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Hysteretic systems may exhibit a runaway avalanche in which a large fraction of the constituents of
the system collectively change state. It would be very valuable to understand the role that interaction
strength between constituents has on the size such catastrophic runaway avalanches. We use a simple
model, the random field Ising model, to study how the size of the runaway avalanche changes as the
coupling between spins, J , is tuned. In particular, we calculate P (S), the distribution of size-changes,
S, in the runaway avalanche size as J is towards a critical value Jc, and find that the distribution
scales as P (S) ∼ S−τD(Sσ(J/Jc− 1)), with τ and σ critical exponents and D(x) a universal scaling

function. In mean field theory we find τ = 3/2, σ = 1/2 and D(x) = exp(−(3x)1/σ/2). On the
basis of these results and previous studies we also predict that for three dimensions, τ = 1.6 and
σ = 0.24.

PACS numbers: 75.60.Ej, 05.40.Ca, 75.10.Hk, 75.50.Lk

I. INTRODUCTION

Many systems driven out of equilibrium are hysteretic
and exhibit avalanche dynamics as the driving field or
force is changed.1 Often there is a macroscopic runaway
avalanche indicated by a discontinuous jump in the hys-
teresis curve of some measured quantity, such as mag-
netization in ferromagnetic systems. Other examples
of such phenomena include fault slips in earthquakes
and fluids invading porous media.1 Because these run-
away avalanches span the entire system, understanding
how the coupling strength of interactions between con-
stituents of the system affects the runaway avalanche size
has important consequences of making more robust mag-
netic materials or memory storage devices, or preventing
large failure avalanches, such as in power grids. Although
such systems may have very different microscopic origins,
the statistics of avalanches are often exactly the same.
Many microscopic details become increasingly irrelevant
when viewed at larger and larger length scales, a concept
known as universality.1 Due to universality, we may cal-
culate the properties of these statistics in simple models
and make predictions for more complicated real experi-
mental systems.

To this end, we may study the effects that tuning the
coupling strength have on runaway avalanches exhibited
in a simple model. The random field Ising model (RFIM)
is a simple model that captures the essential properties
of avalanches in ferromagnetic materials. Due to uni-
versality and the fact the Ising model has been used to
model many different systems, studying this model is
a natural choice for understanding general properties of
avalanches.2–19 The RFIM models a lattice of locally in-
teracting magnetic spins, each subject to a different ran-
dom local field, hi, where i labels the site at which the
random local field is applied. The avalanche statistics are
controlled by the ratio J/R of the coupling between spins,
J , to the disorder, R (measured by the standard devia-
tion of the random local fields). The RFIM predicts that
for J/R larger than some critical value, (J/R)c, there

exists hysteresis with a discontinuous jump (runaway
avalanche), ∆M , in the magnetization M as the external
field H is varied. This is shown schematically in Fig. (1).
The size of ∆M depends on J/R− (J/R)c, the distance
to the critical point, and vanishes at J/R = (J/R)c. If
an experimenter could tune J/R in a given sample, the
runaway avalanche size ∆M , it would not vary smoothly
as J/R is adjusted, but would instead change in dis-
crete jumps. Understanding the statistics of these jumps
could have important consequences for making more ro-
bust magnetic materials, memory storage devices or the
prevention of large failure avalanches, such as in power
grids.1 In this paper we calculate the distribution of jump
sizes in ∆M as J/R is tuned, which provides testable pre-
dictions for experiments.

To generate experimentally testable predictions we use
the RFIM to calculate the distribution of the discrete
jumps in the size of the runaway avalanche, ∆M , as the
model parameter J/R is tuned. This calculation, done in
a mean field approximation of the RFIM, will be a main
result of this paper. In addition, results for the RFIM
in three dimensions are extracted based on the connec-
tion of our results to previous studies of the RFIM,6 and
we also consider the possibility of studying avalanches in
materials with dipolar forces, which do not have runaway
avalanches.

This paper is structured as follows: in section II we
briefly review the RFIM, and describe avalanches in the
model, with a focus on the mean field model. In section
III we sketch the derivation of the distribution of jumps
in the runaway avalanche size as J/R is tuned. In sec-
tion IV we discuss numerical simulations performed to
check our theoretical predictions. In section V we briefly
discuss the three dimensional RFIM and we predict val-
ues for the critical exponents in three dimensions, and in
section VI we briefly discuss avalanches in materials with
dipolar forces, in which there are no runaway avalanches.
In section VII we discuss possibilities for experimentally
measuring the critical exponents discussed in the text,
and in section VIII we summarize the work and discuss
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future directions.

II. THE RANDOM FIELD ISING MODEL

The random field Ising model (RFIM) is a relatively
simple model of interacting spins that has been used to
study driven, disordered, non-equilibrium systems with
hysteresis and avalanches.2–19 The model exhibits a sec-
ond order phase transition as J/R is tuned. Above the
critical ratio (J/R)c the magnetization of the system ex-
hibits a runaway avalanche in which large numbers of
spins collectively reverse orientation as an external lon-
gitudinal magnetic field H is swept from −∞ to ∞.2–6

The critical properties of the model near this transition
will be universal for all models in the same universality
class,1 which is known to be quite large.3

The Hamiltonian for the RFIM is

H = −
∑
i,j

Jijsisj −
N∑
i=1

(H + hi)si, (1)

where the si = ±1 is the value of a classical spin located
at site i. N is the total number of spins in the lattice, H
is a global magnetic field parallel to the spin axis. The hi
are random magnetic fields, different at each site, drawn
from a peaked distribution with width R. The parameter
R characterizes the amount of disorder in the system. We
choose a Gaussian distribution for simplicity:

ρ(hi) =
1√
2πR

exp

[
− h2

i

2R2

]
. (2)

The scaling properties should remain the same for simi-
larly shaped distributions.4

The factor Jij is the interaction between spins i and j.
For the standard RFIM in finite dimensions, Jij couples
only nearest neighbor spins. Such a model is generally
difficult to solve analytically. Consequently, in this work
we will focus on all-to-all (mean field) interactions, i.e.,
Jij = J/N , all i, j, as mean field theory is often analyti-
cally tractable. The factor 1/N is required for the model
to be well defined in the thermodynamic limit. In mean
field theory, the Hamiltonian thus becomes

HMF = −
N∑
i=1

hMF,eff
i si, (3)

where each spin experiences an effective local field

hMF,eff
i = JM +H + hi. (4)

The net magnetization M is given by

M =
1

N

N∑
j=1

sj , (5)

and must be determined self consistently. At zero tem-
perature, each spin aligns with its local effective field.
Spins hence flip when the sign of their effective field
changes. Due to the random fields hi, the effective fields
do not all change sign simultaneously, as in the case of
zero disorder. Hence, as H is tuned it can trigger a single
spin to flip, which will change M , which can in turn then
cause further spins to flip, which may then cause more
spins to flip, and so on until the cascade of spin flips
peters out. These cascades of spin flips are avalanches
that are detected as Barkhausen noise in experimental
systems20. In the thermodynamic limit, N → ∞, and
for J > Jc there is an avalanche of size proportional
to N in which a non-zero fraction of spins flips. This
avalanche is referred to as the “runaway avalanche”. The
fraction of spins flipped in all other avalanches is zero
in the thermodynamic limit. They fall into two groups:
avalanches which occur prior to the runaway avalanche
are dubbed “precursors” and those which follow the run-
away avalanche are termed “aftershocks”.

In mean field theory and in general, the runaway
avalanche is detected experimentally as a discontinu-
ous change, ∆M , in the magnetization as H is tuned.
The size of the discontinuity depends on the coupling
J . Fig. (2) shows the ∆M versus J curve which demon-
strates a transition at J = Jc, where a runaway avalanche
first appears and ∆M becomes non-zero. In the ther-
modynamic limit this curve is smooth. However, as
shown in the figure, for finite N the curve has discrete
jumps, which tend to zero as N → ∞. These jumps
in ∆M(J) are the central phenomenon that we study
in this work: as J is tuned, the maximum avalanche
size changes abruptly; the distribution of sizes of these
changes is of interest as it has relevance to understanding
- and potentially controlling - avalanches in many natural
phenomena in systems such as power grids or magnetic
materials.1 Because the jumps in ∆M tend to zero in the
thermodynamic limit, it is better to study jumps in the
number of spins that flipped in the runaway avalanche,
Sm, versus J instead. Jumps in the Sm versus J curve
do not tend to zero as N → ∞. Sm is related to ∆M
by ∆M = 2Sm/N . Determination of the distribution,
P (S), of jump sizes, S, in Sm will be the main result of
this paper and a new prediction for experiments.

III. JUMP SIZE DISTRIBUTION DERIVATION

We begin our analysis by carefully considering what
happens when a spin flips. We consider finite N first,
taking the N → ∞ limit in the end. Before the limit is
taken, we identify the runaway avalanche as the largest
avalanche, Sm, for J ≥ Jc.

We initialize the system with H = −∞. All spins

initially point down as hMF,eff
i is dominated by H, and

hence M = −1. The spins will flip in order of descending
random fields, so we label the random fields h1 > h2 >
· · · > hN . The spin with random local field h1 is the first
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(a)J < Jc

(b)J = Jc

(c)J > Jc

FIG. 1: (Color online) Plots of M versus H for the different
coupling regimes. At J = Jc the curve develops a discontinu-
ity which grows with J . In mean field theory hysteresis only
exists above Jc due to the simplicity of the hard spin model.
The soft spin version of the mean field theory, however, dis-
plays hysteresis above and below Rc. It has the same critical
exponents as the hard-spin mean field theory.4

FIG. 2: (Color online) Plot of the size of the runaway
avalanche, ∆M , vs. J . In the thermodynamic limit the
curve appears smooth, but for finite N there are discrete
jumps in the runaway avalanche size. We study jumps in
Sm = N∆M/2, the total number of spins that flip in the run-
away avalanche. The Sm vs. J curve will always have discrete
jumps as N is increased, making it the appropriate curve to
study.

FIG. 3: (Color online) Schematic plot of avalanches in the
RFIM system. The solid curve is a Gaussian distribution of
random fields and the straight line indicates the line 2Jρ = 1.
The dashed line represents avalanches; each dash corresponds
to an avalanche consisting of spins with random fields in the
segment of the distribution below the dash. As H increases,
spins with fields on the far right of the distribution begin to
flip when the sign of their local field changes. The resulting
avalanches peter out quickly as nflip = 2Jρ(h0) � 1. When
the spin with local field h∗ (Eq. 4) flips it triggers an avalanche
for which nflip = 1, enabling the avalanche to run away and
cause a finite fraction of the spins to flip. As the avalanche
travels to the left on the curve, eventually nflip falls below
1 again once the spin with local field −h∗ has flipped, but
due to the increase in effective field built up from spin flips
during the runaway avalanche the system overshoots −h∗ and
the avalanche peters out at some local field |h| > |h∗|. For J
close to Jc, the overshoot is very slight, and the distribution
of aftershock sizes close to −h∗ is given by Eq. (8).
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spin to flip. When the longitudinal field H is tuned such
that it causes a spin with field hi to flip it increases the
effective field of all other spins by 2J/N . The condition
that this spin flip causes the next spin, hi+1, to flip is
hi − hi+1 ≤ 2J/N . If spin i causes several spins to flip,
then each flip will increase the effective field of all spins
by 2J/N , which can in turn flip even more spins. If ni
spins have flipped in the avalanche started by spin i, then
the condition that the (ni+1)th spin flips is hi−hi+ni ≤
2Jni/N . If the (ni + 1)th spin does not flip, then there
remains a “gap” between spins i and i+ni, ∆i,i+ni . This
gap is given by hi − hi+ni = 2Jni/N + ∆i,i+ni , or

∆i,i+ni(J) = hi − hi+ni − ni
2J

N
. (6)

The gap is a function of the coupling J . When ∆i,1+ni
is

positive the global fieldH must be increased to cause spin
i+ ni to flip. When ∆i,j is negative, it means that spin
j is already part of an avalanche caused by spin i. When
∆i,j = 0 spin i changes the effective field just enough to
trigger spin j to flip. Thus, when studying changes in
avalanche sizes as the coupling increases, we need only
consider the gaps between pairs of spins for which ∆i,j

is positive, i.e., between the random fields of the initial
spin of an avalanche and the initial spin of the avalanche
that follows it. If we were to re-initialize the system
with all spins pointing down, but with J adjusted so that
the smallest positive ∆i,i+ni

of the previous sweep of H
vanishes, then when spin i flips, the resulting avalanche
will now cause spin i + ni to flip. If spin i is the initial
spin of an avalanche of size ni with the smallest positive
∆i,i+ni

, then Ji,i+ni
, the value of J which will result in

the avalanche flipping spin i+ ni, is given by

2Ji,i+ni

N
=
hi − hi+ni

ni
. (7)

If during the previous sweep of H from −∞ to +∞ spin
i + ni, where ni is the size of the avalanche started by
spin i on the previous sweep, triggered an avalanche of
size mi+ni , then spin i is now an avalanche of size ni +
mi+ni on the current sweep (with coupling J = Ji,i+ni).
This is therefore how different avalanches join as J is
increased. Because the gap ∆i,i+ni

is now negative, for
the next sweep we must look at the gap between spins i
and i + ni + mi+ni

, ∆i,i+ni+mi+ni
, to determine if this

gap or another one is the smallest gap on the current
sweep of the system in order to determine what value to
tune J to.

Although two avalanches have joined by increasing J ,
this has not necessarily caused a change in the run-

away avalanche size Sm. To be precise, let S
(k)
m denote

the size of the largest avalanche on the kth sweep of
the system. We want to know which avalanche-joining

processes will result in S
(k+1)
m > S

(k)
m (as opposed to

S
(k+1)
m = S

(k)
m ). There are only three kinds of avalanche-

joining processes which will increase Sm. The first pro-

cess we label “PP/AA”. In this process either two precur-
sors have joined together or two aftershocks have joined
together going from sweep k to sweep k + 1. In this

case S
(k+1)
m > S

(k)
m only if the sum of the two precur-

sors/aftershocks that joined is greater than S
(k)
m . In

the second process, labeled “PR”, spin i is the start
of a precursor avalanche of size ni and spin i + ni is

the start of the runaway avalanche of size S
(k)
m . On

the (k + 1)th sweep the size of the largest avalanche is

then S
(k+1)
m = S

(k)
m + ni > S

(k)
m . The largest avalanche

size has thus increased. In the last process, labeled

“RA”, spin i starts the largest avalanche of size S
(k)
m

and i + S
(k)
m starts an aftershock, in which case S

(k+1)
m

is S
(k)
m + n

i+S
(k)
m

> S
(k)
m and the largest avalanche has

increased between the kth and (k + 1)th sweeps.

Above Jc and in the thermodynamic limit process RA
dominates and processes PP/AA and PR are negligible.
Process PP/AA is negligible because in the thermody-
namic limit the ratio of largest avalanche size to the to-
tal number of spins, Sm/N , tends to a finite fraction
∆M/2, whereas for a precursor/aftershock avalanche of
size S, S/N → 0 as N → ∞. Thus, no two precur-
sor/aftershock avalanches can ever join to become larger
than the current Sm, and process PP/AA will not occur
in the thermodynamic limit.

Process PR will not contribute in the thermodynamic
limit because the gap between the runaway avalanche
and the precursor avalanche preceding it will be larger
than the gap between the runaway avalanche and the
aftershock following it with probability 1 in the ther-
modynamic limit. The argument is as follows: Let
∆PR = hP−hR−2JSP /N be the gap between the precur-
sor to the runaway avalanche and the runaway avalanche,
where hP the field of the initial spin of the precursor
avalanche, hR the field at which the runaway avalanche
starts and SP the size of the precursor avalanche. Let
∆RA = hR− hA− 2JSm/N be the gap between the run-
away avalanche and the aftershock following it, where
hA the field of the initial spin in the aftershock. On a
given sweep of the system for which both gaps are pos-
itive, we want to know the values of J which will cause
these gaps to vanishes. The gap with the smaller coupling
will vanish first as we increase J . However, because the
fields are random, we can only calculate the probability
Pr(0 < JPR < JRA) that the coupling JRA, which causes
∆RA to vanish, is greater than the coupling JPR, which
causes ∆PR to vanish. We show this probability is zero
for arbitrary fields in the thermodynamic limit:
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Pr(0 < JPR < JRA)

= Pr

(
0 <

2JPR
N

<
2JRA
N

)
= Pr

(
0 <

hP − hR
SP

<
hR − hA
Sm

)
= Pr

(
hR < hP < hR +

SP
Sm

(hR − hA)

)
,

where in going to the third line we used the fact that
2JRA/N = (hR−hA)/Sm and 2JPR/N = (hP −hR)/SP ,
which come from the ∆RA(JRA) = 0 and ∆PR(JPR) = 0,
respectively. Simple manipulations of the argument yield
the last line above. Taking the thermodynamic limit,
Sm → N∆M/2, but SP /N → 0, hence SP /Sm → 0 in
the thermodynamic limit, giving

Pr(0 < JPR < JRA) = Pr(hR < hP < hR) = 0,

as the probability distribution is continuous. Hence, in
the thermodynamic limit there is zero probability that
JPR < JRA. Hence, the value of the coupling required
to cause the runaway avalanche to absorb the aftershock
following it will always be smaller than the value of the
coupling required to cause the precursor to absorb the
runaway avalanche, and thus on every sweep of the sys-
tem it is the aftershock which is absorbed into the run-
away avalanche, not the precursor.25

Because it is always an aftershock that is absorbed as
N →∞, the distribution of jump sizes is identical to the
distribution of aftershock avalanche sizes, which is4

P (S) ∼ S−τe−St
2/2, (8)

where τ = 3/2 and t = 2Jρ(h0)− 1, with h0 the random
local field of the spin which triggers the avalanche. At
the critical point J = Jc, t = 0 and the distribution
is a power law, S−τ , as expected at a continuous phase
transition.

The parameter t must be evaluated at the local field
at which the aftershock to be absorbed begins. We now
determine what the local field of the aftershock is. As
N → ∞, Sm → N∆M/2. The value of J is tuned such
that 2J/N = (h∗ − hend)/Sm, or hend = h∗ − J∆M for
N → ∞, where hend is the local field of the last spin
in the avalanche. This determines the field of the last
spin in the runaway avalanche in terms of the field of the
first spin in the runaway avalanche, h∗, the current value
of the coupling and the fraction of spins in the runaway
avalanche, ∆M/2. The fraction ∆M/2 is determined
implicitly by

∆M

2
=

∫ h∗

h∗−J∆M

dh ρ(h). (9)

Using the fact that ρ(h) is Gaussian, we may write

this integral in terms of error functions, erf(x) =
2/
√
π
∫ x

0
dt exp(−t2). We have

∆M = erf
(√

ln(1 + j)
)

− erf

(√
ln(1 + j)−

√
π

2
(1 + j)∆M

)
, (10)

where we define j = J/Jc − 1 for convenience. For j = 0
(J = Jc) the unique solution is ∆M = 0. We thus expect
that for small j (J close to Jc) ∆M will be small, so
we expand the right hand side for small j > 0 and ∆M
(going to third order in ∆M , as the zeroth order vanishes
and the first order cancels with the left hand side). We
find

∆M ' 6√
π
j1/2. (11)

To lowest order in j, h∗ ' 2Jcj
1/2/
√
π,4 hence we find

hend ' −4Jcj
1/2/
√
π. Now that we have hend we need

only determine how far away the next spin is. In the ther-
modynamic limit the distance between spins tends to zero
(as can be shown using the theory of order statistics.26)
Hence, hend will only be an infinitesimal distance from
the field which begins the following aftershock, so we may
evaluate t by inserting h0 ' hend. We find t ' −3j, and
so

P (S) ∼ S−τD(Sσj), (12)

with τ = 3/2, σ = 1/2 and

D(x) = exp
[
−(ax)1/σ/2

]
, (13)

where a = 3. While the parameter a is a non-universal
quantity, D(x) is a universal scaling function and predic-
tion for experiments.

IV. NUMERICAL RESULTS

We test our prediction numerically by simulating the
mean field model for many different configurations of
spins. We set R = 1 in our simulations. Thus, all spins
are drawn from a standard normal distribution in our
simulations. We can turn the considerations at the be-
ginning of the previous section into an algorithm to com-
pute the jumps in Sm as a function of J . Some caution
must be taken, however, as for a finite number of spins
the processes PP/AA and PR will necessarily occur on
occasion and contribute to jumps in Sm. Eq. (12) is
valid only for RA processes in the thermodynamic limit,
while the simulations have finite size effects. In order to
compare the results of our simulations to the theoreti-
cal results, we record only jumps that occur due to RA
processes, because that is the dominant process in the
thermodynamic limit. Failing to remove the other pro-
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N 105 106 ∞
τ 1.48(7) 1.50(6) 1.5

σ 0.50(3) 0.50(7) 1.5

Jc 1.244(3) 1.251(2) 1.253314

a 2.3(2) 2.8(3) 3

TABLE I: Comparison of data collapses, such as in Fig. 4, for
numbers of spins N = 105 and 106. We find the critical ex-
ponents τ and σ have the theoretical values within statistical
error, and we obtain values for Jc and a, defined in Eq. (13),
that are close to the theoretical values, and improve as N is
increased. Parentheses indicate estimate error in last digit.

cesses distorts the histograms, resulting in bumps in the
histograms at large S.

We ran simulations for 2000 configurations of both 104

and 105 spins and 400 configurations of 106 spins. Fig. (4)
shows the results of the 106 run. The values of the crit-
ical exponents σ and τ are essentially indistinguishable
from the theoretical values, with only the values of the
non-universal quantities Jc and a (the coefficient of x in
Eq. (13), predicted to be 3) being smaller than theoret-
ically predicted. These deviations from the theoretical
results are expected to be due to finite size effects, as
the values for both Jc and a increase toward the pre-
dicted values as N is increased. Table I compares the
data for the two different values of N , revealing that as
N increases the agreement between theory and simula-
tion improves. Results for N = 104 are not given, as the
data collapse was not satisfactory. However, this data is
used in the finite size collapse, discussed below.

A. Finite Size Scaling Collapse

We also performed a finite-size scaling collapse to de-
termine the critical exponents. By performing a data
collapse using the number of spins as a tunable vari-
able we can extract the value of the exponents and Jc in
the thermodynamic limit, free of finite-size errors. This
method is particularly useful for the analysis of exper-
imental data. For a system of linear size L, we expect
the scaling function of Eq. (12) to also depend on L/ξ,
where ξ is the correlation length. For the infinite system
ξ ∼ j−ν ; for a finite system ξ cannot exceed the linear
system size L, and there are subdominant corrections
that are negligible as the number of spins (and hence
system size) grows large. We may write

P (S) ∼ S−τ D(Sσj, L1/νj),

If we now calculate the nth moments of the jump sizes in
Sm, 〈Sn〉 =

∫
dSSnP (S), we find:

〈Sn〉 ∼ L(n+1−τ)/(σν)G(L1/νj), (14)
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(a)Histogram of jump size S for various values of J .
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Theory

J = 1.2675

J = 1.2725

J = 1.2775

J = 1.2825

J = 1.2875

J = 1.2926

J = 1.2975

(b)Collapsed Data.

FIG. 4: (Color online) Simulation data. Fig. 4(a) (loglog
scale) shows the normalized histograms for different values of
J up to about 4% above the critical point. Fig. 4(b) (linear
scale) is a collapse of the data, confirming the theoretical
values of the universal quantities τ = 1.5 and σ = 0.5, as
well as giving estimates for the non-universal quantities, a
and Jc, which are not far off from the predicted values. The
discrepancy is due to finite size effects. Note that the data
collapse falls almost completely on top of the scaling function,
Eq. (13), confirming the scaling form, except near small S,
where the scaling form does not apply and discreteness effects
become visible.

where G is a new scaling function that depends only on
L1/νj. Using the fact that N ∼ Ld for a d-dimensional
lattice we obtain

〈Sn〉 ∼ N (n+1−τ)/(σdν)G(N1/(dν)j). (15)

In the mean field problem we assume d is effectively
the upper critical dimension, dc, above which mean field
theory is exact. The critical dimension is dc = 6 for
the RFIM.4 As d and ν only appear as dν, in a scal-
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FIG. 5: (Color Online) (a): 〈S〉 vs. J . (b): Finite-size scaling
collapse. The N = 104 data appears noisy, but the general
trend follows the 105 and 106 curves.

ing collapse (as shown in Figs. (5) and Figs. (6)) we
can only determine this combination from the collapse.
We calculate 〈Sn〉 for n = 1, 2, and for system sizes of
N = 104, 105 & 106. This allows us to determine the
exponents dν and (n+ 1− τ)/σ, from which we calculate
τ , σ, and ν, assuming we may set d = dc = 6 for mean
field theory. The results of the collapse are given in Ta-
ble II. Figs. (5) and Figs. (6) show plots of 〈S〉 and 〈S2〉,
respectively, versus J , with their associated collapses.

V. AVALANCHES IN THREE DIMENSIONS

The physical picture suggested by studying the mean
field theory is that the runaway avalanche absorbs after-
shock avalanches as J is increased. We expect this to be
true in finite dimensions as well. Although the simula-
tions of Ref. 27 find correlations between avalanche sizes

1.2 1.22 1.24 1.26 1.28 1.3
0

2

4

6

8

10

12

x 10
5

J

〈S
2 〉

 

 

N = 106

N = 105

N = 104

(a)

−4 −2 0 2 4
0

0.02

0.04

0.06

0.08

0.1

0.12

N1/dν j

N
(τ

−
3)

/(σ
dν

) 〈S
2 〉

 

 

N = 106

N = 105

N = 104

(b)

FIG. 6: (Color online) (a): 〈S2〉 vs. J. (b): Finite-size scaling
collapse. The N = 104 data appears noisy, but the general
trend follows the 105 and 106 curves.

and waiting times between avalanches at the 3D critical
point, which could in principle affect scaling relations,
no correlations appear to exist between avalanche sizes.
As our arguments do not depend on the time between
avalanches, we thus expect the distribution of changes in
the runaway avalanche size will be equal to the distribu-
tion of aftershock sizes even in finite dimensions. The
distribution of aftershock sizes in three dimensions has
the same form as Eq. (12) with different values for the
exponents τ and σ and a different scaling form D(x).
In three dimensions the exponents are τ = 1.6 ± 0.6,
σ = 0.24 ± 0.02 and ν = 1.4 ± 0.2.6 We summarize the
derived results for mean field theory and three dimen-
sions in Table III.



8

n 1 2

dν 2.6(6) 2.6(5)

(n+ 1− τ)/σ 1.04(22) 3.2(4)

Jc 1.253(2) 1.2529(8)

Derived Exponents Collapse Theory

τ 1.5(2) 1.5

σ 0.5(3) 0.5

dν 2.6(6) 3

ν 0.4(1) 0.5

TABLE II: Results of the finite-size scaling collapse shown
in Figs. (5) and Figs. (6) of the nth moments, 〈Sn〉, of P (S)
for n = 1, 2. The top table lists the combined exponent val-
ues obtained directly from the collapse. The lower table lists
the individual exponents determined from these values. We
assume dc = 6, giving the estimate ν = 2.6/6 ≈ 0.4. The
critical exponents are found to be quite close to the expected
exponents. Statistical errors in the last digit reported are
given in parentheses.

τ σ ν

Mean Field Theory 1.5 0.5 0.5

Three Dimensions 1.60(6) 0.24(2) 1.4(2)

TABLE III: Critical exponents τ , σ and ν in mean field theory
and three dimensions. The results for mean field theory are
those derived in this work. Those for three dimensions are
argued to be the same exponents as those of the aftershock
size distribution in three dimensions, reported in Ref. 6. The
exponents were determined numerically. Statistical errors in
the last digit are given in parentheses.

VI. DIPOLAR INTERACTIONS

We now briefly consider the effect of dipolar interac-
tions between spins. Dipolar forces can give rise to de-
magnetizing fields which resist the propagation of large
avalanches.28 Most magnetization changes in the system
are no longer due to nucleation of new domains, but due
to motion of domain walls.28–30 As a result, the runaway
avalanche is broken up into many small avalanches with
size distribution S−τ

′
f(S(k/R)1/σ′), with different criti-

cal exponents τ ′ and σ′, and where k is the value of the ef-
fective demagnetizing field and f(x) is a universal scaling
function.29–31 Over a large range of H, where the mag-
netization curve M(H) has constant slope (dM/dH =
constant) and is far from saturation, and for disorders R
less than some critical disorder Rdipolarc ,33 the avalanche
size distribution only depends on the ratio k/R and does
not depend on H29,30. This is quite different from the
case analyzed above, and our previous results do not
apply. However, it is interesting for the analysis of ex-
periments on LiHoxY1−xF4 and related materials. In
these systems the disorder R can be tuned by tuning a
transverse magnetic field applied to the sample. Thus, it

may be possible to measure avalanches caused by tuning
R using Barkhausen noise20 or other techniques. Do-
main wall motion can be characterized by an equation of
motion29,30

dui(t)

dt
= H +

∑
j

Kij(uj − ui) + hi, (16)

where u is the height of the domain wall, K is an inter-
action kernel which contains the dipolar and exchange
interactions, H is the global magnetic field and the hi
are the random local fields. In the LiHoxY1−xF4 exper-
iments tuning the transverse magnetic field amounts to
tuning all of the hi by the same factor. Suppose we tune
R until a single spin flips and triggers an avalanche. Be-
cause the avalanche size distribution depends on R only
through the ratio k/R (as long as R < Rdipolarc ), we ex-
pect the size statistics of avalanches triggered by tuning
R to be given by the same distribution with a different
cutoff that scales as (k/R)−1/σ′ , with σ′ = 1 in three
dimensions.30,32

VII. EXPERIMENTAL SYSTEMS

Here we give a list of related experimental systems.
(1) As mentioned previously, the strength of the random
local fields in LiHoxY1−xF4 can be tuned by tuning an
external magnetic field transverse to the orientation of
the spins. In principle, this could be an excellent system
to test the results of this work; however, the presence
of dipolar forces in such materials changes the behav-
ior of the system, resulting in domain wall motion, as
opposed to domain nucleation. This renders such ma-
terials unsuitable for studying runaway avalanches. Al-
though in some cases it is possible to minimize the dipo-
lar forces by choosing a suitable sample geometry, such
as a frame or thin wire,29,30 the perturbative calculation
of Ref. 23, which predicts that LiHoxY1−xF4 becomes
a dipolar-RFIM when a transverse field is applied, as-
sumes the strength of the random local fields is less than
the strength of the typical interactions between spins,
suggesting that the strength of the random fields is at
most comparable to the dipolar forces in this regime. In
these materials, we expect domain wall propagation to
dominate the dynamics. The results for this case are
summarized in section VI.

(2) It is possible to control the exchange interac-
tions between spin-like states in atoms in optical lattice
experiments34. This could allow for interesting experi-
mental investigations of avalanches in RFIM-like systems
and related systems modeled by the quantum mechanical
transverse field RFIM35–37, as the coupling is tuned.

(3) Experiments in systems of superfluid 4He in Nu-
clepore show hysteretic and avalanching behavior in the
amount of fluid trapped in the volume of the Nuclepore
as the chemical potential is adjusted.38–40 There are some
qualitative differences between the hysteresis observed in
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these experiments and the RFIM. In particular, in fluid
experiments the hysteresis curves are typically asymmet-
ric, and do not seem to exhibit runaway avalanches. How-
ever, it may still be the case that the two systems are in
the same universality class. A first attempt at a compar-
ison between the statistics of the precursor avalanches
in these experiments and in the RFIM has been done in
Ref. 38. The authors find that the experimental expo-
nents are not inconsistent with the RFIM, but the er-
ror bars are not small enough to definitively conclude
whether the universality classes are the same or differ-
ent. Although the systems studied in Ref.’s 38–40 do
not display runaway avalanches, this may be because the
distribution of pore diameters is wide. A narrower range
of pore diameters may allow for large runaway events41.
Additionally, some models of porous media develop a dis-
continuous jump in the hysteresis loop at sufficiently high
porosity,42 providing another possible method to achieve
runaway events. The group of Ref.’s 38–40 has also found
that the coupling between different pores is mediated by
a layer of superfluid helium, suggesting that perhaps the
coupling can be tuned by adjusting the thickness of the
fluid layer. However, the fluid layer thickness does change
as the chemical potential is tuned,41 which may require
modification of the results presented in this paper. If
runaway avalanches can be triggered in superfluid 4He
in Nuclepore systems, then it may be possible to study
changes in the runaway avalanche size as the coupling
between pores is tuned, and the results could be com-
pared to the predictions for the RFIM presented in this
work, perhaps with some modifications to account for the
coupling changing as the chemical potential is tuned.

(4) The RFIM is applicable to a broad range of
systems2, ranging from magnets to decision making pro-
cesses. We expect the results of this paper to be relevant
to future studies of many of these systems if the coupling
can be tuned.

VIII. CONCLUSION

In summary, we have presented predictions for exper-
iments which study the statistics of changes in the size
of a runaway avalanche in a disordered system as the
coupling between constituents in is tuned. To generate

experimentally testable predictions we have used the ran-
dom field Ising model to derive the distribution of the
size-changes in the runaway avalanche as the ratio J/R
is slightly increased above a critical value (J/R)c. We
predict the values of the critical exponents in both mean
field theory and three dimensions. The exponents found
in mean field theory are likely to be those measured ex-
perimentally in systems with long range ferromagnetic
interactions. For systems with short range interactions,
simulations and a renormalization group calculation pre-
dict quantitatively accurate values for the exponents.4

We argue that in finite dimensions the exponents of the
jump in the runaway avalanche size will be equal to the
exponents of the aftershock size distribution, which are
already known.6 Numerical simulations support our the-
oretical findings. We suggest possibilities for measuring
these effects experimentally in ferromagnetic or fluid sys-
tems. Further studies could look at finite size effects in
the system, such as how events due to processes PR or
PP/AA affect the distribution of jump sizes S,43 or the
relation of the RFIM to other systems which exhibit run-
away avalanches.
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