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As a generic model for phase equilibria under confinement in a thin film geometry in the presence
of a gradient in the field conjugate to the order parameter, an Ising/lattice gas system is studied by
both Monte Carlo simulations and a phenomenological theory. Choosing a L×L×D geometry with
L ≫ D and periodic boundary conditions in the x, y directions, we place competing surface fields
on the two L × L surfaces. In addition, a field gradient g is present in the z-direction across the
film, in competition with the surface fields. At temperatures T exceeding the critical temperature of
the interface localization/delocalization transition, one finds phase coexistence between oppositely
oriented domains, aligned parallel to the surface fields and separated by an interface in the center of
the film, for small enough g. For a weak gradient a second order transition to a monodomain state
occurs, but it becomes first order if g exceeds a tricritical threshold). For sufficiently large gradients,
another domain state becomes stabilized with domains oriented antiparallel to the surface fields.

PACS numbers: 68.08.Bc,05.70.Np,05.10.Ln

I. INTRODUCTION

The phase behavior of systems confined in a thin film
geometry is of interest for various applications in mate-
rials science and nanotechnology (e.g. [1, 2]) and simul-
taneously represents a challenging problem of statistical
thermodynamics. Thin films can provide protective coat-
ings of surfaces, and can also be technologically impor-
tant due to their functional properties (including optical,
electronic, and mechanical properties) [3, 4]. However,
we shall not dwell further on such applications of thin
films here but rather consider them only as a generic
problem of the statistical mechanics of heterogeneous
condensed matter systems. Because of the reduced di-
mensionality of such quasi-two-dimensional systems, ef-
fects due to statistical fluctuations are very important;
and the interplay between finite size and surface effects
is responsible for phenomena distinct from what is found
in the bulk (capillary condensation or evaporation of
fluids in slit capillaries, wetting and interface localiza-
tion/delocalization transitions, etc; see e.g. [5–10] for
reviews).

An additional complication arises when a gradient in
some variable is maintained in the direction across the
film. For instance, by coupling the lower and upper
boundaries of a thin film to thermal reservoirs at differ-
ent temperatures a temperature gradient (and heat flux
across the system) can be maintained. However, here we
shall consider only the simpler case of a fluid film in a
gravitational field (or the related cases of a ferromagnetic
thin film in a magnetic field gradient or a binary mixture
in a gradient of the chemical potential difference between
the species). Unlike the case of temperature gradients,
no transport of heat or matter is implied by such gradi-
ents, and instead of steady states (far from thermal equi-
librium) one still has full thermal equilibrium, although
the state of the system clearly is not homogeneous in

the direction in which the field gradient acts. We note
that in binary liquid mixtures the concentration gradi-
ents caused by gravity are indeed enough to cause un-
conventional patterns during phase separation processes
[11], and creation of anisotropic microporous membranes
produced via diluent evaporation from the top surface
of a polymer blend film [12] are further instances where
composition gradients of a species in a multicomponent
system are of interest. Of course, theoretical modeling
of such systems will require somewhat more complexity
than the simple Ising model that will be studied here as
a first step. But these examples serve to illustrate the
point that systems exposed to various gradients are al-
ready studied in various contexts.

So far, this problem has only been briefly discussed
within the framework of Landau theory [13] and by den-
sity matrix renormalization calculations for an Ising strip
(i.e., a D × L geometry with L → ∞) [14]. In contrast,
thin Ising films without gradients have been studied ex-
tensively [15–29]. Thus, to improve the understanding
of the phase behavior of Ising-type systems in the pres-
ence of gradients, we present the first Monte Carlo study
of this problem in the present paper. In addition, we
present two phenomenological theoretical approaches to
the problem in order to facilitate the theoretical inter-
pretation of the Monte Carlo results (Sec. II). We have
worked out a low temperature approximation for the
transition from the monodomain states of the thin film to
the gradient-dominated domain state, and we also pro-
vide a treatment in terms of the capillary wave Hamil-
tonian approximation [30–32] for small gradient g. In
Sec. III, we present and interpret the numerical results
from our simulations, while Sec. IV briefly offers some
conclusion.
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II. THEORETICAL BACKGROUND

A. Model and low temperature analysis

Following Rogiers and Indekeu [13] we consider an
Ising Hamiltonian in an L × L × D geometry, applying
periodic boundary conditions in the x, y directions and
assuming two free surfaces at which surface fieldsH1, HD

act

H = −J
∑

〈i,j〉

SiSj −H
∑

i

Si −H1

∑

i∈1

Si −HD

∑

i∈D

Si

+g

D
∑

n=1

(2n− 1−D)
∑

i∈n

Si , Si = ±1 . (1)

Here we also have included a coupling to a bulk field H ,
and a linearly varying field with a constant gradient g. In
the absence of this “gravitation-like” field the problem is
already rather intricate if HD 6= −H1, so we confine our-
selves to the strictly antisymmetric case,HD = −H1 > 0.
Note that the Hamiltonian is constructed such that for
H = 0 no direction of the magnetization is singled out.
Therefore, phase coexistence in our system will occur
exclusively for H = 0, as in the bulk. Note that we
did not assume any modification of the nearest neigh-
bor exchange constant J between pairs of spins in a sur-
face plane, and hence the model (for g = 0 and in the
limit D → ∞) exhibits a second-order wetting transition
[33, 34].
In the following, we consider a simple cubic lattice and

take the lattice spacing as our unit of length.
To provide a qualitative understanding of the phase

behavior of this model, we start from a quasi-macroscopic
description of the system which should be accurate for
D → ∞ and at low enough temperatures (Fig. 1). The
free energies per lattice plane parallel to the walls can be
estimated as follows:

f1 ∼= Dfb+gmbD
2/2+fint−2|H1|m1 , state (1) , (2)

where fb is the free energy of the corresponding bulk
system (which has bulk magnetization mb). The 2nd

term on the right hand side of Eq. (2) is an estimate
of the gradient energy (which neglects any deviation of
the magnetization profile m(z) from −mb on the left side
of the interface or of m(z) from +mb on the right side,
respectively). The interface free energy is denoted as fint
(neglecting any possible “renormalization” of this term
by the gradient g). The last term describes the Zeeman
energy due to the surface fields where m1 = −mD is the
magnetization in the layer where the surface fields act.
Effects on the free energy due to “missing neighbors” at
the walls are also neglected (these effects would have a
similar magnitude in all these states (1), (2) and (3).)
In state (2) no interface is present, and both the contri-

butions due to the gradient vanish, as well as the Zeeman
energy due to the surface field. Hence the result is simply

FIG. 1: Schematic description of the sequence of phases ob-
served for D → ∞ in the temperature regime Tw < T < Tcb

when the strength of the field gradient g/J increases. For
small enough g/J the surface fields dominate, and there are
two domains, separated by an interface parallel to the walls
(state (1)). In this state the sign of the magnetization and
of the surface field at the adjacent wall are the same and
the magnitude of the magnetization equals the value in the
bulk (mb). In state (2) the gradient energy essentially com-
pensates the surface effects yielding a degenerate state with
the entire film being being predominantly positively (+mb)
or negatively magnetized (−mb). In state (3) the gradient
energy dominates: there are two domains of opposite magne-
tization but the signs are opposite to that of the surface field
at the adjacent wall.

f2 ≈ Dfb . (3)

Note that any effects on the free energy due to a non-
trivial magnetization profile m(z) near the walls are ig-
nored, but we can again argue that these effects would
be similar in all three states (1), (2) and (3), and all that
matters are free energy differences between the states in
question.
Similarly, for state (3) we have

f3 ∼= Dfb − gmbD
2/2 + fint + 2|H1|m1 . (4)

For large enough g it is advantageous to have domains
oriented such that they overrule the free energy cost due
to the surface fields.
Since the transition between states (1) and (2) is of sec-

ond order, at least for small g (see the following section
based on the interface Hamiltonian treatment), one can-
not simply locate the transition between states (1) and
(2) by equating their free energies: in fact, the transition
occurs because the interface in state (1) for T < Tw(H1)
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moves gradually to one of the walls. Recall that the wet-
ting transition temperature is the limit of the interface lo-
calization/delocalization transition Tc(H1, D, g = 0) for
D → ∞ [7, 18, 20, 21]

lim
D→∞

Tc(H1, D, g = 0) = Tw(H1) . (5)

Thus, the quantitative details of the transition between
states (1) and (2) require a more careful and detailed
treatment. However, the transition between states (2)
and (3) is discontinuous, and the corresponding transi-
tion line extends even down to T = 0, where the ap-
proximations involved in Eqs. (2), (3) become legitimate.
Thus we estimate this transition line gt(D,H1, T ) as fol-
lows,

f2 = f3 ⇒

gt(D,H1, T )mb(T )D
2/2 = fint(T ) + 2|H1|m1(T ) .(6)

In the ground state (T = 0) we simply havemb(0) = 1,
fint(0) = 2J , m1(0) = 1, and hence

gt(D,H1, 0)/J = 4(1 + |H1|/J)/D
2 . (7)

Monte Carlo data have been generated for the special
case D = 12, |H1|/J = 0.55, implying gt ≈ 0.043 in
this case. At finite but low T , accurate estimates for fint
can be found from Hasenbusch and Pinn [35]. E.g., for
J/kBT = 0.46(T/Tcb ≈ 0.48), one finds fint/J ≈ 1.851,
and using from the actual observation of the profiles (see
Sec III) that m1 ≈ 0.98 and hence gt ≈ 0.0407. As
should be clear from Eq. (6), gt(D,H1, T ) gets smaller
with increasing temperature, since both fint(T )/mb(T )
and m1(T )/mb(T ) are decreasing functions of T . While
it is possible to evaluate Eq. (6) at all T ≤ Tcb, it is
clear that the approximations made in writing down f2,
f3 break down at temperatures where the magnetization
profile m(z) develops a nontrivial structure, and the fail-
ure of Eq. (6) at T/Tcb ≥ 0.6 is also evident from a com-
parison of Eq. (6) with the Monte Carlo data (see Sec
III.)

B. Interface Hamiltonian treatment

In the absence of the gradient term in Eq. (1), the in-
terface localization/delocalization transition of the Ising
model on a mean field level can be described by the fol-
lowing interface Hamiltonian [7, 18, 21]

Heff(ℓ) =

∫

d~ρ
[fint

2
(∇ℓ)2 + V (ℓ)

]

; (8)

here ~ρ = (x, y) denotes the coordinates in the plane of
the left wall in Fig. 1 and ℓ(~ρ) is the local distance of the
(fluctuating) interface from the wall. For the case of a
second-order wetting transition in the limit D → ∞, the
interface potential V0(ℓ) is

V0(ℓ) = −2a0δε exp(−κD/2){cosh[κ(ℓ −D/2)]− 1}

+2b exp(−κD){cosh[κ(2ℓ−D)]− 1}+ h(ℓ−D/2) .(9)

Here a0, b are phenomenological, positive constants,
δε = (Tw − T )/Tw, and κ−1 is a length which is of the
same order as the correlation length of the order param-
eter in the bulk. Note that Eq. (8) implies that all bulk
fluctuations in the system have been already eliminated
by some coarse-graining procedures, so the only degrees
of freedom left are the positions ℓ(~ρ) of the interface sep-
arating a domain of magnetization −mb(T ) on the left
side of the interface from a domain with magnetization
+mb(T ) on the right side. Thus, the last term on the
right hand side of Eq. (9) simply represents the Zeeman
energy in Eq. (1), and therefore h = 2Hmb(T ). We disre-
gard here the explicit relation of the parameters a0, b, Tw
to the parameters kBT/J and H1/J of Eq. (1). We also
note that for the present somewhat qualitative treatment
the ”local” interface Hamiltonian, Eq. (8), suffices, there
is no need for the nonlocal theory [36].

Now we also need to translate the gradient energy in
Eq. (1) to the description in terms of the interface Hamil-
tonian. Noting that the continuum analog of the gradient
energy in Eq. (1) is

gradient energy = g

D
∫

0

dz(2z −D)m(z) (10)

and that m(z) = −mb for 0 ≤ z ≤ ℓ while m(z) = +mb

for z > ℓ , we readily obtain from Eq. (10)

gradient energy = −2gmb(ℓ
2 −Dℓ) . (11)

Note that the gradient energy is symmetric around
ℓ = D/2, where it has a maximum of height Vmax =
gmbD

2/2, while it vanishes for both ℓ = 0 and ℓ = D.

Adding Eq. (11) to the potential in Eq. (9), V (ℓ) =
V0(ℓ) +gradient energy, we then find the equilibrium po-
sition of the interface by minimizing V (ℓ) with respect to
ℓ), i.e. (∂V (ℓ)/∂ℓ)T = 0. This yields
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−2a0δεκ exp(−κD/2) sinh[κ(ℓ−D/2)] + 4bκ exp(−κD) sinh[κ(2ℓ−D)] + h− 2gmb(2ℓ−D) = 0 . (12)

For T ≥ Tc(H1, D, g) the only solution of Eq. (12) for h =
0 is ℓ = D/2, i.e. the state (1) in Fig. 1. At Tc(H1, D, g)
the second derivative of the potential for ℓ = D/2 changes
its sign; thus the condition

(∂2V (ℓ)

∂ℓ2

)

T,ℓ=D/2
= −2a0δεκ

2 exp(−κD/2)

+8bκ2 exp(−κD)− 4gmb = 0 (13)

yields Tc(H1, D.g), i.e.

2a0
Tc(H1, D, g)− Tw

Tw
=

−8b exp(−κD/2) +
4gmb

κ2
exp(κD/2) . (14)

As is well-known from previous work for g = 0
[7, 18, 21], Tc(H1, D, g = 0) approaches Tw from be-
low; but the difference between Tc(H1, D, g = 0) and
Tw is exponentially small, ∝ exp(−κD/2). However,
when g > 0 we see that Tc(H1, D, g) increases rapidly,
and the region where Tc(H1, D, g) exceeds Tw is already
reached for an exponentially small value of g, namely
g > (2bκ2/mb) exp(−κD).
We now characterize the critical behavior of the inter-

face localization-delocalization transition at Tc(H1, D, g)
{or the corresponding values δεcrit of δε in Eqs. (9), (12)
and (13)}. We first recall that the inverse susceptibility
χ−1 of the system is {M = (L2D)−1

∑

i

〈Si〉T } [7, 18, 21]

χ−1 = (∂M/∂H)−1

T

∝ (∂2V (ℓ)/∂ℓ2)−1

T |ℓ=D/2 , (15)

and we readily conclude from Eqs. (12), (13)

(∂2V (ℓ)

∂ℓ2

)−1

T
|ℓ=D/2

= 2a0κ
2 exp(−κD/2)[T − Tc(H1, D, g)]/Tw .(16)

Eq. (16) shows that for nonzero g for T > Tc(H1, D, g)
we also have a “soft mode” phase, with a susceptibility
which diverges exponentially with D as D → ∞ (due
to an amplitude factor exp(κD/2)) at all temperatures
T < Tcb. At Tc and below, the behavior is more subtle:
we expand sinh x ≈ x + x3/3 in Eq. (12) to find for
T = Tc(H1, D, g)

h =
( m

mb

)3

(κD)3κ[b exp(−κD) + gmb/6κ
2] , (17)

where we have used the fact that x = κ(ℓ − D/2) =
−(κD/2)(m/mb). From Eq. (17), we see that there are
two regimes: only for g ≪ gcross = (6κ2b/mb) exp(−κD)
the effect of the gradient is negligible, and we recover
the anomalous amplitude factor exp(−κD) characteristic
for the soft mode phase [21]. However, for g > gcross
there is no longer any anomalous response. Similarly, for
T < Tc(H1, D, g) we find

x2 =
(κD

2

)2( m

mb

)2

≈
3a0[Tc(H1, D.g)− T ]/Tw

12b exp(−κD/2) + (2gmb/κ2) exp(κD/2)
.(18)

As expected, for g → 0 Eq. (18) reproduces the result

[21] m ∝ exp(κD/4)
√

Tc(H1, D, g)− T but this anoma-
lously large order parameter amplitude (proportional to
exp(κD/4)) is no longer seen when g exceeds the value
gcross ∝ exp(−κD). As a final caveat, we note that the
mean-field critical exponents β = 1/2, γ = 1, and δ = 3,
that can be read off from our results for the order pa-
rameter {Eq. (18)}, susceptibility {Eq. (16)} and critical
isotherm {Eq. (17)}, are not expected to describe the
actual critical behavior if g > gcross. We recall that for
g = 0 mean-field theory is self-consistent forD → ∞, as a
Ginzburg criterion shows [21]. Of course, Eq. (14) loses
its validity when g is so large that Tc(H1, D, g) moves
into the critical region of the bulk. Rogiers and Indekeu
[13] suggested a finite size scaling relation for the shift of
Tc in this region

(Tc(D,H1, g)− Tcb)/Tcb = D−1/νY (D∆1/νH1, D
ψ/νg)

(19)

where ν is the critical exponent of the correlation length,
∆1 an exponent describing the critical behavior of free
surfaces [37], and ψ = ∆ + ν (where ∆ is the “gap ex-
ponent” in the bulk [38]). The scaling function Y has
not been calculated explicitly, however. Assuming (as is
corroborated by the numerical data, see See. III) that
the curve Tc(D,H1, g) exhibits a maximum in the (T, g)
plane at Tmax, gmax, we conclude from Eq. (19)

Tmax − Tcb ∝ D−1/ν , gmax ∝ D−ψ/ν . (20)

Unfortunately, an extension of the interface Hamilto-
nian treatment into the bulk critical region is not at all
obvious, and hence it is not attempted here.
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III. MONTE CARLO SIMULATION RESULTS

In this section, we present the results of Monte Carlo
simulations of the Ising model, Eq. (1), assuming a simple
cubic lattice with a thin film thickness D = 12. These
simulations extend previous work on interface localiza-
tion/delocalization transitions in Ising models done for
g = 0 only [20, 21, 23, 27]. As is well-known, the de-
localized interface (with average location at z = D/2)
is a very slowly relaxing object, making it very diffi-
cult to obtain meaningful accuracy. While in previous
work for g = 0 a comparative study of film thicknesses
D = 6, 8 and 12 was presented [20, 21], we focus here
on a single thickness D = 12, aiming at a compre-
hensive study of the effects of varying the strength of
the gradient energy, g. Most data have been taken for
a single choice of L, L = 128, but in a few cases L
was systematically varied in order to carry out a finite
size scaling analysis. We use |H1|/J = 0.55 through-
out, as in previous work [20, 21] where J/kBTc(H1/J =
0.55, D = 12) = 0.2497 ± 0.0003 was determined. Note
that at this critical temperature also κ/2 ≈ 0.364 was
estimated [21], implying exp(κD/2) ≈ 78.9. Since this
value is rather large, a test of Eq. (14) by our simula-
tions turned out to be prohibitively difficult, and must
be left to future work. Note also. that within our accu-
racy we cannot distinguish the wetting transition temper-
ature {J/kBTw(H1/J = 0.55) ≈ 0.250} from J/kBTc for
D = 12, as quoted above. For our simulations standard
single-spin-flip Monte Carlo methods (applying the heat
bath algorithm [39, 40]) were used. (As is well known,
in the presence of strong surface fields the application of
cluster algorithms does not offer any advantage [26].)

Figs. 2a,b, and c show “raw Monte Carlo data” for
our magnetization profiles (for technical details of these
Monte Carlo simulations, the reader may also consult
[20, 21, 39]). The case shown in Fig. 2a illustrates the
behavior of the model as the temperature is lowered at
a small, but non-zero, value of g. Far above Tcb, e.g.
J/kBT = 0.1, the layer magnetization mn is zero every-
where except close to the walls where a non-zero mag-
netization is induced by the surface fields. As the tem-
perature is lowered towards Tcb an interface is gradually
formed in the center (but no sharp phase transition oc-
curs). For g/J = 0.01 at temperatures slightly below
J/kBT = 0.22, the interface merely fluctuates about the
center of the film. When the temperature decreases to
J/kBT = 0.25, however, the interfaces moves towards
one of the surfaces until it is finally bound to the sur-
face. For the low temperature, J/kBT = 0.303, which
is well below Tw, for small g/J we realize state (2) in
Fig. 1. Of course, the magnetization is not strictly uni-
form, because it is reduced near both walls (near the wall
at z = D, where the positive surface magnetic field acts,
this reduction is less pronounced than for the opposite
wall (first layer, n = 1) where the negative surface field
and the “missing neighbor effect” act in the same direc-
tion. These effects are neglected in the simple estimates

(a)

(b)

(c)

FIG. 2: (Color online) Layer magnetization mn versus layer
number n for the case L = 128, D = 12, H1 = −HD =
−0.55J : (a) g/J = 0.01 and several choices of J/kBT ; (b)
J/kBT = 0.303 and several choices of (g/J); (c) J/kBT =
0.244 and several choices of g/J . Note that mn is defined
only for integer values of n, and data points are connected by
straight lines to guide the eye. The mid-plane (which in the
continuum limit where z runs from z = 0 to z = D has been
denoted as z = D/2 in Sec. II) is located at z = (1+D)/2 =
6.5 (vertical broken line), since for D = 12 there are 12 lattice
planes from n = 1 to n = 12. The horizontal broken straight
line highlights zero magnetization.
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(a)

(b)

FIG. 3: (Color online) Free energy as obtained from ther-
modynamic integration varying g/J at constant temperature
(J/kBT = 0.467, L = 256, case a)) and varying inverse tem-
perature J/kBT at constant g/J = 0.025 (b). In (a), the
estimated transition point (at g/J = 0.0424) is highlighted.

of Sec. II. 1, and it is therefore clear that at the tem-
perature of Fig. 2a Eq. (6) no longer is accurate. Note
that the effect of g on the profiles is also very asymmet-
ric: for increasing g the reduction of mn for n = 1, 2, 3 is
somewhat reduced, while near the other wall g has little
effect. However, when g/J becomes large (see the data
for g/J = 0.04), the gradient starts to lead to a reduc-
tion of mn near n = 12. Finally, for still larger g/J (such
as g/J = 0.05), the transition to state (3) in Fig. 1 has
occurred.
Turning now to the temperature J/kBT = 0.244, a

case where T > Tw, we see that for g/J = 0.0 the inter-
face is delocalized in the center of the film, as expected
[20, 21], However, for g/J = 0.005 the transition from
state (1) to state (2) in Fig. 1 has already occurred. For
g/J = 0.020 we see that the gradient causes a significant
reduction of mn near n = D, while for g/J = 0.025 the
transition from state (2) to state (3) in Fig. 1 has already
occurred.
Since the transition from state (2) to state (3) is of

first order, we encounter strong hysteresis, particularly

(a)

(b)

FIG. 4: (Color online) Free energy as obtained from thermo-
dynamic integration varying J/kBT at fixed g: (a) g/J =
0.01; and (b) g/J = 0.0.

at low temperature. The simplest recipe to deal with
this problem is to apply standard thermodynamic inte-
gration methods, as described in the textbooks [39, 40].
Fig. 3 gives some examples: The intersection of the free
energy branches at low T when g is varied allows an ac-
curate estimation of the transition value. However, this
method breaks down near the maximum of the curve
Tc(D,H1, g). Then it is necessary to carry out an inte-
gration varying J/kBT at fixed g, rather than the other
way round (Fig. 3b). Unfortunately, near the tricritical
point the accuracy of this method becomes questionable,
since the two free energy branches cut each other under
a rather small angle. As a check of the accuracy of our
procedures, we have also carried out a free energy inte-
gration in the second order region: there the two curves
should superimpose irrespective in which phase [(1) or
(2)] one starts, and this indeed is nicely verified (Fig.4).
While this procedure does not help to locate the transi-
tion (1)-(2) accurately, it shows that neither statistical
inaccuracy of the raw data nor errors due to the numer-
ical integration routine are a serious problem.

In the second order regime, we expect that the phase
transition should fall in the universality class of the two-
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dimensional Ising model. We used this hypothesis in or-
der to locate the transition point accurately. One possi-
bility is to attempt to locate 4th order cumulant inter-
sections for different values of L. As usual, the cumulant
of the distribution PL(M) of the total average magneti-
zation is defined by [41]

UL = 1− 〈M4〉/3〈M2〉2 (21)

Fig. 5 shows a resulting attempt to apply this method for
g/J = 0.015. As was already found for the case g/J = 0.0
[20, 21], there is considerable scatter in the intersections,
and they all lie below the theoretical cumulant value [44],
UL(Tc) = U∗ = 0.610. Thus, one can only achieve mod-
est accuracy, J/kBTc = 0.2320± 0.0002. However, while
for g = 0 and D = 12 all values UL(T ) were very far
below this theoretical value U∗ (as expected from the
Ginsburg criterion [21] the asymptotic Ising critical be-
havior is only seen quite close to Tc(0)), in the present
case (Fig. 5a) there is a much clearer trend of UL(Tc)
moving towards U∗ as L increases. This is in qualitative
accord with the considerations of Sec.IIB.
Note that despite long runs (4 × 107 Monte Carlo

steps/spin) rather large statistical errors still occur. (Er-
ror bars were estimated from multiple independent runs.)
Nonetheless, the convergence to the Ising value is quite
clear, unlike the case of zero field gradient for which the
convergence is quite slow (see Fig.3 in [21]). The fi-
nite size extrapolation of the temperatures at which the
curves cross, shown in Fig. 5b for different size reference
systems, provides a consistent estimate for the asymp-
totic value of the critical temperature.
As an additional approach, we followed Wilding [45]

by using the full information of PL(M) and adjusting
J/kBT until a good fit of the normalized distribution
P ∗
L(M

∗) to that of the two-dimensional Ising model is ob-
tained. However, if one does this, a good fit of the peak
heights is obtained at temperatures which are clearly too
low (J/kBT = 0.2335), and the peak positions are clearly
unreliable. We conclude that optimizing PL(M) by his-
togram reweighting is not an accurate method, in our
case (Fig. 6a). However, when we study PL(M) for differ-
ent L at our best estimate for J/kBT , J/kBTc = 0.2320,
we find a reasonable convergence towards the Ising dis-
tribution (Fig. 6b).
In view of the difficulties encountered in locating the

critical points accurately (Figs. 5, 6) and dealing with
weak first order transitions (Fig. 3b), only a rather rough
phase diagram could be constructed in which we expected
that the tricritical point occurs somewhere in between
g/J = 0.020 and g/J = 0.025.
By performing two-dimensional histogram reweigh-

ing technique, Normalized probability distribution
P ∗
L(M

∗) = < M2 >−1/2PL(M) vs M∗ = < M2 >−1/2M
generated at J/kBT = 0.24167, g/J = .0204 were
reweighted to neighboring temperatures and field gradi-
ents. We find that at J/kBT = 0.242418, g/J = 0.02065,
as indicated in Fig. 7, the probability distribution is

(a)

(b)

FIG. 5: (Color online) (a) 4th order cumulant UL plotted
vs. inverse temperature for the case D = 12, H1 = −HD =
−0.55J , g/J = 0.015, and several choices of L. The dotted
horizontal straight line indicates the expected result [42–44]
for the universality class of the d = 2 Ising model. (b) Ex-
trapolation of the values of the inverse temperature J/kBT
of crossing points vs L−1 for different choices of the reference
lattice size L′. The dashed lines are straight lines fitted to
the data.

in very good agreement with the planar Ising model
distribution at tricritical point [46]. Thus, the tricritical
point was roughly located in the final phase diagram
shown in Fig. 8.

Note that the low temperature approximation (Eq. (6))
is not quantitatively accurate for T/Tcb > 0.4, but it does
reproduce the trend of the first order transition line qual-
itatively. Clearly, the obtainable precision of the present
work and the competing finite size crossover effects also
make it impossible to attempt a meaningful test of the
predictions based on the interface Hamiltonian method
(which are supposed to work near g/J = 0).



8

(a)

(b)

FIG. 6: (Color online) (a) Normalized probability distribution

P ∗

L(M
∗) = < M2 >−1/2PL(M) vs M∗ = < M2 >−1/2M gen-

erated at J/kBT = 0.2322 and reweighted to various neigh-
boring temperatures, as indicated, compared to the planar
Ising model distribution at criticality. (b) Probability distri-
bution P ∗

L(M
∗) versus M∗ for J/kBT = 0.2320 and different

values of L. For comparison, P ∗

L(M
∗) for the two- and three

dimensional Ising models are included as well.

IV. CONCLUSIONS

Monte Carlo simulations combined with finite size
studies have confirmed the qualitative features of the
mean field picture of the phase diagram of the Ising thin
field with oppositely directed surface fields in the pres-
ence of a field gradient. The presence of the field gra-
dient actually makes it easier to extract the asymptotic,
i.e. infinite lattice, transition behavior even though the
resolution is still somewhat limited. The phase diagram
for the interface delocalization transition in a film with
D = 12 layers is reentrant and exhibits two phase tran-
sitions for T > Tw. Using a phenomenological theory
based on the capillary wave type interface Hamiltonian
description, we argued that the anomalous features of
the interface localization transition for g = 0 (namely
critical amplitudes depend exponentially on film thick-
ness D, and critical behavior is mean-field-like, except

FIG. 7: (Color online) Normalized probability distribution

P ∗

L(M
∗) = < M2 >−1/2PL(M) vs M∗ = < M2 >−1/2M gen-

erated at J/kBT = 0.24167, g/J = .0204 and reweighted to
J/kBT = 0.242418, g/J = .02065, as indicated, compared to
the planar Ising model distribution at tricritical point [46].

FIG. 8: Phase diagram of the Ising thin film (D = 12) plotted
in the plane of variables T/Tcb and g/J . Second-order tran-
sitions (from state (2) in Fig. 1 at low temperature to state
(1) at higher temperature) are shown by full dots, first- order
transitions (from state (2) to state (3)) are shown by open
circles. The tricritical point is show by a star. Triangles show
estimates based on Eq. (6).

for an extremely narrow region around Tc(D)) are re-
moved by the presence of a very small gradient of order
gcross ∝ exp(−κD)). A finite size analysis of the be-
havior at a moderate value of g/J provides convincing
evidence that the critical behavior along the 2nd order
portion of the phase boundary is in the universality class
of the two-dimensional Ising model. We presented a low
temperature approximation that does appear to describe
the actual behavior of the phase boundary at low tem-
peratures at least semi-quantitatively.
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Finally, we ask the question, is there the possibility
to study a system experimentally where a gradient com-
petes with boundary fields such that the system under-
goes an Ising-type transition in the bulk? While one
might first think that a thin magnetic film in a magnetic
field gradient would be a good candidate, we believe that
it is more likely that success could be achieved in colloid-
polymer mixtures which are “Ising equivalent” systems
for the study of phase transitions and interfacial phenom-
ena [47, 48]. For colloids of several µm diameter, gravity
couples sensitively to the colloid density; and a compet-
ing wall situation could be created, if one wall is just a
hard wall [10] (which exerts an entropic attraction on the
colloidal particles) while the opposite wall is coated with
a polymer layer (attracting the polymers in the disper-
sion rather than the colloids). Of course, such a system
would not have the perfect Ising symmetry between the

coexisting phases in the bulk, and one also cannot expect
to realize “antisymmetric” walls precisely, so such a sys-
tem will have more complex properties than the simple
Ising system studied here.
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