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Bursting is one of the primary activity regimes of neurondaur Gtudy is focused on determining a generic
biophysical mechanism underlying the co-existence of thsting and silent regimes observed in a neuron
model. We show that the main ingredient for this mechanism saddle periodic orbit. The stable manifold
of the orbit sets a threshold between the regimes of activityus, the range of the controlling parameters,
where the co-existence is observed, is limited by the bifiioos’ values at which the saddle orbit appears and
disappears. We show that it appears through the sub-tticronov-Hopf bifurcation, where the equilibrium
representing the silent regime loses stability, and disappat the homoclinic bifurcation. Correspondingly, the
bursting regime disappears in close proximity to the hoiacbifurcation.

PACS numbers: 05.45.-a,87.19.ad,87.19.lI

INTRODUCTION supporting bistability can be classified in terms of the anst
ble regime involved. Models exhibiting coexistence of toni
Cardiac cells and a variety of neurons have been shown t8Piking and silence usually have either a saddle equilibou
exhibit bistability [1-5]. Certain perturbations of theit of saddle periodic orbit involved. A stable manifold of a saddl
a bistable excitable cell may trigger a switch between twoSeparates the rest state and tonic spiking, setting a thicesh
co-existing regimes of activity, such as, for example, peri between these two attractors. Purkinje cells and motomsuro
odic spiking and silence in a cardiac cell [5], and in the gi-Were shown to exhibit the type of bistability based on a saddl
ant squid axon [6]. The mechanisms supporting multistabil€quilibrium [4, 20]. The Hodgkin-Huxley model has bistabil
ity in excitable cells are not well understood. The more suchty based on a saddle periodic orbit [19].
mechanisms we know, the closer we will be to applying this The saddle periodic orbit commonly appears through the
knowledge to the development of new biofeedback stimulasub-critical Andronov-Hopf bifurcation, which is a ubiqui
tion treatments preventing the onset of pathological regim tous cause of bistability in different nonlinear systenmsthie
such as seizures, by inducing a switch back to a normal regimdodgkin-Huxley model a saddle orbit terminates at a saddle-
[7-10]. Analysis of the dynamical mechanisms supportinghode bifurcation for periodic orbits, at which the stablel an
bistability is facilitated by the appropriate choice of an i unstable periodic orbits coalesce and disappear. Thechiur
vertebrate model system [11]. Such a system allows the intions which determine the appearance and disappearance of
vestigation of bistability on a cellular level using iddig@d  the unstable periodic orbit limit the range of the control pa
neurons [6, 12, 13]. For example, the hand-in-hand modrameter values for which the bistability exists. This Hiita
eling of and experiments on the neuron R15 from the molity investigated in the model has been clearly experimgntal
lusc Aplysia demonstrated the bistability of bursting ammi¢  identified in the squid giant axon under laiz?* bath con-
spiking [12, 14]. Another classical example of such a sys<entration; by applying a single current pulse to a squichaxo
tem is the celebrated squid giant axon made famous by thée transition between tonic spiking and silence was shown
studies of ionic currents by Hodgkin and Huxley [15]. These[6]. The unstable oscillatory regime was recorded for sev-
two components - first, having a neuron which is identified seeral periods before the activity settled to one of the atitrac
that a researcher can always find it from preparation to prepang regimes. This example unites experimental and thexadeti
ration; and, second, having a biophysically accurate modegtudies and illustrates the advantages of studying theonalir
which describes the dynamics of these regimes - make it ndynamics of identified neurons.
surprise that it is the number one system where the bistabil- Motor control of rhythmic movements commonly employs
ity of tonic spiking and silence is studied with an exemplaryspecialized oscillatory neuronal networks, central patign-
thoroughness. These studies have made the coexistenceerhtors (CPGs) [11]. The leech heart beat CPG is one of the
tonic spiking and silence into probably the most extengivel best studied invertebrate neuronal networks, with a glearl
studied type of bistability [6, 16—19]. In a striking cordta identified function, a set of identified participating neusp
there is a gap in our knowledge when it comes to understandind well developed biophysically accurate models. It con-
ing the mechanisms supporting the bistability of bursting a sists of a small number of interneurons distributed over sev
silence in the dynamics of a single neuron. In this work we deeral ganglia. Those located in ganglia 3 and 4 are respansibl
scribe the mechanism producing bistability in the leeclrthea for generating basic rhythm [22]. Here we focus on the dy-
interneuron. namics of a single interneuron from either ganglion 3 or 4.
Several different classes of neurons displayed the coexisfhe predictions of this work could be tested in further stud-
tence of tonic spiking and silence [1, 3, 4]. The coexistenceées since synaptic interaction within this CPG can be bldcke
of regimes implies that their basins of attraction are sgiear  pharmacologically [21, 22]. These neurons are particylarl
by a barrier created by an unstable regime. The mechanisnadtractive for analysis in terms of the theory of dynamigals



tems since their membrane ionic currents have been measured
and well described by a canonical model using the Hodgkin-
Huxley formalism [23]. The canonical model has proven it-
self as a powerful tool in predicting new phenomena [23, 24].
Depending on the value of the parameters, the model can ex-
hibit different regimes including tonic spiking, burstingj-

lence, and subthreshold oscillations. The bistability wfsb- A B v
ing and silence has also been observed in this model [24]; and
the goal of this study is to describe the mechanism which sup- 20 (mV)
ports it. We start by showing that the switch from silence
to bursting activity can be achieved by current perturlmatio
We show the involvement of the unstable subthreshold oscil- - 50 (m
|

(
(mV)
Iinj (nA)

lations; and with one-parameter bifurcation analysis we de

scribe the origin and disappearance of the subthreshold os-— T

cillations. Finally, we performed two-parameter bifuioat 10 (s)

analysis to show the range of leak current parameters where

bistability can be observed. FIG. 1: Perturbation by a square pulse of current switchesabime

of activity from silence into bursting. A) A negative, hypetarizing

pulse of currentl;,,; = -0.05 nA switches activity from silence to
RESULTS bursting. The minimum magnitude d@f,.; which can induce the

switch is -0.02131 nA. B) A positive, depolarizing pulse ofrent

. . . . Iin; = 0.05 nA also initiates the bursting activity. For eithetgity
We studied the dynamics of the canonical leech heart inpf the pulse, the pulse duration was 0.03 sec. To switch ttietgc

terneuron model. Bistability of bursting and silent regéme 1I,,,; has to be larger than the value of 0.0175 nA. The parameters of
had been demonstrated previously [24], but the mechanisthe leak current aré;.q,. = -0.0635 V andjicqx = 10.7 nS.

supporting it was not described. The model contained nine

voltage dependent currents: fast calcium curréatz, slow _ ) ) )

calcium current-Ic,s, fast sodium current{y,, delayed -0-0213 nA <I;,; < 0.0 nA did not switch silence into the
rectifier-potassium curreniyx, persistent potassium current- Pursting regime, while negative pulses with an amplitude
I, fast transient potassium curretfii 4, hyperpolarization larger .thla}n 0.0_213 nA did switch the activity. Perturbasion
activated cationic current,, persistent sodium currenip, ~ Of the initially silent neuron by the depolarizing squarésgu
and leak currentf;..,, and was described by a system of 14 of current showed that only a pulse Wlt_h_an amplm_Jde larger
differential equations [23] (Appendix). The parameters ofthan .0.0175 nA could switch the activity from 5|Ie_nce to
the canonical model were tuned to produce activity with aPursting. Figure 1B shows the example of perturbation by a
waveform close to the one experimentally observed [23, 24]P0sitive pulse with the amplitudg,,; = 0.05 nA. For a pulse
The trajectories of this model were obtained using the Miatla duration of 0.03 sec, the critical valugs,; = -0.0213 nA and
ODE solver, ode15s. Absolute tolerance and relative toka  Lini = 0-0175 nA, set two thresholds for the amplitude of the
were10~? and10~%. The integration and bifurcation analysis Pulse of current/;;, for the switch from silence to bursting-
were performed using the software package Content which ig€gative and positive. Repeating this analysis we found the
freely available aht t p: / / ww. st af f . sci ence. uu. two thresholds for p.ulses with different durations (Fig.. 2)
nl / ~kouzn101/ CONTENT/ [25]. The integration of equa- The longer the duration of the pulses was, Fhe smaller the two
tions was done using the Runge-Kutta method of the 4-th ofthresholds were. The two data sets obtained fit well to the
der with the tolerance of integration set B5°. Bistability =~ €mPpirical Lapicque strength-duration formula describing
was reported in the model with elevated conductance of th@roperty of the minimum strength pulse triggering a spike in
leak currentgicak- an excitable cell [26-28]:

We were able to elicit a switch from silence to bursting
activity by applying a square pulse of current. The switch
could be triggered by either a negative or positive pulse
(Fig. 1). All parameters including’;.., were set to the wherel, copase IS the asymptotic current’s threshold value for
canonical values, buf;.. was set to 10.7 nS; the canonical the infinitely long pulse is the pulse duration, and, is a
value is 9.9 nS [23, 24]. The initial conditions of voltage time constant characterizing the process of charging tiie ce
and gating variables were set so that the model initiallymembrane.
exhibited silence. We used square pulses with a duration Our previous study of the leech heart interneuron model
of 0.03 sec. In Fig. 1A a hyperpolarizing pulse of currentshowed that the bistability of bursting and silence is aissoc
with the amplitude of 0.05 nA switched the activity from ated with the Andronov-Hopf bifurcation [24]. These result
silence to the bursting regime. By trying different amplids  suggest that the separating barrier between the two attsact
of the pulse, we found that negative pulses within the rangéursting and silent, is the stable manifold of a saddle jécio
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became a saddle-focus. The sub-critical Andronov-Hopf bi-
furcation (AH) gave rise to an unstable periodic orbit with
zero amplitude and period 3.05 sec. As the bifurcation param

0.3} 1 etergi.q.r Was increased, the amplitude of the unstable orbit
o grew proportionally t0/g;cqr — 10.67 while g, Was close
ol lyr =0-0004425/(1-e ) | to the bifurcation valugy/!Zi . As the parameteg ., was

increased further the unstable orbit approached the sémidle
cated on the middle branch of the Z-shaped curve. To depict
0.1} ° 1 this evolution of the orbit, we plotted the minimum, maximum
\ and average values of the membrane potential of the unsta-
ble orbit againsy;..; together with the Z-shaped curve. In
the vicinity of the saddle, the period of the orbit grew log-
arithmically fast. For the range gf..; from 10.85 nS to
10.873 nS (Fig. 3 B) the period of the orbit grew rapidly
from 7 sec to 100 sec. The graph was fitted by the func-
| tion —1.1981n(]10.873 — gicar|). Neargeqr= 10.873 nS the
l,, =-0.0009612/(1-¢7"/%) amplitude of the oscillations stayed constant while théquer
grew. At the valugy..,= 10.873 nS the homoclinic bifurca-
-0.3f 1 tion (Hom) occurred in the system. Concerning the unstable
. : : : subthreshold oscillations this analysis suggests thgtdbeld
0 0.1 0.2 0.3 0.4 .
T(s) be recorded experimentally.
We compared the unstable periodic orbit obtained using the
FIG. 2: The strength-duration relationships of the minimdepo- ~ Difurcation analysis software Content with those recorafed
larizing (gray) and hyperpolarizing (black) square pulsésurrent  ter a square pulse of current with an amplitude which is very
switching the silent regime into the bursting regime. Togleghe  close to the threshold value. Let's consider again the danon
switch the pulse strength must be larger than the threshbldsle-  cal model with elevated leak conductangg,,= 10.7 nS. We
termined by the relationships. The two data sets (dots) wlet@ned  get the initial conditions which corresponded to the boggti
numerically and then fitted to the Lapicque formula (CurveB)e  roqime With these initial conditions the model would esthib
parameters of the leak current are the same as in Fig. 1. L L . . . . -
bursting indefinitely; to confirm that the bursting regime is
the attractor, the system was integrated for several tiolsa
seconds. To perform the switch from bursting to silence, we
applied a negative pulse of current near the first spike of a
burst. Pulses with an amplitude of the current pulse close to
0.010445 nA revealed unstable subthreshold oscillations
several periods (Fig. 4 B,D). Now we plotted together the
saddle periodic orbit obtained with the parameter continua
tion software Content fog;.,,=10.7 nS and the subthreshold
oscillations recorded after the pulse (Fig. 4 E,F). Theamnst
The unstableorbit disappearsat a homoclinic bifurcation ble periodic orbit is presented by dashed red (gray) curhe. T
trajectory of the unstable subthreshold oscillations tsaested
We investigated the stability of the equilibria of the model from the trace in Fig. 4 B between two vertical lines and is
for Ejqr = -0.0635 V. Evolution of the equilibria and their shown by solid blue (black) curve in the inset Fig. 4 E,F. Min-
stability were analyzed witly;... being varied as the bifur- imum and maximum voltages of the unstable periodic orbit
cation parameter in the Content software. The plot of theare also plotted in Fig. 4 B and Fig. 4 D. The two trajectories
membrane potential associated with each equilibrium wersuappeared very close to each other when projected on the plane
the bifurcation parametey...,. exhibits a Z-shaped curve of created by the state variables gating the conductance of the
the equilibria branches. This curve has two branches madgow calcium current (Fig. 4 E) and also plotted as membrane
of the equilibria which are the hyperpolarized and depolarpotentials versus time (Fig. 4 F). Fig. 4 illustrates theitpars
ized rest states, separated by the saddle. First, we segea larof the unstable periodic orbit relative to rest state andtiug
value of g;.qx, SO that the model stayed at the stable hyperirajectory projected onto the plafgicas, hcas). It allows
polarized stationary state. We examined how the stabifity oone to observe how a pulse of current brings the phase point
the hyperpolarized equilibrium changed in response to a dedf the bursting trajectory into the basin of attraction te tast
crease in the bifurcation parametgy, . (Fig. 3). The hyper- state, which is separated by the stable manifold of the saddl
polarized equilibrium lost its stability through the sulitical ~ periodic orbit.
Andronov-Hopf bifurcation. FoF;..; =-0.0635V, the bifur- As we elevatedy;..x in small increments the saddle orbit
cation occurred agj:2 = 10.67 nS; and the stable rest stategrew in size approaching the saddle rest state (Fig. 5 A-€). B

1, (nA)
o

orbit. The Lapicque formula approximates well the strength
duration relationship of a square pulse of current whiclifs s
ficient to move a phase point from the stable stationary stat
across the stable manifold into the basin of attraction o$tsu
ing activity.



I 1
A I
_40 : _._\:.\- A s B T=33() |
Rl Al W ] 1
: { 7 [ 0.6 :
| EP2 11 & ! 20 (mV)
[ 1 i 0.4 I
—45 7 !
! . 0.2 ‘ A
— 1 P . 1 H - = -50 (mV)
S 1 Hom
I B
£ AH [ ,.—” o % 0.2 0.4 0.6 T i
> =T . F/ Peas 20 (s)
_50 |- o e RLAE, | C 1 D
TN~ ¢ : 08 T=33(9) |
| -~ | |
! ~ Py , | |
S 2 ! !
—-55 | S EU | | 20 (mV)
: usTo Y 04 1 1
N | | |
0.2 R
106 1107 10.8 R N L S0 )
B : 9jeak (nS) | % 0.2 0.4 0.6 T - o
! | Peas 20 (s)
| E 025 F \
25 : 2 02 | 05mv)
€
20 | 0.15 = -51.5 (mV)
S 15 : 0.15 0.2 10 (s)
a | CaS
10 AH
| FIG. 4: (Color online) Co-existence of bursting and silendéne
5 \__ negative square pulse &f,; perturbed the bursting activity. Burst-
I X ing and transient activities are represented by dark blizekpsolid
100.6 10.7 10.8 10.9 line. A,C,E) 2D projection reveals unstable oscillatioapresented
g (nS) by dashed red (gray) loop along with the two attractors: timsting
C leak and the hyperpolarized equilibrium, green (gray) dot. ATBg pulse
with the amplitude of -0.01044 nA moved the phase point tdwar
0.02 the unstable periodic orbit, allowed recording the sulsthoéd oscil-
o 0015 lations for eight periods, but did not switch the activitgrn bursting
s into silence. C,D) The pulse with the amplitude -0.01045 gAia

v 0.01 allowed recording the subthreshold oscillations for a feswiqus,
moved the phase point into the basin of attraction of thelisgiuim,

0.005 thus producing the switch from bursting into the silencee @ashed
0 red (gray) lines in plots B) and D) mark the minimum and maximu
0 0005 001 0015 002 values of the membrane potential of the unstable orbit nbthivith
g::;'k“ 0 (nS) the bifurcation analysis. E,F) This is the part of the trajeg with

the unstable oscillations (solid) revealed by the pertimhaplotted

) ) ) ] together with the unstable periodic orbit (dashed). Thampaters of
FIG. 3: (Color) Bifurcation diagram of the stationary s&@nd  the |eak current were the same as in Fig. 1.

hyperpolarized subthreshold oscillations of the model. The

solid green line represents the stable hyperpolarizedliequm

(EP1). Subcritical Andronov-Hopf bifurcation (AH) occuist

Giear = 10.67 nS (marked by the left vertical dashed lifl,.. = - tracing the bursting activity for the same valueggf,., we
0.0635 mV) where the equilibrium loses its stability andegivise ~ found that the transition from bursting to silence occuxexy

to the unstable periodic orbit. For the valuesgaf, smaller than  close to but slightly before the homoclinic bifurcationdFb
this critical value the equilibrium is unstable (dashededine). The A1-C1). The waveform of the bursting activity changed only
dashed blue line located above it depicts the saddle edaillBP2). slightly as the controlling parameter was set closer angetlo

The curve of the depolarized equilibrium has the membrarnenpo - _ .
tial near +0.01 V and is not shown. The unstable periodid adyire- to the transition value. Aieq), = 10.87 nS the bursting ac-

sponds to the unstable subthreshold oscillations (UST@)marked ~ tivity was not observed and the stable stationary state s t
by the two dashed red curves and the dashed brown curverigcati Only attractor. Up to the transition point the neuron extieithi
the minimum, maximum, and average values of the membraeapot bistability.

tial of the oscil_la_tion_s corr(_espondingly. The unstableimmapp_ears To summarize, the unstable periodic orbit appears through
at the homoclinic bifurcation (Hom), marked by the dashedicel the sub-critical Andronov-Hopf bifurcation and disap

line at the rightg;c.r = 10.873 nS. B) Red dots graph the values of . . .
the period g O‘fglUSkTo as thgeuy is 3aried betwgenpthe two bifur- the homoclinic bifurcation. The orbit corresponds to ublga

cation values. As the unstable periodic orbit approachegitimo-  Subthreshold oscillations which could be revealed by aepuls
clinic bifurcation the period grows as1.198 In(]|10.873 — gica|)

as shown by the blue curve. C) Inset shows the part of the gneph

taken in the vicinity of the homoclinic bifurcation, whelre= 1.198,

gilom =10.873 nS.
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FIG. 5: (Color online) Bursting, the saddle orbit and silegimes at
different values of the controlling parametgr... The saddle orbit,
stable and saddle equilibria on the 2D projection dnt@:qs, hcas)
plane presented for threg..;, values, 10.76 nS(A), 10.83 (B), 10.87
(C); and panels Al, B1, C1 show corresponding bursting itietv
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FIG. 6: (Color) Bifurcation diagram of the oscillatory artdtsonary
regimes. The green curve is composed of numerically foumctpo
where the transition from bursting activity into silencecors. The
sub-critical Andronov-Hopf bifurcation (AH) of the hypearized
rest state (silent regime) is shown by the blue curve and snidudk
boundary where the silent regime loses stability giving tis the
unstable subthreshold oscillations. The red circles spord to the
homoclinic bifurcation (Hom) of the unstable subthreshoftilla-
tions. The area between these two curves (the blue and thiotsd
marks the parameter regime where unstable subthreshalihtisns
exist. The gray curve marks the period-doubling bifuraa{ieD) of
large amplitude periodic spiking and marks the transitiomf tonic
spiking to bursting activity. The area of bursting activisylocated
between the PD and Hom curves.

On panels A, B, and C, the saddle orbit is marked by the dashed ] o o . N
loop; and the stable and the saddle equilibrium are showrhey t Senting tonic spiking activity determines the criticalues of

filled green (gray) and open blue (gray) circles, correspagigd The
homoclinic bifurcation occurs @t..r = 10.873 nS, where the saddle
orbit merges with the saddle equilibrium. Panels Al and Biwsh
the bursting activities of the models such that in paransgiace one
is relatively far from the bifurcation (Al) and the other i®se to
the transition from bursting to silence (B1). Both casesit@kithe
bistability of bursting and silence. At the parameter vatiase to
the bifurcation (C, C1), bursting no longer exists as a regiand
silence is the only attractor (C1). The valueff . was -0.0635 V
for all the plots.

the controlling parameters, which describe the transftiom
spiking into bursting. It marks the beginning of the casaafde
period-doubling bifurcations transforming the periodiait
spiking into chaotic tonic spiking. These events occur in a
very narrow range of parameters of the leak current. Within
a small parameter range bursting coexists with tonic sgikin
The mechanism underlying this transition and coexistease h
been described for the Hindmarsh-Rose model [29]. Here,
we explored the transition from bursting into silence argl th
mechanism supporting bistability of these two regimes.eas
on the knowledge that the range of parameters where unsta-

of current. The homoclinc bifurcation bounds the range wher ble subthreshold oscillations exist is bounded between the
the bursting regime could exist, since the separating saddlAndronov-Hopf and homoclinic bifurcations, first, we com-

regime does not exist beyond the bifurcation value.

puted the AH curve indjeqx, Erear) parameter space. Then,

We numerically computed a two-parameter bifurcation dia-in order to locate the homoclinic bifurcation curve (Hom),

gram of oscillatory and stationary regimes (Fig. 6). Theyean
of the parameters of the leak currept(x, Ejcar) SUPPOIt-

we increased;.., While following the saddle periodic orbit.
We started at the Andronov-Hopf bifurcation where the orbit

ing bursting activity has a banana shape and is surrounded appeared and followed the orbit until its period became very

a large area supporting tonic spiking activity on the ledtesi

large, 100 sec, near the homoclinic bifurcation. Contefit so

and a silent regime on the right side. The borders betweeware allows tracking the periodic orbit with the given value
regimes are associated with bifurcations in the system. Thef the period; we usegd;..; andE;..; as the two parameters

period-doubling bifurcation of the stable periodic orlgipre-

to find the curve with a fixed period of 100 sec. This curve



gives a good estimation for the bifurcation values deteimgin After the separating regime is identified, an essential part
the homoclinic bifurcation. The estimated bifurcationued  of the description of a mechanism supporting bistabilitihis
are shown by the red circles in Fig. 6. One can see that thdescription of the appearance and disappearance of theeegi
detected points representing the homoclinic bifurcatiothe  under variation of a controlling parameter. This desaoipti
unstable periodic orbit match well with the border betweenallows one to identify the factors which cause the bistabil-
bursting and silence calculated previously by numerigatsi ity and the range of the parameter values supporting it. The
ulations [24]. Hence, the transition from bursting acyiiitto ~ choice of parameter is usually dictated by the topic of study
silence is associated with the homoclinic bifurcation, #vel ~ The bifurcation theory provides appropriate tools for thisk.
range of bistability in leak current parameter space istéchi  For the Hodgkin-Huxley model, the Rinzel mechanism deter-
by the sub-critical Andronov-Hopf and homoclinic bifurca- mines that the unstable orbit appears through the Andronov-
tions for the saddle periodic orbit. Hopf bifurcation and disappears through the saddle-node bi
furcation for periodic orbits as the polarizing currentésied
[19]. The Hodgkin-Huxley model was also analyzed under
DISCUSSION variation of the concentration df +, which affects the mem-
brane potential in accordance with the Nernst potentials Th
In a single neuron, interplay between different ionic cur-analysis was motivated by the hypothesis that the elevafion
rents can lead to the coexistence of different regimes af-act externalK* concentration can induce seizures. The analysis
ity, such as tonic spiking, bursting, silence, and subtioles ~ shows the same mechanism of bistability [17].
oscillations. The documented types of bistability include By applying the bifurcation analysis to the model of the
existence of bursting and tonic spiking [12, 14, 24, 30], dedeech heart interneuron, we showed that for a given value
polarized and hyperpolarized silent states [3, 31], twacton of Ej..; the stable hyperpolarized equilibrium and burst-
spiking regimes [32], tonic spiking and silence [6], andelif  ing regime co-existed in a certain range of valuesyEfy.
ent patterns of bursting [14, 24, 33]. Although bistabilitya  For a smallerg;..x, this range is limited by the sub-critical
phenomenon has been shown in many different neuronal sygwndronov-Hopf bifurcation at which the unstable periodie o
tems, the biophysical mechanisms supporting bistabiliey a bit appears. In this regard, the orbit appears in accordance
largely not known. with the Rinzel mechanism of the coexistence of tonic spik-
The co-existence of tonic spiking and silence has been paing and silence. For a largegi..x, the range of bistability
ticularly extensively studied [19]. It was detected in eais  is limited by the homoclinic bifurcation of a periodic orbit
types of neurons, from spinal motoneurons to neuronal neffhe latter distinguishes the mechanism presented here from
works of the entorhinal cortex, and thalamocortical networ the Rinzel mechanism, which has the unstable orbit ceasing
[1-3, 34]. Bistability has been found to occur spontangousl at the saddle-node bifurcation for periodic orbits. Ougsid
or to be induced by neuromodulators. For example, spontdhe above-mentioned range, bistability of bursting arehsié
neous bistability was demonstrated in Purkinje cells in thevas not observed. We performed two-parameter bifurcation
rat and guinea pig [4]. Turtle and cat motoneurons becomanalysis to trace the Andronov-Hopf and homoclinic bifurca
bistable after modulation of membrane properties by serotions using the leak current parameters as the bifurcaten p
tonin [3, 35]. Analysis of neuronal Hodgkin-Huxley type rameters and placed them on the bifurcation diagram olataine
models exhibiting coexistence of tonic spiking and silencepreviously [24]. On this diagram, we showed that the transi-
suggests two main types: 1) The depolarized tonic spikingion from bursting to silence approximately coincides vith
regime and rest state are separated by the stable manifold &fo-parameter curve of the homoclinic bifurcation (Fig.. 6)
a saddle equilibrium [20]; and 2) the trajectory of the tonic This type of analysis of biophysically realistic models ltbu
spiking of larger amplitude goes around the hyperpolarizegrovide help establishing the origin and roles of bist&pit
rest state so that the states are separated by the stable mahie functioning of the nervous system.
fold of a saddle periodic orbit [6, 16, 17, 19]. The secondetyp  Similarly to electronic and other technical devices, inheu
features Rinzel's mechanisms of bistability. The mechanis ronal networks the bistable neurons could play the roles of
of bistability described in this paper is of the second type, switch, relay, logic, and memory elements [38]. In the realm
cept that the bursting state is in the place of tonic spiking.  of motor control, bistable neurons appear to be a natural
A saddle periodic orbit is a generic component of a num-<hoice as elements of multifunctional central pattern gene
ber of mechanisms supporting bistability in the dynamics ofators so that the same network can generate several behav-
single neurons [6, 17, 19, 30, 32, 36, 37]. Its stable manhifol ioral patterns [39-41]. In contrast to multifunctional treh
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—[gNa M, hna [V — Ena)+ where the reversal potentials and maximal conductances of
gp mp[V — Ena+ the ionic currents ar&y, = 0.045 V, Ex = —0.07 V,
gk1 mi hii1 [V — Ex]+ Eca =0.135V,E, = —0.021 V, gxa = 200 nS, gp = 7 1S,
gKQ m%z[v - EK]+ Zcas = 3.2n0S, gcar = 5 1S, gk = 100 nS, gke = 80 nS,
gxa mgahxa [V — Ex|+ gxa = 80nS, g, = 4nS. The cell membrane capacitance
8cas Mg, ghcas[V — Ecal+ C is 0.5 nF. The steady state activation and inactivation
goar Mg, phoar[V — Ecal+ functions are defined by°(a,b,V) = 1/[1 +ex(V+P)],
gn m[V — Ey]+ where x defines the gating variable. The steady state ac-
8leak [V — Eieax]]; tivation function of the hyperpolarization activated @,
mNa(—150. 0 029 V) - mNa]7 the inactivation time constants of the fast sodium and cal-
£2%..(500., 0. 03 V) hxa] cium currents, and the time constants of the activation and
Na(V ) ’ inactivation variables of the other currents are given by
o (— 120.,0.039,V) — mp] £ (V) =
7(400,0.057,0.01,0.2,V) ) h 1+42€180[V+0. 047]()4%%550[”0 047] 0.0
mCaS( 420, 00472, V) - mcas] TNH(V) - O 004 + 1+¢e500[V +0.028] + cosh(300[V+0 027])5
7(—400,0.0487,0.005,0.134,V) ’ TCaF (V) =0.011 + 0.024
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