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Abstract

Several experiments have reported that ferroelectric nanoparticles have drastic effects on nematic

liquid crystals—increasing the isotropic-nematic transition temperature by about 5 K, and greatly

increasing the sensitivity to applied electric fields. In a recent paper [L. M. Lopatina and J. V.

Selinger, Phys. Rev. Lett. 102, 197802 (2009)], we modeled these effects through a Landau theory,

based on coupled orientational order parameters for the liquid crystal and the nanoparticles. This

model has one important limitation: Like all Landau theories, it involves an expansion of the

free energy in powers of the order parameters, and hence it overestimates the order parameters

that occur in the low-temperature phase. For that reason, we now develop a new Maier-Saupe-

type model, which explicitly shows the low-temperature saturation of the order parameters. This

model reduces to the Landau theory in the limit of high temperature or weak coupling, but shows

different behavior in the opposite limit. We compare these calculations with experimental results

on ferroelectric nanoparticles in liquid crystals.
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I. INTRODUCTION

One important goal of modern liquid-crystal research is to enhance the properties of liq-

uid crystals through physical methods, without the need for new chemical synthesis. One

way to achieve this goal is to put colloidal particles into liquid crystals. If the particles

have a length scale of microns, they induce elastic distortions of the liquid crystals, and

these distortions mediate an effective interaction between the particles. The particles may

then form a periodic array, leading to a composite material with potential applications in

photonics [1–6]. By comparison, if the particles have a length scale of 10–100 nm, they

are too small to distort the liquid crystal. In that case, the system enters into another

regime of behavior, in which the particles function as molecular additives to change the

effective properties of the liquid-crystal host. One particularly interesting case occurs if the

particles are ferroelectric. Experiments have shown that low concentrations of ferroelectric

Sn2P2S6 or BaTiO3 nanoparticles increase the orientational order parameter, increase the

isotropic-nematic transition temperature, and decrease the switching voltage for the Fred-

eriks transition [7–14]. Thus, they provide a new opportunity to enhance the properties of

liquid crystals for technological applications.

To make further progress with these materials, it is essential to develop a theory for the

interaction between liquid crystals and ferroelectric nanoparticles. In previous theoretical

research, Reshetnyak et al. have developed a theoretical approach based on electrostat-

ics [12, 13, 15]. In this theory, the key issue is how an ensemble of nanoparticles with

aligned dipole moments can polarize the liquid-crystal molecules, hence increasing the in-

termolecular interaction. This electrostatic effect enhances the isotropic-nematic transition

temperature and reduces the Frederiks transition voltage. In related research, Pereira et

al. have performed molecular dynamics simulations of ferroelectric nanoparticles immersed

in a nematic liquid crystal [16]. These simulations also assume that the nanoparticles are

aligned, and they also find a substantial enhancement of liquid-crystal order.

In a recent paper [17], we proposed a different type of theory for the statistical mechanics

of ferroelectric nanoparticles in liquid crystals. In that theory, we suppose that both the

liquid crystals and the nanoparticles have distributions of orientations, as illustrated in

Fig. 1. These distributions are characterized by two orientational order parameters, which

interact with each other. Using a Landau theory, we showed that the coupling stabilizes the
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nematic phase. By estimating the strength of the coupling, we calculated the enhancement

in the isotropic-nematic transition temperature. We also predicted that the nanoparticles

would greatly increase the Kerr effect, the response of the isotropic phase to an applied

electric field.

This concept of interacting order parameters for the liquid crystal and the dopant is

somewhat related to early work by Luckhurst and collaborators [18–22], who studied orien-

tational order in multicomponent mixtures. It has been extended recently by Gorkunov and

Osipov [23], who investigate short-range interactions based on nanoparticle shape rather

than electrostatics.

Although our work of Ref. [17] demonstrates an important physical mechanism for sta-

bilizing orientational order, we must acknowledge that it has one mathematical limitation:

Like all Landau theories, it involves an expansion of the free energy in powers of the order

parameters. This expansion is valid when the order parameters are small, but it breaks down

when they become large. In particular, the theory allows the order parameters to become

larger than 1, which is clearly impossible. For ferroelectric nanoparticles in a liquid crystal,

the nanoparticle order parameter is not necessarily small, even near the isotropic-nematic

transition.

The purpose of the current paper is to generalize the previous theory by eliminating the

assumption that the order parameters are small. For this generalization, we now use a Maier-

Saupe-type theory instead of a Landau theory. We still consider the same physical concept

of coupled orientational order parameters for the liquid crystals and the nanoparticles, and

 

 

FIG. 1: (Color online) Schematic illustration of ferroelectric nanoparticles suspended in a liquid

crystal. The electrostatic dipole moments of the nanoparticles have a distribution of orientations.
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we still use the same energy of interaction between them. However, we now use a more

general expression for the entropy, not a power series, which enforces the constraint that the

order parameters cannot become larger than 1. This change allows us to avoid the potential

mathematical inconsistency of Landau theory.

Like our previous calculation, the work presented here shows that doping liquid crystals

with ferroelectric nanoparticles enhances the isotropic-nematic transition temperature. In

the limit of weak coupling between the nanoparticles and the liquid crystal, the Maier-Saupe-

type theory exactly reduces to the Landau theory. However, in the case of strong coupling,

the new theory predicts a smaller but still substantial enhancement. Rough estimates suggest

that the experimental system is in the limit of strong coupling, so it is important to use

this modified theory. Furthermore, the work presented here also predicts the Kerr effect as

a function of applied electric field. In the limit of low electric field, the Maier-Saupe-type

theory exactly reduces to the Landau theory. However, for larger field, the nanoparticle

order saturates and the enhanced Kerr effect is cut off.

The plan of this paper is as follows. In Sec. II we present the formalism of Maier-Saupe

theory, with interacting orientational distributions for liquid-crystal molecules and nanopar-

ticles. In Sec. III we apply this formalism to calculate the isotropic-nematic transition

temperature, and determine the enhancement due to nanoparticles. In Sec. IV we use the

same formalism to calculate the Kerr effect of induced orientational order under an applied

electric field, and investigate how this effect depends on the magnitude of the field. Finally,

in Sec. V we discuss the main conclusions of this study.

II. OVERVIEW OF MAIER-SAUPE THEORY

In this section we introduce the free energy for a system of liquid-crystal molecules with

ferroelectric nanoparticles. To construct the free energy, we use the fundamental equation

of mean-field theory,

F = 〈H〉+ kBT 〈ln
N
∏

i=1

̺i〉, (1)

where the first term is the energy, the second term is the entropic contribution to the free

energy, and the averages are taken over the single-particle distribution function ̺i for each

particle i. Hence, the first step is to define the distribution functions for liquid-crystal
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molecules and nanoparticles.

Liquid-crystal molecules are rod-shaped objects, with each molecule characterized by the

direction of its long axism. In the nematic phase, these axes are preferentially oriented along

the average director n, and hence each molecule experiences an effective aligning potential

due to its neighbors. Because the molecules are equally likely to point along +n or −n,

the effective aligning potential is proportional to the second Legendre polynomial P2(cos θ),

where θ is the angle between m and n, as the leading term in a Legendre series. Hence, the

single-molecule distribution function can be written as

̺LC(θ) =
exp(ULCP2(cos θ))

∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

. (2)

Here, ULC is a variational parameter, which is related to the standard nematic order param-

eter SLC = 〈P2(cos θ)〉 by

SLC =

∫ 1

−1
d(cos θ)P2(cos θ) exp(ULCP2(cos θ))
∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

(3)

Note that ULC ranges from 0 to ∞, while SLC ranges from 0 to 1.

We can now calculate the free energy of a pure liquid-crystal system. Maier-Saupe theory

assumes that the interaction energy between neighboring molecules i and j is proportional

to −(mi · mj)
2. With the assumed distribution function, the average interaction energy

becomes

F LC
energetic = 〈H〉 = −

1

3
JNLCS

2
LC, (4)

where NLC is the number of liquid-crystal molecules in the system, and J is an energetic pa-

rameter proportional to the interaction strength and the number of neighbors per molecule.

Furthermore, the entropic contribution to the free energy can be written as

F LC
entropic = kBTNLC〈ln ̺LC〉

= kBTNLC

[

ULCSLC (5)

− ln
[

∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

]]

.

By combining these pieces, we obtain the total free energy of the liquid crystal,

F

NLCkBT
= −

J

3kBT
S2
LC + ULCSLC (6)

− ln
[

∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

]
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The free energy of Eq. (6) is a function of the temperature T and the variational parameter

ULC, with SLC defined implicitly as a function of ULC through Eq. (3). By minimizing the

free energy over ULC for varying temperature, we can find the liquid crystal has a first-order

transition from the isotropic phase with ULC = SLC = 0 to the nematic phase with

ULC = 1.95, SLC = 0.429. (7)

The numerical solution for the transition temperature in this pure liquid crystal is

TNI = 0.147
J

kB
. (8)

Also, we can find an analytic solution for the limit of supercooling,

T ∗ =
2J

15kB
= 0.133

J

kB
. (9)

From experiments we know T ∗ and TNI for any particular liquid-crystal material, so we can

use Eq. (8) or (9) to determine J for that material,

J = 6.81kBTNI. (10)

Once we add nanoparticles to the system, we get another distribution function for the

orientations of the nanoparticle dipole moments. In the absence of an external field, the only

physical mechanism that aligns the nanoparticles is the interaction with the liquid crystal.

Hence, the effective aligning potential on the nanoparticle dipole moments should also be

proportional to P2(cos θ), as the leading term in a Legendre series. However, the magnitude

of the nanoparticle order may be different from the magnitude of the liquid-crystal order.

Hence, we can write the nanoparticle distribution function as

̺NP(θ) =
exp(UNPP2(cos θ))

∫ 1

−1
d(cos θ) exp(UNPP2(cos θ))

, (11)

where UNP is a variational parameter for the nanoparticles. The orientational order pa-

rameter SNP of the nanoparticles can be defined by analogy with the liquid-crystal order

parameter as

SNP =

∫ 1

−1
d(cos θ)P2(cos θ) exp(UNPP2(cos θ))
∫ 1

−1
d(cos θ) exp(UNPP2(cos θ))

. (12)

Just as in the liquid-crystal case, note that UNP ranges from 0 to ∞, while SNP ranges from

0 to 1.
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As we discussed in our previous paper [17], the ferroelectric nanoparticles create static

electric fields, which interact with the dielectric anisotropy of the liquid crystal. By averaging

the interaction energy over the distribution functions ̺LC and ̺NP, we obtain

Finteraction = −KNPNNPSLCSNP. (13)

In this expression, NNP is the number of nanoparticles in the system, and KNP is an energetic

parameter representing the strength of the interaction. For an unscreened electrostatic

interaction, we derived

KNP =
ε0∆εp2

180π(ε0ε)2R3
=

4πε0∆εP 2R3

405(ε0ε)2
. (14)

where p, P , and R are dipole moment, polarization, and radius of a nanoparticle, and ε

and ∆ε are the dielectric constant and dielectric anisotropy of the bulk liquid crystal. If

the interaction is screened by counterions, then KNP is somewhat reduced, but it is still

substantial as long as the Debye screening length is greater than the nanoparticle radius.

Hence, orientational order of the liquid-crystal molecules tends to favor orientational order

of the nanoparticles, and vice versa.

Whenever there is an aligning effect, there must be an entropic cost. By analogy with the

entropic term for liquid-crystal molecules, the entropic penalty for aligning the nanoparticles

is

FNP
entropic = kBTNNP〈ln ̺NP〉

= kBTNNP

[

UNPSNP (15)

− ln
[

∫ 1

−1
d(cos θ) exp(UNPP2(cos θ))

]]

.

The total free energy for liquid-crystal molecules and nanoparticles is now the combination

of Eqs. (6), (13), and (15),

F

NLCkBT
= −

J

3kBT
S2
LC −

νKNP

kBT
SLCSNP

+ULCSLC + νUNPSNP (16)

− ln
[

∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

]

−ν ln
[

∫ 1

−1
d(cos θ) exp(UNPP2(cos θ))

]

.

Note that we have normalized this free energy by the number of liquid-crystal molecules,

not by the number of nanoparticles. For that reason, all the nanoparticle terms in Eq. (16)
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contain a factor of ν = NNP/NLC, the ratio of the number of nanoparticles to the total

number of liquid-crystal molecules.

To summarize, we have derived the free energy for the system of ferroelectric nanopar-

ticles suspended in a liquid crystal. The first term represents the aligning energy favoring

orientational order of the liquid crystal, while the second term describes the mutual aligning

interaction between nanoparticle order and liquid-crystal order. The last terms are entropic

terms that give the free-energy penalty for any liquid-crystal or nanoparticle order. The

free energy is a function of two variational parameters, ULC and UNP, and we formulate our

problem as minimization over those quantities. Once we find them, we can calculate the

order parameters SLC and SNP using Eqs. (3) and (12).

III. TRANSITION TEMPERATURE

Experiments show a substantial increase in the isotropic-nematic transition tempera-

ture for liquid crystals doped with ferroelectric nanoparticles. In order to understand this

phenomenon and predict how to enhance it further, we investigate the isotropic-nematic

transition using the free energy of Eq. (16).

Two distinct limiting cases of this transition are possible. If the nanoparticle order is

small, then all of the integrals in Eq. (16) can be expanded in Taylor series for small ULC

and UNP. The expressions for the order parameters SLC and SNP from Eqs. (3) and Eq. (12)

can also be expanded in power series in ULC and UNP. Hence, the free energy can be expressed

as a series in ULC and UNP, or equivalently as a series in SLC and SNP. After some algebraic

transformations, we obtain

F

NLCkBT
= const +

(

5

2
−

J

3kBT

)

S2
LC +

5

2
νS2

NP

−
νKNP

kBT
SNPSLC + . . . . (17)

This expression is exactly the Landau free energy as a series in the order parameters, as

discussed in our earlier paper [17]. To find the isotropic-nematic transition, we first minimize

over SNP to obtain

SNP =
KNP

5kBT
SLC. (18)
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We then substitute this value into the free energy series to obtain

F

NLCkBT
= const +

(

5

2
−

J

3kBT
−

νK2
NP

10(kBT )2

)

S2
LC + . . . . (19)

The change in the coefficient of S2
LC shows that the isotropic-nematic transition temperature

is shifted upward by

∆TNI =
νK2

NP

25k2
BTNI

(20a)

In the notation of the previous paper, this shift can be written as

∆TNI =
πφNPR

3

3TNIρLC

(

2∆εP 2

675kBε0ε2

)2

, (20b)

where ρLC is the number of liquid-crystal molecules per unit volume and φNP = 4
3
πR3ρLCν

is the volume fraction of nanoparticles.

Note that the power-series approximation works well as long as the energetic parameter

KNP is small compared with 5kBT . In that case the nanoparticle order parameter SNP is small

compared with SLC, which is approximately 0.429 just below the isotropic-nematic transition.

However, the approximation breaks down if KNP becomes large compared with 5kBT , so that

SNP is large compared with SLC. In the latter case, the prediction for SNP would be greater

than 0.429 on the nematic side of the transition. It might even be greater than 1, which

would be unphysical. This unphysical prediction arises because the power-series expansion

cannot take account of the saturation of the order parameters at low temperatures. Hence,

for large KNP we must consider a different limiting case.

In the limit of large KNP, the nanoparticle order is large; i.e. the variational parameter

UNP approaches infinity and the order parameter SNP approaches 1. In that case we can

approximate Eq. (12) to obtain

SNP = 1−
1

UNP
. (21)

We can then put this approximation into the free energy of Eq. (16), expand the nanoparticle

entropic integral for large UNP, and minimize the resulting free energy over UNP. This

calculation gives

UNP =
KNP

kBT
SLC, (22a)

SNP = 1−
kBT

KNPSLC
. (22b)
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Note that this calculation is self-consistent, showing large nanoparticle order when KNP ≫

kBT . Using Eqs. (22), we obtain the approximate free energy of the nematic phase

F

NLCkBT
= −

J

3kBT
S2
LC + ULCSLC (23)

− ln
[

∫ 1

−1
d(cos θ) exp(ULCP2(cos θ))

]

−
νKNP

kBT
SLC + ν ln

(

3KNPSLC

2kBT

)

.

This free energy is equivalent to the classical Maier-Saupe free energy of Eq. (6), except for

the last two terms, which represent the energy and entropy of well-ordered nanoparticles

interacting with the liquid crystal. These terms are proportional to the nanoparticle con-

centration ν = NNP/NLC, which is small. These terms shift the nematic free energy, and

hence shift the isotropic-nematic transition temperature. To find the value of the shift, we

must minimize the free energy.

To minimize the free energy, we use perturbation theory. For this calculation, we define

the parameters

ULC = U0
LC +∆ULC, (24a)

TNI = T 0
NI +∆TNI, (24b)

where U0
LC and T 0

NI are the known results from the classical Maier-Saupe free energy, given

in Eqs. (7) and (8), and ∆ULC and ∆TNI are perturbations due to addition of ferroelectric

nanoparticles. For low nanoparticle concentrations, these perturbations should both be of

order ν. We now expand the free energy to lowest order in these pertubations, minimize

over ∆ULC, and solve for ∆TNI such that the isotropic and nematic free energies are equal.

The resulting shift in the transition temperature is

∆TNI = 1.03
νKNP

kB
= 1.03

φNP∆εP 2

135kBρLCε0ε2
. (25)

Comparing Eqs. (20) and (25), we can see that there are two regimes for the shift in

the transition temperature. For small interaction KNP (i.e. the Landau regime), the shift

∆TNI increases as K2
NP, but for large KNP, it increases more slowly as KNP. In both cases

it is proportional to the nanoparticle concentration ν. Equivalently, if we work at fixed

nanoparticle volume fraction φNP, our theory predicts that ∆TNI will increase with the

nanoparticle material polarization P 4 and radius R3 in the weak-interaction regime, but it
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will only increase as P 2 and will be independent of R in the strong-interaction regime. (It

will be independent of R as long as the particles are small enough so that they do not distort

the liquid-crystal alignment.)

Our predictions for ∆TNI can be compared with the previous predictions of Li et al. [13].

They calculated that ∆TNI should increase as the volume fraction φNP and as the polarization

P 2, and should be independent of the radius R. These predictions for the scaling agree with

our predictions for the strong-interaction regime (although not for the weak-interaction

regime). We believe that this agreement is just a coincidence, because the theories are quite

different. One way to see the difference is through the dependence on dielectric anisotropy

∆ε: they predict that ∆TNI should scale as (∆ε)2, but we calculate that it should scale

linearly with ∆ε in the strong-interaction regime. This difference arises because their model

considers one liquid-crystal molecule interacting through the dielectric anisotropy ∆ε with

one nanoparticle, which then interacts through ∆ε with another liquid-crystal molecule,

thus giving an effective liquid-crystal interaction proportional to (∆ε)2. By comparison,

in the strong-interaction regime our model considers the direct influence of well-ordered

nanoparticles on the liquid crystal, and hence has only one power of ∆ε.

For a numerical estimate, we use typical experimental values of the parameters φNP =

0.5%, P = 0.26 Cm−2, R = 35 nm, ρLC = 2.4 × 1027 m−3, kB = 1.38 × 10−23 JK−1,

ǫ0 = 8.85 × 10−12 C2N−1m−2, and ∆ǫ ≈ ǫ ≈ 10. Those parameters imply ν = 1 × 10−8,

KNP = 1 × 10−15 J, and hence KNP/(kBT ) = 2 × 105, so the system is definitely in the

strong-interaction regime. Our prediction for the shift in transition temperature is then

∆TNI ≈ 1 K. (26)

This value is consistent with the order of magnitude that is observed in experiments. Note

that in this prediction we are using the bulk polarization of the ferroelectric material BaTiO3,

which is P = 0.26 Cm−2. In this respect, our current estimate is different from our previous

paper [17], where we assumed P = 0.04 Cm−2 because of an understanding that the bulk

polarization is reduced by surface effects in nanoparticles. The issue of estimating the

polarization of nanoparticles is subtle, as discussed in Ref. [15].

As a final point about the phase diagram, we should mention that the model defined

by the free energy (16) can exhibit one additional phase, between isotropic and nematic,

which occurs if the parameter KNP is sufficiently large. In this intermediate phase, the
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nanoparticles have substantial orientational order (with SNP comparable to the Maier-Saupe

order parameter of 0.429), but the liquid crystal has only very slight orientational order (with

SLC of order νKNP/(kBT )). For that reason, we might call it a “semi-nematic” phase. It

is a perturbation on the pure liquid crystal’s isotropic phase, not on the nematic phase.

The semi-nematic phase is probably an artifact of the mean-field theory used here. It can

only exist because the very slight order of the liquid crystal mediates an aligning interaction

between the nanoparticles. This slight orientational order is unlikely to persist when one

includes fluctuations in the liquid crystal.

IV. KERR EFFECT

Apart from the phase diagram, another important issue is the response of a liquid crystal

to an applied electric field. In the isotropic phase, an applied field E induces orientational

order proportional to E2, known as the Kerr effect. In most pure liquid crystals, the Kerr

effect is quite small, and can only be observed for very large fields. However, in our previous

paper, we predicted that ferroelectric nanoparticles can enhance the Kerr effect by several

orders of magnitude. We would like to assess how this prediction is modified by the Maier-

Saupe theory presented here.

In the presence of an electric field, ferroelectric nanoparticles will have polar order along

the field; i.e. the orientational distribution function will no longer have a symmetry between

the directions +n and −n. Hence, we must change the nanoparticle distribution of Eq. (11)

to

̺NP(θ) =
eU

NP
1

P1(cos θ)+UNP
2

P2(cos θ)

∫ 1

−1
d(cos θ)eU

NP
1

P1(cos θ)+UNP
2

P2(cos θ)
. (27)

Here, UNP
1 and UNP

2 are two variational parameters, which act as effective fields on the polar

and nematic order of the nanoparticle distribution function, as described by the Legendre

polynomials P1(cos θ)) and P2(cos θ)), respectively. They generate polar and nematic order
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parameters, defined as

MNP =

∫ 1

−1
d(cos θ)P1(cos θ)e

UNP
1

P1(cos θ)+UNP
2

P2(cos θ)

∫ 1

−1
d(cos θ)eU

NP
1

P1(cos θ)+UNP
2

P2(cos θ)
,

(28a)

SNP =

∫ 1

−1
d(cos θ)P2(cos θ)e

UNP
1

P1(cos θ)+UNP
2

P2(cos θ)

∫ 1

−1
d(cos θ)eU

NP
1

P1(cos θ)+UNP
2

P2(cos θ)
.

(28b)

We still assume that the liquid-crystal distribution function is purely nematic, not polar, as

given by Eq. (2).

The applied electric field E adds two contributions to the energy of the system,

F field
energetic = −

ε0∆ε

3ρLC
E2SLCNLC − pEMNPNNP. (29)

Here, the first term is the interaction of the field with the dielectric anisotropy of the liquid

crystal, and the second term is the interaction with the dipole moments of the nanoparticles.

With these energetic terms, together with the entropy of the distribution function, the free

energy becomes

F

NLCkBT
= −

J

3kBT
S2
LC −

νKNP

kBT
SLCSNP

−
ε0∆εE2

3kBTρLC
SLC −

νpE

kBT
MNP

+ULCSLC + νUNP
1 MNP + νUNP

2 SNP (30)

− ln
[

∫ 1

−1
d(cos θ)eULCP2(cos θ)

]

−ν ln
[

∫ 1

−1
d(cos θ)eU

NP
1

P1(cos θ)+UNP
2

P2(cos θ)
]

.

The next step is to minimize this free energy over all three variational parameters ULC,

UNP
1 , and UNP

2 . For this minimization, there are four distinct regimes of electric field, as

indicated in Fig. 2.

(a) If the field is sufficiently small, E <
∼ kBT/p, it induces only slight order in the liquid-

crystal and nanoparticle distributions. In that case, we can expand the free energy as a

power series in all the variational parameters. This expansion is exactly the Landau theory

presented in our previous paper [17]. We can then minimize the free energy over all the

variational parameters to obtain

SLC =
E2

15kB(T − T ∗

doped)

(

ε0∆ε

ρLC
+

νKNPp
2

5(kBT )2

)

, (31)
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where T ∗

doped = T ∗ + ∆TNI is the limit of supercooling of the nanoparticle-doped liquid

crystal, combining Eqs. (9) and (20). In this expression, the first term is the conventional

Kerr effect without nanoparticles, and the second term is an additional contribution due to

the aligning effect of the nanoparticles. Note that both terms are proportional to E2. With

the numerical estimates presented above, the second term is several orders of magnitude

larger than the first, and hence the nanoparticles greatly increase the Kerr effect in this

regime.

(b) For larger field, in the regime kBT/p <
∼ E <

∼ [νKNPρLC/(ε0∆ε)]1/2, the nanoparticle

order parameters MNP and SNP saturate near the maximum value of 1. In that case, we can

no longer expand the free energy as a power series in the nanoparticle parameter, but we

can still expand it in the liquid-crystal parameter. Minimizing the free energy then gives

SLC =
1

15kB(T − T ∗)

(

ε0∆εE2

ρLC
+ 3νKNP

)

. (32)

Once again, the first term is the conventional Kerr effect without nanoparticles, and the

second term is the additional contribution from the nanoparticles, but now the second term

is independent of electric field. The second term is still much larger than the first, and

hence the Kerr effect is approximately constant with respect to field in this regime. Note

that the plateau value SLC ≈ 3νKNP/[15kB(T − T ∗)] = φNP∆εP 2/[675ρLCε0ε
2kB(T − T ∗)]

is independent of nanoparticle radius R for fixed volume fraction φNP.

(c) For even larger field, [νKNPρLC/(ε0∆ε)]1/2 <
∼ E <

∼ [kB(T − T ∗)ρLC/(ε0∆ε)]1/2, the

order parameter SLC is still given by Eq. (32), but now the first term becomes larger than

the second. In this regime, SLC again increases as E2. It is similar to the conventional

liquid-crystal Kerr effect, but with an extra constant contribution from the nanoparticles.

(d) For the largest field, [kB(T − T ∗)ρLC/(ε0∆ε)]1/2 <∼ E, the order parameter SLC satu-

rates at the maximum value of 1.

To get a full picture of the behavior through all these regimes, we minimize the free

energy of Eq. (30) numerically, using the parameters P = 0.07 Cm−2, T = 330 K, T ∗ = 280

K, and other parameters as listed at the end of Sec. III. (This reduced value of P is used to

be sure that the system will be in the true isotropic rather than the “semi-nematic” phase.)

The results of this calculation are shown by the black line in Fig. 2. By comparison, the red

line shows the limiting case of regime (a), and the green line shows the approximation for

regimes (b-d). We see that the numerical solution overlaps the limiting cases and connects
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Particles align LC

Saturated LC order

FIG. 2: (Color online) Four regimes of the Kerr effect, derived from a numerical minimization of

Eq. (30) with the parameters given in the text. A log-log scale is used to show all the regimes on

a single plot.

them.

Note that the low-field regime (a) is the regime where Landau theory is valid, and it

is where the nanoparticles give the greatest enhancement of the conventional Kerr effect.

However, this regime will be difficult to observe in experiments, because the induced order

parameter SLC is so small, on the order of 10−4. Typical optical experiments can only

detect a birefringence corresponding to SLC on the order of 10−2, which does not occur until

regime (c), which is closer to the conventional Kerr effect.

V. CONCLUSIONS

In our previous paper [17], we developed a Landau theory for the statistical mechanics

of ferroelectric nanoparticles suspended in liquid crystals. This theory differs from other

models by considering the orientational distribution function of the nanoparticles as well

the liquid crystal. It shows a coupling between the nanoparticle order and the liquid crystal

order, which leads to an increase in the isotropic-nematic transition temperature and in the

Kerr effect. In the current paper, we consider the same physical concept, but we improve

the mathematical treatment by using a Maier-Saupe-type theory. This theory reduces to

the previous Landau theory in the limit of weak interactions (for the isotropic-nematic

transition) or weak electric fields (for the Kerr effect). However, it changes the results in
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the opposite limit, when the order parameters begin to saturate. For that reason, the new

theory should make more accurate predictions for experiments.

In general, the concept of coupled orientational distribution functions should be useful

for many other systems beside ferroelectric nanoparticles in liquid crystals. For example, it

applies to any type of nonspherical colloidal particles, such as carbon nanotubes, in a liquid-

crystal solvent, as studied in Ref. [23]. It also applies to two distinct species of nonspherical

colloids suspended in an isotropic solvent, which could have a coupled ordering transition.

Such systems would provide further opportunities to investigate the theory presented here.
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