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In the intracytoplasmic sperm injection (ICSI) process, piezo-electric actuator is commonly used
to assist the piercing of cell membrane. The longitudinal pulses that are performed by the piezo
actuator, however, cause undesired lateral vibrations at the drawn tip of the injection micropipette.
This mechanism is not well understood, despite its critical role in piezo-assisted cellular microin-
jection. Here we provide an analytical model to characterize the micropipette tip vibrations under
assumed base excitation arising from the piezo-electric pulses. The resulting dynamic response is
determined by using the Duhamel integral method. This study quantifies the effect of fluid damping,
embedded mercury, and the apparent cell membrane elasticity. We found that in practice a small
mercury droplet filled in pipette essentially creates higher shear forces at the membrane-pipette
interface. The increased shear due to underdamped eigenmodes is conceived to assist the piercing
of the cell membrane.

PACS numbers(s): 87.80.Fe 43.40.+s 46.40.-f 87.16.D-

I. INTRODUCTION

Microinjection is a well-accepted method to introduce
sperm, nucleus, DNA materials, or macromolecules into
biological cells for biomedical research and applications
such as infertility treatment, cloning, and cryopreserva-
tion [1–3]. The procedure starts with penetration of a
glass micropipette through the cytoplasmic membrane
followed by substance delivery into the cells. Here we fo-
cus on the intracytoplasmic sperm injection (ICSI) pro-
cess, which is one of the broadly used fertilization tech-
niques. During ICSI the oocyte (unfertilized egg) is im-
mobilized by a holding pipette, and then an injection
pipette penetrates through both the zona pellucida and
oolemma to introduce the sperm into the oocyte’s cy-
toplasm [4, 5]. The zona pellucida is a polymer layer
made of glycoproteins that enclose the whole oocyte
[6], whereas the oolemma is the cytoplasmic membrane.
Piercing through the oolemma of a mouse oocyte is dif-
ficult due to its high flexibility and compliance to the
motion of the injection pipette. To assist the penetra-
tion, a piezo-driven longitudinal pulse train is commonly
introduced to the injecting pipette (Fig. 1). However,
this pulse train unavoidably excites lateral vibrations at
the pipette holder and the micropipette [7]. It is believed
that the lateral vibration at the pipette-membrane con-
tact point may damage the oolemma and thus reduce
the success rate of ICSI. In practice today, this diffi-
culty is overcome by filling the pipette tip with mercury.
However, there is no supporting comprehensive analy-
sis to this claim. Contradicting viewpoints also exist on
whether fluid damping can significantly suppress the tip
vibration prior to and during the oocyte penetration pro-
cess [7–9]. Furthermore, it is not clear whether the lateral
vibration in such a short period of time (usually around
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milliseconds) assists the membrane penetration or yields
harmful effects to the oocyte. This study provides an
analysis to clarify the added mercury, fluid damping, and
piezo-triggered tip vibration effects from continuum me-
chanics view point.
Dynamic response of the micropipette can be modelled

as an Euler-Bernoulli beam with the fluid damping effect.
Such mathematical framework is similar to those used for
simulating of the resonant behaviors of an Atomic Force
Microscope (AFM) cantilever tip driven by a harmonic
base motion [10–12]. For a very small oscillation ampli-
tude compared to the beam thickness or pipette diame-
ter, the fluid damping force acting on the cantilever can
be approximated by using the classical boundary layer
theory [13]. For a simple cylindrical cantilever beam
the linear streaming model can be solved analytically.
A finite element numerical analysis of the dynamic re-
sponse of the micropipette under oscillatory forcing was
provided by Fan et. al. [9]. However, the boundary
layer model is applicable for small amplitude oscillation
and not appropriate for characterizing the fluid damping
effect caused by the large-amplitude oscillations of ICSI
micropipette, which was clearly observed from the opti-
cal images provided by Ediz and Olgac [7, 8]. In princi-
ple, the distinct flow pattern induced by large amplitude
pipette oscillation can only be resolved numerically. To
simplify the model, here we use an empirical approxima-
tion of the drag force on an oscillating cylinder to quan-
tify the fluid damping effect under the pulse-excited vi-
bration. The indentation resistance from the membrane
is modelled by an axial force applied to the pipette, and
the shear effect is simplified based on apparent viscoelas-
tic properties of the oolemma cell membrane.

II. ANALYSIS

The assembly for piezo-assisted ICSI consists of three
major components: piezo electric actuator, pipette
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FIG. 1: Schematic of a micropipette assembly. The longitu-
dinal pulse train is introduced by the piezo actuator and is
carried through the pipette holder. As a result, the pipette
shoulder undergoes a decaying lateral oscillation excited by
the longitudinal piezo pulse train. The drawn pipette is filled
with the culture medium and mercury before aspiration of the
sperm head near the pipette mouth.

holder, and glass pipette which is drawn to a very narrow
tip with diameter around 10 µm (Fig. 1). The actuator
generates an axial pulse train that leads to an appar-
ent decaying lateral vibration near the pipette holder.
Direct measurement of the pipette vibration is very dif-
ficult, however, the excited lateral vibration was success-
fully detected by a non-contact photonic probe at the
pipette holder [8], showing that a 2-Hz longitudinal pulse
train given by the piezo-electric actuator excites about
6-kHz lateral decaying vibration with duration about 4
ms. The majority of the micropipette can be assumed
solid except the drawn tip. Thus one can assume that
the lateral vibration at the pipette holder is transmitted
up to the narrowing shoulder without attenuation. This
base vibration subsequently excites the flexible pipette
tip. In ICSI procedure the drawn tip is fully immersed in
the culture medium with viscosity similar to water. The
free vibration of the tip is suppressed by this surround-
ing medium and additionally by the embedded mercury.
Moreover when the tip indents the oolemma, the lateral
and axial forces between the pipette tip and the oolemma
membrane should be considered. To facilitate the anal-
ysis, a few important assumptions are made: (i) there is

no slip between the tip and the membrane, (ii) the struc-
tural damping due to the energy dissipation of the glass
material and the friction between the glass and mercury
is negligible, and (iii) the small pipette section for sperm
head deployment is neglected and the drawn pipette tip is
assumed either empty or completely filled with mercury
(two limiting cases).

A. Mathematical Model

Presuming the structure of the vibrating tip follows
the Euler-Bernoulli beam theory [14], the membrane in-
dentation can be incorporated and modelled by an axial
compressive load, and the hydrodynamic resistance to
the tip is represented by a linear damping effect. The
one-dimensional governing equation thus can be written
as

EI
∂4w

∂x4
+ T

∂2w

∂x2
+ ρA

∂2w

∂t2
+ c

∂w

∂t
= 0 (1)

for 0 ≤ x ≤ L and t ≥ 0, where w(x, t) is the lat-
eral displacement of the tip, E is Young’s modulus,
I = π(D4

o − D4
i )/64 is the area moment of inertia, in

which Do and Di are outer and inner diameters of the
micropipette (Fig. 1), T represents the axial force, ρ is
the structure density, A = π(D2

o − D2
i )/4 is the pipette

tip’s cross-sectional area, ρA is the effective mass per unit
length, and c [kg m−1s−1] is the apparent viscous damp-
ing coefficient that accounts for the fluid damping effect.
If the pipette is filled with mercury, the effective mass of
the pipette tip should be modified and account for the
mass of glass and mercury. The axial force T in Eq. 1 is
the resistance from the indented oolemma, which is cal-
culated from the tension stress due to the stretching of
the membrane (Fig. 2a).
Before the indentation, the oocyte is spherical with

surface area S0 about 4πR
2 where R is the oocyte radius.

The area of the undeformed spherical cap is S1 = 2πRh
while the deformed part of membrane has conical surface
with area S2 = πrd. Assuming that the stress distribu-
tion is uniform and isotropic, in the meridian direction
the tensional stress is σ = kD(S2 − S1)/S0, where kD is
the membrane area dilation modulus. Now by integrat-
ing the tension stress near the folding edge with radius
r, the axial force T can be formulated as

T = 2πrσ cos θ. (2)

Furthermore, the moving base of the beam is clamped
(Fig. 2), and the two boundary conditions are

w(0, t) = a0e
−ǫt sin(2πω0t) and

∂w

∂x
= 0 at x = 0,

(3)
where a0 is the initial amplitude of vibration, ǫ repre-
sents an empirical decaying rate of the forced vibration
at the shoulder and ω0 is the forcing frequency. These
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FIG. 2: (a) Axisymmetric schematic of oocyte in contact with
the pipette tip, and (b) a phenomenological model for the
membrane indentation effect.

parameters are determined from the measurement using
a photonic sensor placed near the pipette holder [7].
Assuming that the point contact between the tip and

the membrane has no bending resistance, the bending
moment for the tip vanishes and is expressed as

∂2w

∂x2
= 0 at x = L. (4)

Additionally, it was found that lipid bilayer membrane
has viscoelastic properties [15, 16], and thus the mem-
brane response due to the shearing motion from the tip
at the contact point may be represented by the Maxwell
viscoelastic model [17] with a serial arrangement of a
spring and a dashpot (Fig. 2b), expressed as

τ +
µL

kL

∂τ

∂t
= µLγ̇ at x = L, (5)

where τ is the shear stress, µL is the apparent membrane
viscosity, kL is the membrane modulus and γ̇ is strain rate
at the contact point. Assuming that there is no slip at
the contact point, the above Maxwell boundary condition
can be formulated in terms of the tip displacement as

EI
∂3w

∂x3
+ EI

µL

kL

∂4w

∂x3∂t
= µL

∂w

∂t
. (6)

The initial conditions for the beam equation (Eq. 1) are
w(x, 0) = ẇ(x, 0) = 0.

Considering the following characteristic scales:

length ∼ L, displacement ∼ a0, (7)

time ∼ ω−1
0 , frequency ∼ ω0,

where ω0 (≃ 6 kHz) is the driving frequency from the
pulse train applied to the micropipette base, the scaled
beam equation becomes

λ
∂4w∗

∂x∗4
+ ζ

∂2w∗

∂x∗2
+
∂2w∗

∂t∗2
+ κ

∂w∗

∂t∗
= 0, (8)

for 0 ≤ x∗ ≤ 1 and t∗ ≥ 0, where x∗ and t∗ are scaled
spatial and temporal variables, respectively. The corre-
sponding boundary conditions are

w
∗(0, t∗) = e−ηt∗ sin(2πt∗), (9)

∂w∗

∂x∗
(0, t∗) = 0,

∂2w∗

∂x∗2
(1, t∗) = 0,

ψ
∂3w∗

∂x∗3
(1, t∗) +

∂4w∗

∂x∗3∂t∗
(1, t∗) = ϕ

∂w∗

∂t
(1, t∗).

The dimensionless groups are defined as

λ =
EI

ω2
0L

4ρA
, ζ =

T

ω0L2ρA
, κ =

c0
ω0ρA

, (10)

η =
ǫ

ω0

, ψ =
kL
µLω0

, and ϕ =
kLL

3

EI
,

which measure the relative contributions of elastic to
structure inertial effect (λ), axial load to structural iner-
tial effect (ζ), viscous damping to structure inertial effect
(κ), decay rate of the forcing frequency to the forcing
frequency (η), the forcing to membrane relaxation time
scales (ψ), and the lateral elasticity of membrane to the
elasticity of the micropipette beam (ϕ). Note that λ is
equivalent to the stiffness of the beam, and the axial force
in ζ provides a compressive effect that reduces the natu-
ral frequency of tip vibration. The hydrodynamic viscous
damping in κ does not affect the nature of the beam but
does determine whether the vibrating modes are over-
damped. The membrane relaxation time scale is of the
order of 10−1 s [15], which is much higher than the tip
oscillation time scale (∼ 10−4 s). Therefore ψ is around
10−3, meaning the membrane viscous effect is negligi-
ble at this driving frequency, and the Maxwell boundary
condition reduces to a simple spring model for the lateral
displacement. In dimensionless form, it is

∂4w∗

∂x∗3∂t∗
(1, t∗) ≃ ϕ

∂w∗

∂t
(1, t∗). (11)

Integrating above equation with time and considering the
zero initial condition, we obtain:

∂3w∗

∂x∗3
(1, t∗) = ϕw∗(1, t∗), (12)
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Other dimensionless groups are of the order of 1 to 10,
and therefore the corresponding terms are kept in the
formulation.
During ICSI the pipette tip is fully immersed in the

oocyte culture medium with a viscosity similar to water.
As a result a damping force arises to suppress vibration
of the pipette tip. This force is similar to the damping
force from viscous fluid to an oscillating cylinder. The
fluid flow induced by an oscillating cylinder has compli-
cated patterns including streaming boundary layer for
small amplitude oscillation [13] and vortex shedding be-
hind the cylinder. These patterns are characterized by
the Reynolds number (Re), Keulegan-Carpenter number
(KC), and/or Stokes’ parameter (β) [19, 20]. However,
analytical solutions exist only for cases with low-Re and
low-KC regime and small oscillation amplitude, so that
the boundary layer approximation is applicable for find-
ing the frequency response and hydrodynamic resistance
of a cantilever beam [9, 12]. As we mentioned in the intro-
duction, such approximation is not appropriate for deter-
mining the damping force on the oscillatory micropipette
considered for ICSI application. In our case, for medium
density ∼ 103 kg/m3, viscosity ∼ 10−3 kg·m−1s−1, tip
diameter 10 to 22 µm, Re ∼ 10 to 30, KC ∼ 5 to 50, and
β ∼ O(1), a pair of symmetric vortices may appear be-
hind the cylinder or even detach from the cylinder surface
when the moving direction of the cylinder changes [19].
The total drag of the oscillating cylinder is composed
of (i) the quasi-steady viscous drag and (ii) the force
history primarily due to the reversal of the motion di-
rection [21]. Because the main contribution of the to-
tal drag comes from the viscous effect, to facilitate the
analytical study, here we only consider the quasi-steady
approximation for the fluid damping on the dynamic re-
sponse of the micropipette. A reasonable estimation of
such damping can be calculated by the drag coefficient
and an estimated linear relation between the local drag
force and the moving velocity of the drawn tip. The local
drag force per unit length can be calculated by

FD = ̺U2DCD/2, (13)

where ̺ is density of fluid, U is the lateral velocity of
micropipette, D is diameter of micropipette and CD is
the drag coefficient. Without direct numerical simulation
of the complicated flow, the drag force can be estimated
by the scaling relationship [22]:

CD ≃ 1 + 10 Re
−2/3
D , (14)

which represents a uniform flow passing through a cylin-
der with Re ranging from creeping flow regime up to the
order of 105. For the given fluid density and cylinder
diameter, the dimensional local damping force per unit
length can be simplified as

FD ≃ 0.0075 U2 + 0.0123 U4/3, (15)

where

U = (a0ω0)∂w
∗/∂t∗. (16)

A reasonable linear approximation of the scaling relation-
ship FD ∼ cU is good for Re up to 30 and the correspond-
ing drag coefficient c ≃ 0.025 [kg·m−1s−1]. Comparing
with the reported numerical results [21], this approxima-
tion underestimates the damping effect by about 10% due
to the neglected force history for a cylinder undergoing
a large-amplitude oscillation.

B. Integral Solution

The superscript ∗ is dropped hereafter in this section
for convenience. The proposed mathematical model in-
cludes a time dependent boundary condition (the first
condition in Eq. 9) and can be solved by the Duhamel in-
tegral method [18]. This method is in general applicable
for a linear equation with time-dependent nonhomoge-
neous boundary condition arising from the forcing effect.
For this purpose the corresponding auxiliary problem for
the dynamic response of the step input has to be solved,
expressed as

λ
∂4u

∂x4
+ ζ

∂2u

∂x2
+
∂2u

∂t2
+ κ

∂u

∂t
= 0, (17)

where u is the solution for the corresponding auxil-
iary problem and the boundary conditions are u(0, t) =
1, u′(0, t) = 0, u′′(1, t) = 0, and u′′′(1, t) = ϕu(1, t),
and the initial conditions u(x, 0) = 0 and u̇(x, 0) = 0
indicate that the micropipette is initially at rest with-
out deformation. The solution for the auxiliary prob-
lem is a sum of the steady state and transient solutions,
u(x, t) = f(x) + v(x, t). The steady-state part satisfies

∂4f(x)

∂x4
+
ζ

λ

∂2f(x)

∂x2
= 0 (18)

with boundary conditions f(0) = 1, f ′(0) = 0, f ′′(1) = 0
and f ′′′(1) = ϕf(1). The last two conditions describe
the spring-hinged conditions. The solution of the steady
state formulation is therefore

f(x) = A1 cos(αx) +A2 sin(αx) +A3x+A4, (19)

where the coefficients are

A1 =
ϕ tanα

α3[(tanα)(sinα) + cosα]− ϕ[α − tanα]
, (20)

A2 =
−A1

tanα
, A3 = −αA2, and A4 = 1−A1.

Note that α2 = ζ/λ gives the comparison of the axial
force to the pipette tip’s stiffness.
The resulting equation for the transient part v(x, t) is

formulated as

λ
∂4v

∂x4
+ ζ

∂2v

∂x2
+
∂2v

∂t2
+ κ

∂v

∂t
= 0, (21)
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where the boundary conditions are v(0, t) = 0, v′(0, t) =
0, v′′(1, t) = 0, and v′′′(1, t) = ϕv(1, t) and the initial
conditions are v(x, 0) = −f(x) and v̇(x, 0) = 0. Letting
vn(x, t) = Xn(x)Tn(t) we obtain the eigen-equation:

∂4X(x)

∂x4
+
ζ

λ

∂2X(x)

∂x2
−
ω2
n

λ
X(x) = 0, (22)

where ωn is the natural frequency. The boundary con-
ditions corresponding to the eigenfunction are X(0) =
0, X ′(0) = 0, X ′′(1) = 0, and X ′′′(1) = ϕX(1). The
mode shape of the uniform beam Xn(x) can thus be de-
rived and expressed as

Xn(x) = cosh(kn1x)− cos(kn2x) (23)

− [sinh(kn1x)− sin(kn2x)]×
[

k2n1 coshkn1 − k2n2 cos kn2
k2n1 sinh kn1 − kn1kn2 sinkn2

]

,

where

kn1 =

{

2ζ/λ+
[

4(ζ/λ)2 + k4n
]

1
2

}

1
2

, (24)

kn2 =

{

−2ζ/λ+
[

4(ζ/λ)2 + k4n
]

1
2

}

1
2

,

and kn = (ωn/λ)
1

4 is the flexural wave number connected
to the natural frequencies ωn and the stiffness parameter
λ. The corresponding frequency equation becomes

0 =
[

k2n1 coshkn1 + k2n2 cos kn2
]

× (25)
{

k3n1 cosh kn1 + kn1k
2
n2 cos kn2

−ϕ

[

sinh kn1 −
kn1
kn2

sin kn2

]}

−
[

k2n1 sinh kn1 + kn1kn2 sinkn2
]

×
{

k3n1 sinhkn1 − k3n2 sin kn2

−ϕ [coshkn1 − cos kn2]
}

.

The temporal equation is

∂2T

∂t2
+ κ

∂T

∂t
+ ω2

nT = 0 (26)

for Ṫ (0) = 0, and the solution is

Tn(t) = e−κt/2

(

eβnt +
2βn − κ

bβn + κ
e−βnt

)

, (27)

where βn is the damped vibration frequency of the mi-
cropipette as a a function of dimensionless natural fre-
quency ωn and the damping factor κ:

βn =
[

(κ/2)2 − ω2
n

]1/2
. (28)

From initial condition v(x, 0) = −f(x), the following so-
lution for the auxiliary problem can be obtained:

u(x, t) = f(x)−

∞
∑

n=1

(2βn + κ)
∫ 1

0
f(x)Xndx

4βn
∫ 1

0
X2

ndx
Tn(t)Xn(x).

(29)
The summation is the time-dependent contribution of ev-
ery eigenmode. Finally based on the Duhamel integral
method, the complete vibration can be expressed as a
closed form integral solution:

w(x, t) =

∫ t

0

u(x, t− τ)
∂w

∂t
(0, τ)dτ, (30)

where u is the response of the micropipette to a unit step
input at the base (x=0) and ∂w(0, τ)/∂t represents the
velocity of the lateral motion at the base.

III. RESULTS AND DISCUSSION

A. A Free-Vibrating Tip

The dynamic features of the micropipette can be un-
derstood from a free-vibrating tip (ζ = 0, ϕ = 0), which
is governed by the damped Euler-Bernoulli beam equa-
tion. For this special case, the eigenmode reduces to

Xn (x) = cosh(knx)− cos(knx) (31)

−
cosh(kn) + cos(kn)

sinh(kn) + sin(kn)
[sinh(knx) − sin(knx)] ,

and the corresponding characteristic equation is

1 + cos kn coshkn = 0, (32)

which yields the wave numbers (kn) 1.875, 4.694, 7.854,
10.99, etc. The transient solution is the same as Eq. 27.
Therefore

u(x, t) = 1−

∞
∑

n=1

(2βn + κ)
∫ 1

0
Xndx

4βn
∫ 1

0
X2

ndx
Tn(t)Xn(x), (33)

and w(x, t) again can be found by Eq. 30. As a re-
sult, we calculate the tip response to a continuous in-
put function w(0, t) = a0 tanh(τ0t) that represents the
impulse. The parameters corresponding to the experi-
mental setting are: L = 1.1 mm, ρglass=2,290 kg/m3,
ρHg=13,543 kg/m3, E = 63.4 GPa, Aglass = 2.827×10−11

m2, AHg = 5.027 × 10−11 m2, I = 2.898 × 10−22 m4,
ω0 = 6 kHz, empirical decaying rate γ = 1000 s−1, initial
amplitude a0 = 12 µm, and τ0 is set to 100 s−1 for a
short duration of the step. The dynamic response of mi-
cropipette tip in fluid to this input is illustrated for cases
of empty micropipette and pipette filled with mercury.
In Fig. 3a, the step response for the micropipette tip

immersed in viscous fluid shows that the triggered oscil-
lation has an overshoot regardless the existence of mer-
cury. After the initial overshoot, the vibration damps out
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FIG. 3: Dynamic response at the free end of the drawn pipette
tip to a step input in liquid: (a) the beam deflection w

∗ (scaled
by a0 = 12 µm) for an empty drawn pipette tip, and a tip filled
with mercury, (b) dynamic response in the frequency domain
for an empty tip (λ = 5.38 and κ = 64.4, w is scaled by the
first eigenmode contribution, amplitude w1), (c) response for
a tip filled with mercury (λ = 0.47, κ = 5.59).

quickly to a new position w
∗ = 1 with almost the same

settling time for both cases. For empty micropipette the
damping profile is smooth. For the pipette filled with
mercury the average damping and settling time are al-
most the same as the empty pipette, whereas the contri-
butions of higher harmonics cause significant noise. Fig-
ures 3b and 3c show the dynamic response at the end
of the tip in the frequency domain, both in vacuum and
immersed in a viscous fluid. All lateral deflections are
rescaled by w1 ≃ 17.4 µm, which is the amplitude of
the first eigenmode of the empty micropipette in vac-
uum. The frequencies are scaled by the first natural fre-
quency corresponding to the empty tip and to the tip
filled with mercury. In Fig. 3b, for an empty pipette the
fluid damping effect suppresses all of the eigenmode con-
tributions, while Fig. 3c shows that for the pipette filled
with mercury the contribution from higher eigenmodes
is still quite effective under fluid damping. Comparing
Figs. 3b and 3c, mercury case has higher contribution to

the lateral vibration for higher eigenmodes, either with
or without fluid damping. Therefore, the high-frequency
oscillation observed in Fig. 3a is contributed by higher
amplitude at higher eigenmodes observed in Fig. 3c com-
pared to 3b (shown by the dashed lines).

FIG. 4: Response to the base excitation of a drawn tip with-
out the fluid damping effect: (a) the transient beam profiles
for an empty drawn tip at a range of dimensionless time t∗ =1
to 1.75 (t∗ = ω0t, 1/ω0 ≃ 0.17 ms), which covers the second
cycle of the vibration, (b) beam profiles for a tip filled with
mercury, (c) time evolution at the tip end for both cases, (d)
dynamic response in the frequency domain for an empty tip
and (e) tip filled with mercury. The location x is scaled by
the tip length 1.1 mm, and the lateral deflection w is scaled
by the initial amplitude of the forced vibration, 12 µm.

Figure 4 shows the mercury effect on the response of
the micropipette under decaying base oscillation with-
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out fluid damping. The dimensionless groups κ = 0,
η = 0.17, and λ = 5.38 are used for the empty mi-
cropipette and λ = 0.47 is used for the tip filled with
mercury. Recall that the λ value measures the relative
contribution of structure elasticity to the inertia effect of
drawn tip. For large λ the oscillation amplitude near the
free end is significantly larger, whereas with the mercury
the high inertia reduces the beam stiffness and results in
a lower vibration amplitude, and thus the deflection of
the whole tip levels off significantly. This result is quali-
tatively consistent with experimental observations (Figs.
9 and 10 in [7]), showing that the added mercury reduces
the amplitude at the end of the tip by two to five folds
(Figs. 4a to 4c). Figures 4d and 4e show the dynamic re-
sponse at the tip end to the decaying forced vibration at
the base. In Fig. 4d for an empty tip, the first natural fre-
quency ω1 is very close to the forcing frequency ω0. This
causes larger amplification of the amplitude. However,
for the tip filled with mercury (Fig. 4e), natural frequen-
cies are away from ω0 which leads to a smaller amplitude
response. The first mode for empty tip has about 4-fold
higher amplitude than the tip filled with mercury. This
is consistent with the beam shapes observed in Figs. 4a
and 4b.

By adding the hydrodynamic damping effect (i.e.,
pipette in liquid) one observes a reduction of the lateral
vibration especially for an empty tip (shown in Fig. 5).
Overall the fluid damping is more efficient for an empty
tip with lower inertia and higher κ value. This agrees well
with the complete tip response to the base excitation (Eq.
3) which is shown in Fig. 3. With fluid damping, the tip
vibration behaves surprisingly similar for cases with and
without embedded mercury. Notice that this observa-
tion is contingent upon the parametric selection for the
pipette and the ambient medium. Variations of these pa-
rameters can easily reverse the comparative outlook. It
is safe to state, however, that the mercury-filled pipette
has less oscillations in the biological liquid medium than
in the air. This is an intuitively obvious result.

The highlight finding of this paper, on the other hand,
is in the following nuance. Authors of [7] compare the
pipette tip responses between empty tip and tip filled
with mercury cases while they are in the air. They de-
clare from this observation that the similar comparison
should hold when the pipette is in the liquid. The present
study brings a contrary viewpoint, that, inducing a prop-
erly selected viscous damping for the medium could ren-
der almost identical tip movements for the two pipettes
(with and without mercury) in the viscus liquid medium.
We may even state that the ambient liquid can be se-
lected such that, the earlier foreseen advantage of hav-
ing mercury in the pipette could be, in fact, becomes a
handicap. This is a very sensitive nuance that was never
recognized in earlier investigations.

FIG. 5: Fluid damping effect corresponding to the cases pre-
sented in Fig. 4. The new dimensionless parameters are: (a)
λ = 5.38, κ = 64.4 and η = 0.17 for an empty tip with ωn=7.8,
48.7, 137.7, etc. (b) λ = 0.47, κ = 5.59 and η = 0.17 for a tip
filled with mercury and ωn=2.3, 14.4, 40.3, etc., and (c) the
time evolution at the tip end for both cases. Note that for the
empty pipette the first mode is overdamped and the higher
harmonics are underdamped (ω∗

1 < κ/2 < ω∗

2 , ω∗

3 , ..., ω∗

∞
),

while for the mercury-filled tip all modes are underdamped.

B. Tip in Contact with Membrane

In this section we add another new and untreated fea-
ture of microinjection operation. When the drawn tip
is engaged with the oolemma membrane, the membrane
generates an axial force on the tip. This force can be cal-
culated by using Eq. 2. The initial and deformed profiles
of the oolemma membrane are measured from optical im-
ages [23], and thus the axial force T applied to the tip
can be calculated. For this purpose we multiply the rel-
ative change of the area, (S2 − S1)/S0, with the area
dilation modulus kD (for which a reference value about
450 mN/m [24] is selected), so that the tension stress of
the membrane σ can be determined. The resulting shear
force at the tip-oolemma contact point can also be esti-
mated by kL ≃ kD and Fs = kDa0w

∗ at x = 1.1 mm,
where w

∗ is given by the integral solution (Eq. 30).

Figure 6 shows the transient shear force applied from
the tip to the oolemma. A high shear up to several
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FIG. 6: Pipette engaged in oocyte, all in liquid medium. (a)
Transient deflections of the tip at different instants and (b)
the estimated shear force acting on the oolemma with and
without the mercury. The parameters used are: λ = 5.38,
ζ = 1.204, κ = 64.40, η = 0.17 and ϕ = 32.6 for an empty
tip; λ = 0.47, ζ = 0.07, κ = 5.59, η = 0.17 and ϕ = 32.6 for a
tip filled with mercury. The indentation depth is around 65%
of the oocyte diameter.

microNewtons appears during the first few milliseconds.
This finding indicates that filling the tip with mercury
yields approximately four-fold higher shear force on the
oolemma in comparison with the empty tip. This is due
to increased inertial effect and the greater contribution
from higher harmonics. When filled with mercury the tip
displacement at the contact point as well as the applied
shear force are much larger. This property possibly eases
the piercing the flexible oolemma. According to the fre-
quency response shown in Fig. 3, the higher harmonic
vibration of the tip with mercury will provide additional
shear to the membrane compared with the empty tip.
However, to the best of our knowledge, no experimental
evidence or study has ever addressed this issue before.

A few sensitivity tests are presented next in a broader
range of membrane stiffness, medium viscous damping,
pipette tip length, and the pipette indentation depth on
the maximum shear force Fs,max. Figure 7a shows that
a larger membrane elasticity implies a larger shear force
when everything else remains the same. In this limit, the

FIG. 7: (a) Effect of membrane elasticity on the maximum
shear force while the pipette is in a viscous liquid, (b) viscous
damping on the maximum shear force, and (c) pipette tip
length on the maximum shear force for the tip filled with
mercury; the dash lines indicate the forcing. Squares are data
points corresponding to the conditions provided in Fig. 6.
The parameters used are: L =1.1 mm, Do =10 µm, Di =8
µm, c =0.025 kg ·ms−1, ǫ =1000 s−1, ω0 =6 kHz, and a0 =1.2
µm.

shear force vanishes and no resistance exists against the
lateral movement of pipette tip as the membrane elastic-
ity approaches to zero. In the other limiting condition
for a very stiff membrane, the pipette tip is essentially
pinned, so that w(L, t) = 0 and ∂2w(L, 0)/∂x2 = 0.
This asymptotic behavior yields higher shear forces for
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all three different filling liquids as shown in Fig. 7a.
Figure 7b shows the medium viscous effect on the maxi-
mum shear force while all other parameters remain fixed.
For the mercury-filled tip the shear force decreases much
more steeply with increasing viscosity and approaches to
similar asymptotic value as for the other tips. The shear
force monotonically decays as the viscosity increases.
Comparing with the less dense filling liquid, such as Fluo-
rinert [5], the tip filled with mercury has the first natural
frequency much closer to the pulse train frequency at the
base (6 kHz). As a result a resonant response is expected
at the tip, which yields a larger amplitude and larger
shear force as observed in Fig. 7b. When the tip is filled
with lighter material the medium viscosity doesn’t seem
to affect the maximum shear force significantly. All cases
approach to the limit with large viscous effect. The effect
of the tip length on the maximum shear force is shown
in Fig. 7c. For a short tip the rigidity λ is large enough
to keep a relatively flat pipette profile during the vibra-
tion and thus the shear force is higher and the trace for
the tip end has almost no phase shift comparing with the
excitation. Applying a longer tip will reduce the rigidity,
lead to a flexible tip profiles and cause larger delay in
the trace with respect to the forcing. Figure 7c shows
that the shear force does not monotonically decrease as
the length increases due to the complicated tip vibration
profiles. Multiple inflections along the beam profiles ap-
pear for longer tips which may generate a smaller vibra-
tion amplitude at the tip end and thus smaller maximum
shear force. We also expect that longer pipette tips yield
higher viscous dissipation effects which limit the vibra-
tion amplitude at the tip.

FIG. 8: Effect of indentation depth to the maximum shear
force. The parameters are listed in Fig. 7. Note that different
scales are applied for different tips.

Figure 8 presents the effect of membrane indentation
depth on the shear force. A deeper indentation to the

oolemma membrane yields a larger axial resistance T to
the tip. The resulting maximum shear force Fs,max is
calculated based on the oolemma profiles [23] at various
indentation depths. This earlier study shows that for
an indentation depth ranging between 0 to 66% of the
oocyte diameter (≃ 100 µm), r is around 0 to 37.1 µm,
d is about 0 to 63 µm, h is about 0 to 3 µm, and θ is ap-
proximately 90 to 30◦. The resulting axial force T goes
from 0 to approximately 3.96 µN. This value is within
the same order of magnitude compared with the exper-
imental data reported by Sun et. al. [26] and Sen et.
al. [27]. Figure 8 reveals that the maximum shear force
remains almost constant for small indentation depth up
to 35%. The relative change of the maximum shear force
is less than 1% for the tip filled with mercury, and ∼3.5%
for an empty tip. This shows that the axial load has
slight effect on the tip-membrane shear force. Although
this percentage seems small, in practice larger indenta-
tion depths may prevent the slip between the tip and the
membrane during the lateral vibration of the tip. Be-
cause the oolemma’s rupture tension is unknown, as a
reference, the reported lipid membrane’s rupture tension
on the order of 10−2 N · m−1 [25, 28] is used as a refer-
ence. Considering the pipette tip diameter about 10 µm,
the shear force for rupturing membrane is around 0.1 µN.
This value is an order of magnitude lower than the shear
force shown in Figs. 6 and 8, implying that the oolemma
might be pierced by the shear force triggered by the lat-
eral pulse trains instead of the axial piezo-actuated force.

IV. CONCLUSION

This study presents an analysis of piezo-induced tip
vibration of ICSI pipette. The results show that the
first few eigenmodes play a major role in the dynamic
response of the vibrating tip. Cases with and without
embedded mercury in the micropipette are studied, in
vacuum and in a viscous fluid medium. For selected
parametric quantities we observe an interesting compar-
ison: in viscous liquid the pipette tip filled with mercury
shows larger strokes than that of the empty pipette.
This finding is contradicting with current hypothesis
among the ICSI community which believes the con-
strained movement of tip when it is filled with mercury.
The mercury induced larger strokes could cause larger
shear force, and may ultimately ease the piercing of
the cell membrane. The study sheds some light into
this intriguing dynamics. The authors hope that this
work would promote further studies and experimental
evidence which will bring more engineering tools to the
use of practitioners of ICSI.
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