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Heat conduction process has recently found its applicatigrersonalized recommendation [T. Zheual,,
PNAS 107, 4511 (2010)], which is of high diversity but low acacy. By decreasing the temperatures of small-
degree objects, we present an improved algorithm, callesklli heat conduction (BHC), which could simulta-
neously enhance the accuracy and diversity. Extensiveriexpetal analyses demonstrate that the accuracy on
MovieLens, Netflix and Delicious datasets could be improved3.5%, 55.4% and 19.2% compared with the
standard heat conduction algorithm, and the diversityse aicreased or approximately unchanged. Further
statistical analyses suggest that the present algorithuad simultaneously identify users’ mainstream and spe-
cial tastes, resulting in better performance than the stahldeat conduction algorithm. This work provides a
creditable way for highly efficient information filtering.

PACS numbers: 89.20.Hh, 89.75.Hc, 05.70.Ln

With the advent of the Internet [1] and wide application @ (b ) 173
of Web 2.0 techniques, there sprout many web sites that en-
able large communities to aggregate and interact. For exam-
ple, Twitter allows its1.7 x 10® members to share interests

and life experiences, Facebook has already exceeded 500 mil y &

lion members since July 16th, 2010, and their members are

growing ever faster. This brings massive amount of acckessib v 1

information, more than every individual’s ability to prase 512

Searching, filtering and recommending thus become indis-

pensable in the Internet era, in which the personalizedmeco FiG. 1: (Color online) lllustration of heat conduction afgbm on a
mender systems have become an effective tool to address tbipartite user-object network: (a) The objects collectgdHe target
information overload problem by predicting users’ intéses user are activated, with temperature 1, while others areroper-

and habits based on their historical records. Personaleed ature 0. (b) Each user's temperature is the average oveewdhis
ommender systems have been used to recommend books a¢flected objects. (c) Same process happens from usergetctsib

CDs at Amazon.com, movies at Netflix.com, and news at Ver-

sifi Technologies (formerly Adaptivelnfo.com) [2]. Motiiex

by the practical significance to e-commerce, recommenddsy v;, anda;, = 0 otherwise. A reasonable assumption is
systems have caught increasing attention and become an ékat objects collected by users are what these users lika and
sential issue [3, 4]. A personalized recommender system inrecommendation algorithm aims at predicting users’ peakon
cludes three parts: data collection, model analysis arahmec opinions on the objects they have not yet collected [24-27].
mender algorithm, where the algorithm is the core part. Thusn the standard heat conduction (HC) algorithm, we first con-
far, various kinds of algorithms have been proposed, iriotyd ~ struct a propagator matri¥”, where the element,; de-
collaborative filtering (CF) approaches [5-10], conteasdd notes the conduction rate from objegtto o,. DenoteH as
analyses [11, 12], tag-aware algorithms [13-15], link pred the temperature vector @f components: the source compo-
tion approaches [16-18], hybrid algorithms [19, 20], and sments are of temperature 1, while the remaining components
on. For a review of current progress, see Refs. [2, 21] and thare of temperature 0. Then the temperatures associated with
references therein. the remaining nodes could be calculated by solving the ther-

) _ . mal equilibrium equatioW"H = f [26], wheref is the flux
A recommender system could be described by a b|part|tgect0r' This is the discrete analog-okV2T'(7) — v . f(F),

network [22, 23], in which there are two kinds of nodes: user : i : )
U and object®). The users’ historical records are representeglvhere“ IS_ the thejmal (ior_wductlwtyv T(r) s the tempera
e gradient and/ - J(7) is the local heat flux. In this pa-

gﬁlegeogji%(:ss()cin?ciftg?. uS?;i?gig:{?;sgf:?gisg? thetp])igr,gl(z’) plays the role of-xT'(¥) andf(.z') plays the role of
-, upn}, the system can be fully described by an adjacency” - J(r) [26]. In the standard HC algorithm, the temperature

matrix A = {aia}mn, Wherea,, = 1 if o, is collected of the collected objects is constant, and the heat will diffu
from objects to users, and then from users to objects. The
temperatures of the uncollected objects are then considere
as recommendation scores: the objects given higher tempera

*liujg004@ustc.edu.cn tures would be recommended preferentially (see Fig.1 for an

fzhutou@ustc.edu illustration). Since HC algorithm [26] is implemented bdse



on matrix operations, it is very time-consuming and canmeot b
applied to large-scale systems. Zhetual[4] proposed a lo-
cal HC algorithm, which spreads the heat on the user-object
bipartite network and can quickly generate highly diverse y :
less accurate recommendations. As a benchmark for compar- ~ MovieLens 1,574 943 825205.56 x 10
ison, we call it standard HC algorithm (hereinafter, HC only Netflix 10,000 6,000 701,9471.17 x 10~
stands for local heat conduction algorithm [4]). Delicious 10,000 232,657 1,233,9%730 x 10*

In this Brief Report, we present the biased heat conduc-
tion (BHC) algorithm to see how objects’ degrees affect the
algorithmic performance. Using data from three real sys-
tems (MovieLens, Netflix and Delicious), we show that giving TABLE I1: Algorithmic performance foMovigLens, NetflbandDe- .
higher temperatures to the large-degree objects thandhe st 1Ci0us data sets on the standard HC algorithm [4]. The popularity
dard HC algorithm could generate highly accurate and dﬂ'i/ersg"> and diversitys are obtained ai = 10.

TABLE |: Basic statistics of the tested data sets.

Data Sets Users Objects Links Sparsity

recommendations.

To test the performance of a recommendation algorithm, we DataSets (r) (k) S
randomly divide a given data set into two parts: the training MovieLens 0.15156 3.085 0.88196
set and the probe set. The information contained in the probe Netflix  0.10629 1.344 0.86296
set is not allowed to be used for recommendation, namely we Delicious 0.26129 1.915 0.98066

provide a recommendation list for each user only based on
the training set. In this Brief Report, we always keep 90% of
links in the training set and 10% of links in the probe set, and
employ three different metrics to measure accuracy, mpveltDelicious data set is obtained by downloading publicly bvai
and diversity of recommendations. able data from the social bookmarking web site Delicious.co
Accuracy [25]. A good algorithm should rank preferable (taking care to anonymize user identity in the process). The
objects that match the user tastes in higher positions, i.eDelicious data is inherently unary while both MovieLens and
the objects in the probe set (indeed being collected by userdetflix data sets contain explicit ratings from one to five. We
should be put in high positions of the recommendation listapply a coarse-graining method to transform them into unary
For a usew;, if the entryu;-o; is in the probe set, we measure forms: an object is considered to be collected by a user énly i
the position ofo; in the ordered list for;. For example, if the given rating is larger than 2. The sparsity of the dats set
there arel00 uncollected objects fox; ando, is the 3rd one is defined as the number of links divided by the total number
from the top, we say the position of is 3/100, denoted by  of user-object pairs.
r;; = 0.03. A good algorithm is expected to give smaj}. Applying the standard HC algorithm on MovielLens, Net-
Therefore, the mean value of the positipt over all entries  flix and Delicious data setgy), (k) andS are shown in Table
in the probe set can be used to evaluate the algorithmic accll: One can find that although the accuracy of the standard
racy: the smaller thaverage ranking scorf25], the higher HC algorithm is poor, it provides highly diverse recommen-
the algorithmic accuracy. dations. We argue that the less accuracy of the standard HC
Novelty anddiversity [28]. Since there are countless chan- algorithm lies in the fact that it assigns overwhelming ptjo
nels to obtain popular objects’ information, uncoveringye to the small-degree objects, leading to strong bias. Thezef
specific preference, corresponding to unpopular ones, ehmu the standard HC algorithm could be improved by reinforcing
more significant than simply picking out what a user likesthe influence of the large-degree objects. In the last step of
from the list of the best sellers [4]. To measure this fac-the standard HC algorithm, all of the heat an object has re-
tor, we go simultaneously in two directions: novelty (mea-ceived is divided by its degree. Although the large-degtee o
sured bypopularity) and diversity (measured bdamming  jects could receive lots of heat, their temperatures arg ver
distancg. The popularity is defined as average degree of allow, while small-degree objects would obtain high tempera-
recommended object&). Since it’s hard for the users to find tures and thus be put in the top positions of recommendation
the unpopular objects, a good algorithm should prefer to reclists. A clear advantage of the standard HC algorithm is its
ommend objects with small degrees. In addition, the petsonaability to dig out the unmainstream tastes that almost cdn no
ized recommendation algorithm should present differecit re be found by classical methods. However, users generady lik
ommendation lists to different users according to theitetas popular objects and thus an algorithm should also give @hanc
and habits. The diversity is quantified by the Hamming dis-to them. We therefore propose the BHC algorithm taking into
tanceS = (H;;), whereH;; = 1 — Q;;(L)/L, with L is  account the object degree effect in the last diffusion step.
the length of recommendation list add; (L) is the number antargetobjeat,, instead of dividing by its degré€o, ), the
of overlapped objects in;’s andu;’s recommendation lists. final temperature is obtained dividing kY (0. ). The element
The largerS corresponds to higher diversity. weqp Of the matrixW" would bew,s = m D1
Three benchmark datasets, named MovieLens, Netflix an@@omparing with the standard HC algorithm (i.&.= 1), the
Delicious (See Table 1 for basic statistics), are used tdhes influences of large-degree objects would be strengthened if
present algorithm. The Netflix data set is a randomly samplé\ < 1 or depressed ik > 1.
of huge dataset provided for the Netflix Prize [31], and the A summary of the primary results for BHC algorithm is
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TABLE llI: Algorithmic performance on BHC algorithm. The &
ming distance is corresponding fo= 10.
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More interestingly, wherl. = 10, the Hamming distance of
MovieLens is also improved from 0.8820 to 0.9248 (see Fig.
2(i)), which is even better than 0.9173 obtained by the tdybir
algorithm [4]. Actually, the standard HC algorithm prefers

to give more opportunities to the small-degree objects and
ranks them at the top positions of many users’ recommenda-
tion lists. Therefore, the Hamming distance may not be the
highest although the popularity is the lowest. Figure 2(h),e

0.84, 0.85 and 0.50, and the correspondirig,. are 0.0852, 0.0474 show the similar results on Netflix, where the optimal param-
. y U . ) P . 3 Y. ’

0.2112. The plots (d)-(f) display the results f@f) and (g)-(i) forS eter iS/\Opt = 0.85. Result§ of MovieLens and Netflix are
with = 10. All the data points are averaged over ten independen€ry close to each other, with the fact that both data sets are

FIG. 2: (Color online) Performance of the BHC algorithm on\o
Lens, Netflix and Delicious data sets. The plots (a)-(c) slaow
erage ranking scoré-) vs. \. Subject to(r), the optimal.p: are

runs with different divisions of training-probe sets.

Degree distribution

Netflix

10°

Mass diffusion dﬁg
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movie-related and the sparsity is close. The optimal parame
ter A\,p¢ On Delicious (See Fig.2(a,d,g)) equals 0.5, with very
small (k) and very highS (= 0.98). Both the optimal ranking
score(r)opt = 0.2112 and the Hamming distance= 0.9795

of Delicious are much larger than the ones of MovieLens and
Netflix. The results are twofold: the higher sparsity of ezige
and the larger number of objects. The former leads to less
accurate recommendation while the latter results in higher
versity.

Table IV reports the performances obtained by several al-
gorithms on MovieLens dataset, from which one can find the
accuracy(r) of BHC algorithmis close to the result of HO-CF
algorithm which needs to compute the second-order siryilari
information, and the diversity of BHC algorithm is the high-
est one. In order to explain the reasons why both accuracy and
diversity can be enhanced by BHC algorithm, the frequencies
of appearances(k) of objects of degreé in all users’ rec-

k ommendation lists are investigated. We show the results of
a typical example, Netflix, where the length of recommen-
dation list isL = 10. Different from the power-law degree
distribution in Fig.3(a)n(k) of BHC algorithm has butterfly
shape, which means that the objects with large or small de-
grees are recommended more frequently. Figure 3(b) shows
that mass diffusion algorithm prefers to recommend theslarg
degree objects, while Fig. 3(c) shows that the standard HC
algorithm gives higher recommendation scores to the small-
given in Table IIl. Figure 2.(a-c) report the algorithmic-ac degree objects, thus the popular objects are largely dieprec
curacy(r) as a function of\, from which one can find that ated. Comparing Fig. 3(c) with Fig. 3(d), at the optimal case
the curves obtained by BHC have clear minimums. For ex-Aopt = 0.85, both small-degree and large-degree objects are
ample, the optimal parameter of MovieLens data is aroundecommended with high frequency by the BHC algorithm. In
Aopt = 0.84, strongly supporting our argument that the effectsa word, the advantage of BHC is that it could not only dig out
of large-degree objects should be increased. Compared withe users’ very special tastes, but also find out the common
the standard case (i.&. = 1), the average ranking scote)  interesting objects.

is reduced from 0.1516 to 0.0852 (improved by 43.5%). This In this Brief Report, we propose a biased heat conduction
results indicate that giving more opportunities to the éarg algorithm by considering the degree effects in the last step
degree objects will greatly increase the algorithmic agcyur  of the local heat conduction process [4], which could gyeatl

FIG. 3: The plot (a) shows the object degree distribution et-N
flix data, and (b)-(d) show the correlations between the weoge
numbern (k) and the object degréeof MD, standard HC and BHC
algorithms when, = 10. The results of MovieLens and Delicious
are similar.
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sonalized recommender system should provide each user rec-
ommendations according to his/her own interests and habits

rithms proposed in Ref. [25], Heter-NBI, HO-CF, IMCF and WHC T.herefore the dlyersny of recomme;nda’uon lists pl_ays acru
are abbreviations of algorithms with heterogeneous iniésource cial role to quantify the persqnallgatlon. The numericalites
distribution proposed in Ref. [28], high-order collabivetfiltering ~ Show that the recommendation lists generated by the BHC al-
(CF) algorithm proposed in Ref. [29], improved modified C§aal ~ gorithm are of competitively higher diversity and remarlgab
rithm in Ref. [30] and the algorithm presented in Ref. [23]. higher accuracy than those generated by the standard HC al-
gorithm. The statistical results on Facebook applicatalss
show that the objects could be divided into two categories
[32]. One of them is collected by almost all of users, while

TABLE 1V: Algorithmic performance foiMovieLensdata. (k) and
S are corresponding té& = 10. MD is abbreviations of the algo-

Algorithms  (r) S (k)
MD  0.1060 0.617 233

HC  0.1516 0.750 3.09 others are only collected by small-size group users, wirieh i
Heter-NBI 0.1010 0.682 220 dicates that the users’ tastes could be expressed by two cat-
HO-CF 0.0826 0.9127 237 egories: popular one and special one. Therefore, the reason
IMCE  0.0877 0.826 175 why BHC could produce higher accuracy is that users’ two
WHC 00914 0941 179 kinds of intergsts could be simultaneously identified. Hovy-
BHC 00852 0925 197 ever, how to timely track users’ current popular and special

tastes is still an open problem.

improve the accuracy of the standard HC algorithm. In the We acknowledgé&roupLensResearch Group for provid-
standard HC algorithm, the small-degree objects are reconing usMovieLensdata and the Netflix Inc. foNetflix data.
mended overwhelmingly because in the last step, to cakeulatThis work is partially supported by the European Commis-
the temperature, the received heat is divided by the obgct d sion FP7 Future and Emerging Technologies Open Scheme
gree. This division largely depresses the chance of a largdRroject ICTeCollective (Contract 238597), the Nationat-Na
degree object to be recommended. In contrast, the powetral Science Foundation of China (Grant Nos. 10905052,
law object degree distribution indicates that large-degie-  and 60973069), JGL is supported by Shanghai Leading Dis-
jects are preferred by many users, therefore a good algorith cipline Project (No. S30501) and Shanghai Rising-Star Pro-
should also pay attention to the them. In addition, a pergram (11QA1404500).
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