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Abstract

We generate maximally random jammed (MRJ) packings of the four nontiling Platonic solids

(tetrahedra, octahedra, dodecahedra and icosahedra) using the adaptive-shrinking-cell method

[Torquato & Jiao, Phys. Rev. E 80, 041104 (2009)]. Such packings can be viewed as prototypi-

cal glasses in that they are maximally disordered while simultaneously being mechanically rigid.

The MRJ packing fractions for tetrahedra, octahedra, dodecahedra and icosahedra are respectively

0.763±0.005, 0.697±0.005, 0.716±0.002, and 0.707±0.002. We find that as the number of facets of

the particles increases, the translational order in the packings increases while the orientational order

decreases. Moreover, we show that the MRJ packings are hyperuniform (i.e., infinite-wavelength

local-number-density fluctuations vanish) and possess quasi-long-range pair correlations that decay

asymptotically with scaling r−4. This provides further evidence that hyperuniform quasi-long-range

correlations are a universal feature of MRJ packings of frictionless particles of general shape. How-

ever, unlike MRJ packings of ellipsoids, superballs and superellipsoids, which are hypostatic, MRJ

packings of the nontiling Platonic solids are isostatic. We provide a rationale for the organizing

principle that the MRJ packing fractions for nonspherical particles with sufficiently small aspheric-

ities exceed the corresponding value for spheres (approximately 0.64). We also discuss how the

shape and symmetry of a polyhedron particle affects its MRJ packing fraction.
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I. INTRODUCTION

A packing is a collection of nonoverlapping (hard) particles in d-dimensional Euclidean

space Rd. Dense particle packings have been widely employed to model crystals, glasses, het-

erogeneous materials, granular media and biological media [1–4]. The “geometric-structure”

approach to characterizing jammed packings has revealed a great diversity of packing con-

figurations attainable by frictionless particles [5]. A fundamental feature of that diversity

is the necessity to classify individual jammed configurations according to whether they are

locally, collectively, or strictly jammed [6, 7]. Each of these categories contains a multitude

of jammed configurations spanning a wide range of intensive properties, including packing

fraction φ [8], mean contact number Z, and several scalar order metrics ψ. Application of

these analytical tools to frictionless spheres in three dimensions, an analog to the venerable

Ising model [5], covers a myriad of jammed states, including maximally dense packings as

Kepler conjectured [1], low-density strictly jammed tunnelled crystals [9], and a substantial

family of disordered packings [10, 11].

A maximally random jammed (MRJ) packing of hard particles is the one that minimizes

the degree of order (or maximizes disorder) as measured by certain scalar order metrics ψ,

subject to the condition of jamming of a specific category [5, 10]. MRJ packings that meet

the strict jamming condition can be viewed as prototypical glasses in that they are maximally

disordered while simultaneously being mechanically rigid [5, 12]. Bernal first used disordered

hard-sphere packings to describe the structure of liquids [12]. However, it is now known

that three-dimensional (3D) MRJ hard-sphere packings possess quasi-long-range (QLR) pair

correlations [13], a property markedly different from typical liquids, which possess pair

correlations decaying exponentially fast [3]. In particular, such packings are hyperuniform

[14], i.e., the infinite-wavelength local-number-density fluctuations are completely suppressed

and the packings possess QLR correlations, which are manifested as a nonanalytic linear

small k behavior in the structure factor, i.e., S(k) ∼ k for k → 0. This implies that the

corresponding pair correlation function decays to unity with scaling 1/r4. Moreover, it has

been shown that such sphere packings are isostatic [15–18], meaning that the total number

of inter-particle contacts (constraints) equals the total number of degrees of freedom (DOF)

of the system. This implies that the average number of contacts per particle Z is equal to

twice the number of DOF per particle f (i.e., Z = 2f) in the large-particle-number limit. It
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should be noted that disordered strictly jammed sphere packings exist in three dimensions

with an anomalously low packing fraction of 0.6 [11].

Over the past decade there has been increasing interest in the effects of particle shapes

on the characteristics of disordered packings, since deviations from sphericity can lead to

more realistic models for nanostructured materials and granular media. Nonspherical shapes

that have been studied include ellipsoids [19, 20], superballs [21], superellipsoids [22] and

polyhedra [23–25]. Unlike sphere packings, it has been found that disordered jammed pack-

ings of the aforementioned smoothly-shaped particles (not polyhedra) are hypostatic, i.e.,

f < Z < 2f [19, 21, 22]. For disordered polyhedron packings, the flat facets of the particles

enable one to determine the type of a contact (e.g., face-to-face, edge-to-face, etc.) and

thus, the number of DOF constrained by each contact [24]. Using such analysis, Jaoshvili et

al. [24] showed that experimentally produced disordered packings of plastic tetrahedron-like

dice with φ = 0.76 are virtually isostatic, i.e., each dice has on average 12 ± 1.6 constrains

resulting from only 6.3± 0.5 contacts. Using an energy-minimization method, Smith, Alam

and Fisher [25] numerically generated and studied disordered jammed packings of soft Pla-

tonic polyhedra (i.e., the repulsion between a pair of particles is proportional to their overlap

volume).

Recently, it has been shown that MRJ packings of a class of smoothly-shaped nonspheri-

cal particles are hyperuniform and possess QLR pair correlations that decay asymptotically

with scaling r−(d+1) (where d is the Euclidean space dimension) [26]. By contrast, polyhedral

particles have geometrical singularities (e.g., sharp edges and corners), resulting in various

types of contacts that can dramatically frustrate contacting neighbor distances. There-

fore, it is not clear whether MRJ polyhedral packings still possess hyperuniform QLR pair

correlations, especially for tetrahedra whose asphericity γ is very large [27, 29].

In this paper, using the adaptive-shrinking-cell (ASC) method [27], we generate and

investigate via the “geometric-structure” approach strictly jammed maximally disordered

packings of nontiling hard Platonic solids. Specifically, translational and orientational or-

der are explicitly quantified by evaluating certain order metrics and correlation functions.

We find that as the number of facets of the particles increases, the translational order in

these packings increases while the orientational order decreases. Moreover, we find that the

MRJ packings are hyperuniform (i.e., with infinite-wavelength local-number-density fluctu-

ations that vanish) and possess QLR pair correlations, manifested in the structure factor
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as S(k) ∼ k and in the pair-correlation function as g2(r) ∼ r−4. This provides further evi-

dence that hyperuniform QLR are a universal signature of disordered jammed hard-particle

packings. By directly determining the type and number of inter-particle contacts to a high

accuracy, we show that the MRJ packings of the nontiling Platonic solids are isostatic. We

provide a rationale for the organizing principle that the MRJ packing fractions for a class

of nonspherical particles (including ellipsoids [19], superballs [21], superellipsoids [22] and

the nontiling Platonic solids studied here) exceed the corresponding value for spheres (ap-

proximately 0.64). We also discuss how the MRJ packing fraction of a polyhedron particle

is affected by its shape and symmetry.

II. GENERATION OF THE MRJ POLYHEDRON PACKINGS

We generate the MRJ polyhedron packings using the ASC method [27], which, in the

current implementation, is equivalent to an isotension Monte-Carlo (MC) simulation [30]

with a deformable periodic simulation box (fundamental cell). Specifically, starting from an

unjammed initial packing configuration, the particles are randomly displaced and rotated

sequentially. If a trial move (e.g., random displacement or rotation of a particle) causes

overlap between a pair of particles, it is rejected; otherwise, the trial move is accepted and

a new packing configuration is obtained. After a prescribed number of particle trial moves,

small random deformations and compressions/dilations of the simulation box are applied

such that the system is on average compressed. The compression rate Γ is defined as the

inverse of the number of particle trial moves per simulation-box trial move. For large Γ, the

system can not be sufficiently equilibrated after each compression and will eventually jam

with a disordered configuration at a lower density than that of the corresponding maximally

dense crystalline packing [5].

Two types of unjammed packings are used as initial configurations: dilute equilibrium

hard polyhedron fluids with φ < 0.1 and packings derived from MRJ hard-sphere packings.

In the later case, a largest possible polyhedron with random orientation is inscribed into a

sphere, which is to maximize both translational and orientational disordered in the initial

packings. Initial configurations of both types are quickly compressed (Γ ∈ [0.01, 0.1]) to

maximize disorder until the average interparticle gap is ∼ 0.1 of the circumradius of the

polyhedra. Then a much slower compression (Γ ∈ [0.0002, 0.001]) is employed to allow
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true contact network to be established which induces jamming [31]. The final packings

are verified to be strictly jammed by shrinking the particles by a small amount (< 0.01

circumradius ) and equilibrate the system with deformable boundary [7]. If there is no

increasing of the interparticle gaps (decreasing of the pressure) for a sufficiently long period

of time (> 50 000 MC moves per particle), the original packing is considered to be jammed

[17, 21]. Translational and orientational order are explicitly quantified by evaluating certain

order metrics and correlation functions, which then enables us to find those configurations

with the minimal order metrics among a representative set of configurations. This analysis

leads to reasonably close approximations to the MRJ states [28].

III. CHARACTERISTICS OF THE MRJ POLYHEDRON PACKINGS

A. Packing Fraction and Order Metrics

FIG. 1: (color online). Representative configurations of MRJ packings of the nontiling Platonic

solids. From left to right: tetrahedra, icosahedra, dodecahedra, and octahedra. For purposes of

visualization, each periodic simulation box only contains N = 500 particles. A much larger number

(N = 2500 ∼ 5000) has been used to obtain the packing characteristics reported in the paper.

For each shape, jammed final packings with similar φ and structural characteristics can

be obtained from both types of initial configurations. Although larger Γ than employed here

can lead to final packings with even lower φ and a higher degree of disorder, such packings

are generally not jammed, i.e., they are “melt” upon small shrinkage and equilibration.

We have used the largest possible initial compression rates (Γ ∈ [0.01, 0.1]) that lead to

jammed packings. Both previous studies [17, 21] and the measured order metric (see below)

indicate that the generated packings are representatives of the true MRJ states. Typically,
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a packing contains N = 2000 polyhedra but larger packings (with N upto 6000) are also

studied to make sure that system size has no effects on our results. The packing fraction

φ for MRJ packings of tetrahedra, icosahedra, dodecahedra, and octahedra are respectively

0.763±0.005, 0.707±0.002, 0.716±0.002, and 0.697±0.005. Representative configurations

of MRJ polyhedron packings are shown in Fig. 1.
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FIG. 2: (color online). Packing characteristics and local configurations of the nontiling Platonic

polyhedra. (a) Pair-correlation function g2(r). Note that σ is the inradius of the polyhedra. (b)

Orientational correlation function C(r). (c) Local contacting configurations: from left to right,

tetrahedra, icosahedra, dodecahedra, and octahedra.

Figure 2(a) shows the pair-correlation function g2(r) [1] for the polyhedron centroids

in the MRJ packings. Specifically, ρg2(r)4πr
2dr is the conditional probability of finding

a particle in a spherical shell with differential volume 4πr2dr given that there is another

particle at the origin, where ρ is number density (i.e., the number of particles per unit

volume). For icosahedra and dodecahedra, whose asphericity value is relative small, the g2

of their MRJ packings clearly resemble that of MRJ sphere packings, with the split second
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peak [17]. For octahedra and tetrahedra, their large asphericity strongly frustrates the

contacting neighbor distances, but still possess many prominent oscillations than a typical

hard-particle fluid.

The translational order in the packings is quantified using a crystal-independent metric

T [32]:

T =

∫ ηc
σρ1/3

|h(η)|dη
ηc − σρ1/3

, (1)

where h(η) = g2(η)− 1 is the total correlation function [1], ρ = N/V is the number density,

σ is the inradius of the particles, η = rρ1/3 is the scaled radial distance and ηc is a cut-off

value dependent on the system size (here ηc = 4.5). For MRJ sphere packings, T = 0.39

[32]. For MRJ packings of icosahedra, dodecahedra, octahedra and tetrahedra, the T values

are respectively 0.37, 0.36, 0.28 and 0.19, which are smaller than that for spheres, indicating

a lower degree of translational order in these packings. This is because in MRJ sphere

packings, the pair distances between contacting neighbors are exactly equal to the diameter

of the spheres. However, for nonspherical particles, the pair distances between contacting

neighbors in the associated MRJ packings can vary from the diameter of their insphere to

that of their circumsphere, and thus, causing large fluctuations of pair distances between the

particle centroids, which further diminishes translational order in the packings. Moreover,

as the particle asphericity increases (the number of their facets decreases), the translational

order in the packings as quantified by T decreases.

The orientational correlation function C(r), which measures the average alignment for

two particles separated by r, is defined by [33]

C(r) =< Cql(|rq − rl|) >=< 1

M

M∑

i=1

n
q
i · nl

i >, (2)

where <,> denotes average over all particle pairs (q, l). For a tetrahedron q, n
q
i is the

normal of its ith face, and M = 4 [33]. For the other three shapes, nq
i is one of the three

principal directions of a particle q, and M = 3 [27]. Figure 2(b) shows C(r) for the MRJ

packings of the four solids, which are properly shifted so that their long-range values are

unity for purposes of comparison. The number of prominent oscillations in C(r) and their

magnitudes indicate the degree of orientational correlations in the packings, which decreases

in the following order: tetrahedra, octahedra, dodecahedra and icosahedra. In other words,

the orientational order in the MRJ polyhedron packings decreases as the particle asphericity
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increases. Note that in the limit of MRJ sphere packings, the orientation of a particular

sphere is totally uncorrelated with the other spheres.

B. Hyperuniform Quasi-Long-Range Correlations

It is very difficult to ascertain the large-r asymptotic behavior of g2 (long-range corre-

lations) by direct sampling in real space. Therefore, we compute the associated structure

factor S(k), formally defined as the Fourier transform of the total correlation function h(r),

i.e., S(k) = F{g2(r) − 1} = F{h(r)}, where F is the Fourier transform of a radial function

[1]. Here S(k) is directly computed from the distributions of the particle centroids,

S(k) =
|ρ(k)|2
N

=
1

N
|

N∑

j=1

exp(ik · rj)|2, (3)

where N is the number of particles in the packing and ρ(k) defined by

ρ(k) =

N∑

j=1

exp(ik · rj) (4)

are the collective coordinates and rj denotes the location of the centroid of particle j. Note

the forward scattering (associated with k = 0) is excluded. The radial function S(k) can be

obtained by angularly averaging S(k).
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FIG. 3: (color online). Structure factor S(k) for MRJ polyhedron packings. Insert: the small-k

behavior and the polynomial approximation a0 + a1k + a2k
2 + a3k

3.

Figure 3 shows S(k) of the MRJ polyhedron packings. Importantly, we find that S(k) → 0

as k → 0, i.e., the infinite-wavelength local-number-density fluctuations are completely
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suppressed in these packings, which indicates they are hyperuniform [13, 26]. We employ

a third-order polynomial to approximate the small-k behavior of S(k), i.e., S(k) = a0 +

a1k + a2k
2 + a3k

3, and use it to fit computed S(k). We find that for all four solids, a0 ≈ 0

(< 10−5) [34], which is also verified by directly computing number-density fluctuations

in larger packings (N = 6000). These observations indicate that the MRJ polyhedron

packings possess hyperuniform quasi-long-range pair correlations that decay asymptotically

with scaling r−4. Moreover, we find that the slopes a1 of the linear portions of S(k) for small

k for icosahedra, dodecahedra, octahedra and tetrahedra are respectively 0.015, 0.023, 0.029

and 0.21. In other words, as the polyhedral shape deviates more from that of a sphere, the

value of the slope a1 increases, which is consistent with recent studies on MRJ packings of

various nonspherical shapes in two dimensions [26]. Larger asphericities induce larger local

number density fluctuations at fixed long wavelengths (i.e., small k values) due to the QLR

correlations.

This is a very surprising result, since one might have expected that due to the large

fluctuations in pair distances caused by particle asphericity, the hyperuniform QLR which

exists in MRJ sphere packings would be lost in MRJ polyhedron packings, especially for

tetrahedra. Indeed, T of the MRJ polyhedron packings is similar to that of hard-sphere

liquids with no long-range order. The existence of QLR in MRJ polyhedron packings implies

that strict jamming imposes strong constraints on particle positions and orientations, which

is consistent with a recent study on MRJ packings of certain smoothly shaped particles with

a size distribution [26]. This also suggests that analysis based on local statistics alone can

be misleading and insufficient to completely characterize MRJ packings [5].

C. Isostaticity

We determine the type of an interparticle contact by projecting the vertices of the polyhe-

dra onto their separation axis [27]. If the distance between the projected faces/edges/vertices

is smaller than a prescribed tolerance (< 0.001 of the circumradius of the particle) and the

projected faces/edges/vertices overlap each other, we consider the particles contact each

other. The flat facets of polyhedra allow one to determine the DOF constrained by a par-

ticular contact. Following Ref. [24], a face-to-face (f-f), edge-to-face (e-f), edge-to-edge (e-e)

and vertex-to-face (v-f) contact respectively provides 3, 2, 1 and 1 constraint(s). In Table
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I, we provide the average number of contacts per particle for each contact type and the

total DOF constrained, which is virtually equal to the number of DOF (f = 12) for the

polyhedra. Therefore, these MRJ polyhedron packings are isostatic, in contrast to MRJ

packings of ellipsoids [19], superballs [21] and superellipsoids [22], which are hypostatic.

TABLE I: Average number of contacts per particle and the total DOF constrained in MRJ poly-

hedron packings.

f-f e-f v-f e-e DOF

Tetrahedron 2.21 ± 0.01 0.98 ± 0.01 1.54 ± 0.02 1.91 ± 0.03 12.04

Icosahedron 2.35 ± 0.01 0.85 ± 0.01 0.64 ± 0.02 2.69 ± 0.01 12.08

Dodecahedron 2.28 ± 0.01 1.71 ± 0.02 0.74 ± 0.02 1.06 ± 0.01 12.06

Octahedron 1.44 ± 0.01 1.38 ± 0.01 2.24 ± 0.01 2.74 ± 0.02 12.06

We note that our MRJ packings are denser than the packings of soft Platonic polyhedra

in Ref. [25] that were generated within a cubic simulation box. It has been established that

for polyhedra, an increasing number of face-to-face contacts leads to higher packing fraction

φ, since such contacts reduce the distances between the particle centroids [27]. Indeed,

Table I shows that the MRJ polyhedron packings possess a relatively large number of face-

to-face contacts [see Fig.2(c) for local contacting configurations]. We note that face-to-face

contacts are also necessary for strict jamming. Since edges and vertices are local extremes

on a polyhedron, it is clear that edge- and vertex-type contacts cannot efficiently block

particle rotations. With a deformable box, collective particle rotations that break edge-

and vertex-type contacts are facilitated by macroscopic shearing, until a sufficient number

of face-to-face contacts are formed. Since a fixed-shape simulation box is used in Ref. [25],

it is likely that the soft-polyhedron packings, which should be collectively but not strictly

jammed, possess a larger number of edge- and vertex-type contacts, leading to lower φ than

we obtain here. In contrast, the disordered tetrahedron-like dice packings in Ref. [24] were

stabilized by vibration, which reduced the number of floppy local contacting configurations

resulting in a packing fraction φ similar in value that we have found for our MRJ tetrahedron

packings.
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IV. CONCLUSIONS AND DISCUSSION

Using the ASC method, we have generated and studied maximally random strictly

jammed packings of hard nontiling Platonic solids. We found that these MRJ packings are

hyperuniform (with infinite-wavelength local-number-density fluctuations completely sup-

pressed) and possess hyperuniform QLR pair correlations that decay asymptotically with

scaling r−4, implying that MRJ packings are intrinsically non-local. Moreover, the MRJ

polyhedron packings are isostatic, which results from the particle shapes and the require-

ment of strict jamming. Granular materials made from sintering MRJ polyhedron packings

would have stronger interparticle bounding and a higher packing fraction. Such materials

could also possess interesting novel dynamical properties.

TABLE II: Characteristics of MRJ packings of hard particles with different shapes. For ellipsoids

[19], superballs [21] and superellipsoids [22], the range of MRJ packing fractions reported here are

for the cases where the asphericity of the particle is close to unity (γ < 1.2).

Particle Shape Isostatic Hyperuniform QLR MRJ Packing Fraction

Sphere Yes Yes 0.642

Ellipsoid No (hypostatic) Yes 0.642 − 0.720

Superball No (hypostatic) Yes 0.642 − 0.674

Superellipsoid No (hypostatic) Yes 0.642 − 0.758

Octahedron Yes Yes 0.697

Icosahedron Yes Yes 0.707

Dodecahedron Yes Yes 0.716

Tetrahedron Yes Yes 0.763

Table II summarizes the characteristics of MRJ packings of hard particles with different

shapes. We note that the MRJ polyhedron packings behave like MRJ sphere packings in that

they all possess hyperuniform QLR and are isostatic; while the MRJ packings of ellipsoids,

superballs and superellipsoids are hypostatic (i.e., the total number of constraints is smaller

than the total number of degrees of freedom). We also find that for these smoothly-shaped

particles, at least when the asphericity is close to unity (γ < 1.2), their MRJ packings also

possess hyperuniform QLR, which provides further evidence that hyperuniform QLR are a
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universal signature of disordered jammed hard-particle packings.

It should not go unnoticed that the MRJ packings of nonspherical particles listed in Table

II generally possess a higher packing fraction than that of spheres φsphere

MRJ
= 0.642. In general,

provided that the asphericity value γ of a convex nonspherical particle is sufficiently close

to unity (e.g., γ < 1.2), we argue that the associated MRJ packing fraction φMRJ is always

above φsphere

MRJ
[35]. This is a natural consequence of the asphericity and the requirement of

jamming. It has been shown that the flat faces of polyhedra [27] and the small-curvature

regions on the surface of smoothly-shaped particles [19, 21] are more effective in blocking

the relative rotations between the particles as opposed to either the edges and vertices

of polyhedra or the large-curvature regions (such as rounded corners) of smoothly-shaped

particles. Therefore, contacts through flat faces of polyhedra or small-curvature regions of

smoothly-shaped particles are more favored in jammed configurations [19, 21]. It has been

shown that such contacts lead to smaller separations between the centroids of particle pairs,

and thus, result in a higher packing fraction. The principle that φMRJ of convex nonspherical

particles with γ sufficiently close to unity is always above the sphere value φsphere

MRJ
can be

considered to be the analog of Ulam’s conjecture for ordered packings stating that the

optimal packing of spheres possess the lowest packing fraction among all convex shapes in

three dimensions [36].

A natural question is whether or not one can estimate from the aforementioned orga-

nizing principle the MRJ packing fraction of nontiling polyhedra. This is a very difficult

question to answer rigorously, since φMRJ is generally related to the unknown relative impor-

tance associated with different types of contacts (e.g., face-to-face, edge-to-face, edge-to-face,

vertex-to-face). However, we can provide qualitative trends for the MRJ packing fraction

relative to the sphere value. We define two polyhedra to be similar if they possess the same

symmetry and asphericity value. In addition, a polyhedron satisfies the semi-regularity con-

dition if its faces are polygons with similar areas (e.g., the ratio of the largest area over the

smallest area is smaller than 1.2) and small ratios (e.g., < 1.2) of circumradius over inradius

of the polygons. Then, for two similar polyhedra satisfying the semi-regularity condition,

the one with the larger number of faces should possess a smaller MRJ packing fraction. In

general, the more faces a nontiling polyhedron satisfying the semi-regularity condition has,

the closer its MRJ packing fraction will be to the sphere value of about 0.64. This principle

can be very well seen in the case of dodecahedra and icosahedra as listed in Table II. One

12



might naively have guessed that the MRJ packing fraction should be inversely proportional

to the number of faces, but we see that the MRJ packing fraction of the octahedron is

slightly above that for the dodecahedron. However, this inverse proportionality should be

true when a polyhedron that is semiregular possess a very large number of faces.

Finally, we note that cubes are not considered here because the jammed packings of

cubes produced via our ASC algorithm generally possess a very high degree of order due

to the cubic symmetry of the solid and its ability to fill all of the space. This could be a

deficiency of our ASC algorithm or any known hard-particle-packing algorithm in not being

able to generate MRJ cube packings or it is possible that the MRJ packings of hard cubes

are intrinsically highly ordered. These issues will be examined in future work as well as

carrying out analogous investigations of the MRJ packings of the Archimedean solids. An

interesting question is whether or not one could devise a quantitative formula of the MRJ

packing fraction of a nonspherical particle whose asphericity is sufficiently close to unity.
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