddle periodic orbit obtained with the parameter continua-
tion software Content forgleak=10.7 nS and the subthreshold
oscillations recorded after the pulse (Fig. 4 E,F). The unsta-
ble periodic orbit is presented by dashed red (gray) curve. The
trajectory of the unstable subthreshold oscillations is extracted
from the trace in Fig. 4 B between two vertical lines and is
shown by solid blue (black) curve in the inset Fig. 4 E,F. Min-
imum and maximum voltages of the unstable periodic orbit
are also plotted in Fig. 4 B and Fig. 4 D. The two trajectories
appeared very close to each other when projected on the plane
created by the state variables gating the conductance of the
slow calcium current (Fig. 4 E) and also plotted as membrane
potentials versus time (Fig. 4 F). Fig. 4 illustrates the position
of the unstable periodic orbit relative to rest state and bursting
trajectory projected onto the plane(mCaS , hCaS). It allows
one to observe how a pulse of current brings the phase point
of the bursting trajectory into the basin of attraction to the rest
state, which is separated by the stable manifold of the saddle
periodic orbit.

As we elevatedgleak in small increments the saddle orbit
grew in size approaching the saddle rest state (Fig. 5 A-C). By
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FIG. 3: (Color) Bifurcation diagram of the stationary states and
hyperpolarized subthreshold oscillations of the model. A)The
solid green line represents the stable hyperpolarized equilibrium
(EP1). Subcritical Andronov-Hopf bifurcation (AH) occursat
gleak = 10.67 nS (marked by the left vertical dashed line,Eleak = -
0.0635 mV) where the equilibrium loses its stability and gives rise
to the unstable periodic orbit. For the values ofgleak smaller than
this critical value the equilibrium is unstable (dashed blue line). The
dashed blue line located above it depicts the saddle equilibria (EP2).
The curve of the depolarized equilibrium has the membrane poten-
tial near +0.01 V and is not shown. The unstable periodic orbit corre-
sponds to the unstable subthreshold oscillations (USTO). It is marked
by the two dashed red curves and the dashed brown curve locating
the minimum, maximum, and average values of the membrane poten-
tial of the oscillations correspondingly. The unstable orbit disappears
at the homoclinic bifurcation (Hom), marked by the dashed vertical
line at the right,gleak = 10.873 nS. B) Red dots graph the values of
the period, P, of USTO as thegleak is varied between the two bifur-
cation values. As the unstable periodic orbit approaches the homo-
clinic bifurcation the period grows as−1.198 ln(|10.873 − gleak|)
as shown by the blue curve. C) Inset shows the part of the graphin B)
taken in the vicinity of the homoclinic bifurcation, whereb = 1.198,
gHom
leak = 10.873 nS.
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FIG. 4: (Color online) Co-existence of bursting and silence. The
negative square pulse ofIinj perturbed the bursting activity. Burst-
ing and transient activities are represented by dark blue (black) solid
line. A,C,E) 2D projection reveals unstable oscillations represented
by dashed red (gray) loop along with the two attractors: the bursting
and the hyperpolarized equilibrium, green (gray) dot. A,B)The pulse
with the amplitude of -0.01044 nA moved the phase point towards
the unstable periodic orbit, allowed recording the subthreshold oscil-
lations for eight periods, but did not switch the activity from bursting
into silence. C,D) The pulse with the amplitude -0.01045 nA again
allowed recording the subthreshold oscillations for a few periods,
moved the phase point into the basin of attraction of the equilibrium,
thus producing the switch from bursting into the silence. The dashed
red (gray) lines in plots B) and D) mark the minimum and maximum
values of the membrane potential of the unstable orbit obtained with
the bifurcation analysis. E,F) This is the part of the trajectory with
the unstable oscillations (solid) revealed by the perturbation plotted
together with the unstable periodic orbit (dashed). The parameters of
the leak current were the same as in Fig. 1.

tracing the bursting activity for the same values ofgleak, we
found that the transition from bursting to silence occurredvery
close to but slightly before the homoclinic bifurcation (Fig. 5
A1-C1). The waveform of the bursting activity changed only
slightly as the controlling parameter was set closer and closer
to the transition value. Atgleak = 10.87 nS the bursting ac-
tivity was not observed and the stable stationary state was the
only attractor. Up to the transition point the neuron exhibited
bistability.

To summarize, the unstable periodic orbit appears through
the sub-critical Andronov-Hopf bifurcation and disappears at
the homoclinic bifurcation. The orbit corresponds to unstable
subthreshold oscillations which could be revealed by a pulse
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FIG. 5: (Color online) Bursting, the saddle orbit and silentregimes at
different values of the controlling parametergleak. The saddle orbit,
stable and saddle equilibria on the 2D projection onto(mCaS , hCaS)
plane presented for threegleak values, 10.76 nS(A), 10.83 (B), 10.87
(C); and panels A1, B1, C1 show corresponding bursting activities.
On panels A, B, and C, the saddle orbit is marked by the dashed
loop; and the stable and the saddle equilibrium are shown by the
filled green (gray) and open blue (gray) circles, correspondingly. The
homoclinic bifurcation occurs atgleak = 10.873 nS, where the saddle
orbit merges with the saddle equilibrium. Panels A1 and B1 show
the bursting activities of the models such that in parameterspace one
is relatively far from the bifurcation (A1) and the other is close to
the transition from bursting to silence (B1). Both cases exhibit the
bistability of bursting and silence. At the parameter valueclose to
the bifurcation (C, C1), bursting no longer exists as a regime; and
silence is the only attractor (C1). The value ofEleak was -0.0635 V
for all the plots.

of current. The homoclinc bifurcation bounds the range where
the bursting regime could exist, since the separating saddle
regime does not exist beyond the bifurcation value.

We numerically computed a two-parameter bifurcation dia-
gram of oscillatory and stationary regimes (Fig. 6). The range
of the parameters of the leak current (gleak, Eleak) support-
ing bursting activity has a banana shape and is surrounded by
a large area supporting tonic spiking activity on the left side
and a silent regime on the right side. The borders between
regimes are associated with bifurcations in the system. The
period-doubling bifurcation of the stable periodic orbit repre-
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FIG. 6: (Color) Bifurcation diagram of the oscillatory and stationary
regimes. The green curve is composed of numerically found points
where the transition from bursting activity into silence occurs. The
sub-critical Andronov-Hopf bifurcation (AH) of the hyperpolarized
rest state (silent regime) is shown by the blue curve and marks the
boundary where the silent regime loses stability giving rise to the
unstable subthreshold oscillations. The red circles correspond to the
homoclinic bifurcation (Hom) of the unstable subthresholdoscilla-
tions. The area between these two curves (the blue and the reddots)
marks the parameter regime where unstable subthreshold oscillations
exist. The gray curve marks the period-doubling bifurcation (PD) of
large amplitude periodic spiking and marks the transition from tonic
spiking to bursting activity. The area of bursting activityis located
between the PD and Hom curves.

senting tonic spiking activity determines the critical values of
the controlling parameters, which describe the transitionfrom
spiking into bursting. It marks the beginning of the cascadeof
period-doubling bifurcations transforming the periodic tonic
spiking into chaotic tonic spiking. These events occur in a
very narrow range of parameters of the leak current. Within
a small parameter range bursting coexists with tonic spiking.
The mechanism underlying this transition and coexistence has
been described for the Hindmarsh-Rose model [29]. Here,
we explored the transition from bursting into silence and the
mechanism supporting bistability of these two regimes. Based
on the knowledge that the range of parameters where unsta-
ble subthreshold oscillations exist is bounded between the
Andronov-Hopf and homoclinic bifurcations, first, we com-
puted the AH curve in (gleak, Eleak) parameter space. Then,
in order to locate the homoclinic bifurcation curve (Hom),
we increasedgleak while following the saddle periodic orbit.
We started at the Andronov-Hopf bifurcation where the orbit
appeared and followed the orbit until its period became very
large, 100 sec, near the homoclinic bifurcation. Content soft-
ware allows tracking the periodic orbit with the given value
of the period; we usedgleak andEleak as the two parameters
to find the curve with a fixed period of 100 sec. This curve
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gives a good estimation for the bifurcation values determining
the homoclinic bifurcation. The estimated bifurcation values
are shown by the red circles in Fig. 6. One can see that the
detected points representing the homoclinic bifurcation of the
unstable periodic orbit match well with the border between
bursting and silence calculated previously by numerical sim-
ulations [24]. Hence, the transition from bursting activity into
silence is associated with the homoclinic bifurcation, andthe
range of bistability in leak current parameter space is limited
by the sub-critical Andronov-Hopf and homoclinic bifurca-
tions for the saddle periodic orbit.

DISCUSSION

In a single neuron, interplay between different ionic cur-
rents can lead to the coexistence of different regimes of activ-
ity, such as tonic spiking, bursting, silence, and subthreshold
oscillations. The documented types of bistability includeco-
existence of bursting and tonic spiking [12, 14, 24, 30], de-
polarized and hyperpolarized silent states [3, 31], two tonic
spiking regimes [32], tonic spiking and silence [6], and differ-
ent patterns of bursting [14, 24, 33]. Although bistabilityas a
phenomenon has been shown in many different neuronal sys-
tems, the biophysical mechanisms supporting bistability are
largely not known.

The co-existence of tonic spiking and silence has been par-
ticularly extensively studied [19]. It was detected in various
types of neurons, from spinal motoneurons to neuronal net-
works of the entorhinal cortex, and thalamocortical network
[1–3, 34]. Bistability has been found to occur spontaneously
or to be induced by neuromodulators. For example, sponta-
neous bistability was demonstrated in Purkinje cells in the
rat and guinea pig [4]. Turtle and cat motoneurons become
bistable after modulation of membrane properties by sero-
tonin [3, 35]. Analysis of neuronal Hodgkin-Huxley type
models exhibiting coexistence of tonic spiking and silence
suggests two main types: 1) The depolarized tonic spiking
regime and rest state are separated by the stable manifold of
a saddle equilibrium [20]; and 2) the trajectory of the tonic
spiking of larger amplitude goes around the hyperpolarized
rest state so that the states are separated by the stable mani-
fold of a saddle periodic orbit [6, 16, 17, 19]. The second type
features Rinzel’s mechanisms of bistability. The mechanism
of bistability described in this paper is of the second type,ex-
cept that the bursting state is in the place of tonic spiking.

A saddle periodic orbit is a generic component of a num-
ber of mechanisms supporting bistability in the dynamics of
single neurons [6, 17, 19, 30, 32, 36, 37]. Its stable manifold
acts as a threshold between the two regimes; and different per-
turbations of the state of the model could induce crossing the
threshold and a switch from one regime to the other. Analysis
of the process of switching between regimes of activity with
noise or pulses of injected current applied to a bistable neuron
or network is a valuable tool for the investigation of bistability
[6, 16–18].

After the separating regime is identified, an essential part
of the description of a mechanism supporting bistability isthe
description of the appearance and disappearance of the regime
under variation of a controlling parameter. This description
allows one to identify the factors which cause the bistabil-
ity and the range of the parameter values supporting it. The
choice of parameter is usually dictated by the topic of study.
The bifurcation theory provides appropriate tools for thistask.
For the Hodgkin-Huxley model, the Rinzel mechanism deter-
mines that the unstable orbit appears through the Andronov-
Hopf bifurcation and disappears through the saddle-node bi-
furcation for periodic orbits as the polarizing current is varied
[19]. The Hodgkin-Huxley model was also analyzed under
variation of the concentration ofK+, which affects the mem-
brane potential in accordance with the Nernst potential. This
analysis was motivated by the hypothesis that the elevationof
externalK+ concentration can induce seizures. The analysis
shows the same mechanism of bistability [17].

By applying the bifurcation analysis to the model of the
leech heart interneuron, we showed that for a given value
of Eleak the stable hyperpolarized equilibrium and burst-
ing regime co-existed in a certain range of values ofgleak.
For a smallergleak, this range is limited by the sub-critical
Andronov-Hopf bifurcation at which the unstable periodic or-
bit appears. In this regard, the orbit appears in accordance
with the Rinzel mechanism of the coexistence of tonic spik-
ing and silence. For a largergleak, the range of bistability
is limited by the homoclinic bifurcation of a periodic orbit.
The latter distinguishes the mechanism presented here from
the Rinzel mechanism, which has the unstable orbit ceasing
at the saddle-node bifurcation for periodic orbits. Outside of
the above-mentioned range, bistability of bursting and silence
was not observed. We performed two-parameter bifurcation
analysis to trace the Andronov-Hopf and homoclinic bifurca-
tions using the leak current parameters as the bifurcation pa-
rameters and placed them on the bifurcation diagram obtained
previously [24]. On this diagram, we showed that the transi-
tion from bursting to silence approximately coincides withthe
two-parameter curve of the homoclinic bifurcation (Fig. 6).
This type of analysis of biophysically realistic models could
provide help establishing the origin and roles of bistability in
the functioning of the nervous system.

Similarly to electronic and other technical devices, in neu-
ronal networks the bistable neurons could play the roles of
switch, relay, logic, and memory elements [38]. In the realm
of motor control, bistable neurons appear to be a natural
choice as elements of multifunctional central pattern gener-
ators so that the same network can generate several behav-
ioral patterns [39–41]. In contrast to multifunctional central
pattern generators, for the leech heartbeat central pattern gen-
erator bistability in the leech heart interneurons seems tobe
a pathological, life threatening phenomenon. This study pre-
dicts the existence of bistability of the leech heart interneuron
under conditions leading to elevated conductance of the leak
current.

Bistability of a nervous system affected by a patholog-
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ical condition like seizures co-existing with an alternative,
functional regime could be the key element determining the
seizure dynamics [7, 8, 42]. If seizure activity coexists with a
functional state, then based on the theory of bistability one
could create a feedback procedure to switch it back from
seizure. Stimulation by noise of a neuronal network was tested
to reduce the duration of seizure episodes [7, 8]. In the caseof
Parkinson’s disease, theoretical analysis of the coexistence of
pathological synchronization and functional desynchronized
states helps in the designing of novel deep brain stimulation
techniques which promote anti-kindling and desynchroniza-
tion of the network, suppressing the pathological activityby
electric stimulation [10, 43].
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Appendix. Model
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CV′ = −[ḡNa m
3
NahNa[V − ENa]+

+ ḡP mP[V − ENa]+
+ ḡK1 m

2
K1hK1[V − EK]+

+ ḡK2 m
2
K2[V − EK]+

+ ḡKA m2
KAhKA[V − EK]+

+ ḡCaS m2
CaShCaS[V − ECa]+

+ ḡCaF m2
CaFhCaF[V − ECa]+

+ ḡh m2
h[V − Eh]+

+ gleak [V − Eleak]],

m′

Na =
[f∞

mNa(−150., 0.029, V )−mNa]
0.0001 ,

h′Na =
[f∞

hNa(500., 0.03, V )− hNa]
τNa(V ) ,

m′

P =
[f∞

mP(−120., 0.039, V )−mP]
τ(400,0.057,0.01,0.2,V ) ,

m′

CaS =
[f∞

mCaS(−420., 0.0472, V )−mCaS]
τ(−400,0.0487,0.005,0.134,V ) ,

h′CaS =
[f∞

hCaS(360., 0.055, V )− hCaS]
τ(−250,0.043,0.2,5.25,V ) ,

m′

CaF =
[f∞

mCaF(−600., 0.0467, V )−mCaF]
τCaF(V ) ,

h′CaF =
[f∞

hCaF(350., 0.0555, V )− hCaF]
τ(270,0.055,0.06,0.31,V ) ,

m′

K1 =
[f∞

mK1(−143., 0.021, V )−mK1]
τ(150,0.016,0.001,0.011,V ) ,

h′K1 =
[f∞

hK1(111., 0.028, V )− hK1]
τ(−143,0.013,0.5,0.2,V ) ,

m′

K2 =
[f∞

mK2(−83., 0.02, V )−mK2]
τ(200,0.035,0.057,0.043,V ) ,

m′

KA =
[f∞

mKA(−130., 0.044, V )−mKA]
τ(200,0.03,0.005,0.011,V ) ,

h′KA =
[f∞

hKA(160, 0.063, V )− hKA]
τ(−300,0.055,0.026,0.0085,V ) ,

m′

h =
[f∞

h (V )−mh]
τ(−100,0.073,0.7,1.7,V ) ,

where the reversal potentials and maximal conductances of
the ionic currents areENa = 0.045 V , EK = −0.07 V ,
ECa = 0.135 V ,Eh = −0.021 V , ḡNa = 200 nS, ḡP = 7 nS,
ḡCaS = 3.2 nS, ḡCaF = 5 nS, ḡK1 = 100 nS, ḡK2 = 80 nS,
ḡKA = 80 nS, ḡh = 4 nS. The cell membrane capacitance
C is 0.5 nF. The steady state activation and inactivation
functions are defined byf∞x (a, b,V) = 1/[1 + ea(V+b)],
where x defines the gating variable. The steady state ac-
tivation function of the hyperpolarization activated current,
the inactivation time constants of the fast sodium and cal-
cium currents, and the time constants of the activation and
inactivation variables of the other currents are given by
f∞h (V) = 1

1+2e180[V +0.047]+e500[V +0.047] ,

τNa(V ) = 0.004 + 0.006
1+e500[V +0.028] +

0.01
cosh(300[V+0.027]) ,

τCaF(V ) = 0.011 + 0.024
cosh(−330[V+0.0467]) ,

τ(a, b, c, d, V ) = c+ d
1+ea[V +b] .


