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We present a computer-assisted approach to coarse-graining the evolutionary dynamics of a system
of nonidentical oscillators coupled through a (fixed) network structure. The existence of a spectral
gap for the coupling network graph Laplacian suggests that the graph dynamics may quickly become
low-dimensional. Our first choice of coarse variables consists of the components of the oscillator
states –their (complex) phase angles– along the leading eigenvectors of this Laplacian. We then
use the equation-free framework, circumventing the derivation of explicit coarse-grained equations,
to perform computational tasks such as coarse projective integration, coarse fixed point and coarse
limit cycle computations. In a second step, we explore an approach to incorporating oscillator
heterogeneity in the coarse-graining process. The approach is based on the observation of fast-
developing correlations between oscillator state and oscillator intrinsic properties, and establishes a
connection with tools developed in the context of uncertainty quantification.

I. INTRODUCTION

The term oscillator is typically used to denote any
physical system which, operating on its own (indepen-
dent of neighboring oscillators), exhibits limit cycle be-
havior. When such oscillators are coupled to each other,
they can spontaneously synchronize. A simple, yet truly
powerful model describing synchronization in oscillator
assemblies is the Kuramoto model [1], which has been
successfully used in many biological [2, 3], chemical [4],
physical [5] and social [6] contexts. This model for cou-
pled phase oscillators and its variations have been widely
studied in the literature [7]. Under specific conditions, it
has been observed to exhibit complex behavior [8]. While
extensive work has been performed for all-to-all coupled
oscillators, real-world assemblies of oscillators are sel-
dom globally connected to one other. Spiking neurons,
for instance, are connected by a complex network struc-
ture; synchronization of such neuronal systems has been
modeled using the Kuramoto model modified to account
for the network topology [9]. Kuramoto oscillators with
structured underlying network topologies are increasingly
being investigated in the literature (e.g. [10–12]).
We consider a generic system of non-identical phase os-

cillators connected by a network structure, and explore
the computer-assisted reduction of the system dynam-
ics. Coarse-graining is feasible when there is an inherent
separation of time scales in the system, i.e., when con-
stituent processes of the system dynamics occur at very
different rates. Networks with spectral gaps (big jumps in
the eigenspectrum of their graph Laplacian) can endow
the coupled oscillator dynamics with this kind of time
scale separation. Our illustrative example is a simple
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network structure containing a spectral gap after a rel-
atively small number of eigenvalues (sorted in ascending
order) of the graph Laplacian. The small number of lead-
ing eigenvalues before the spectral gap endows the system
with low-dimensional long-term dynamics. The eigenvec-
tors associated with these eigenvalues (corresponding to
“slow modes”) are used to define the coarse variables use-
ful in model reduction. Such coarse variables take into
account the network structure, but do not account for the
fact that the oscillators in the network are non-identical

in terms of their angular frequencies. We will discuss
how this additional heterogeneity (intrinsic to the oscil-
lators, as opposed to the heterogeneity associated with
their coupling connections in the network) can also be
accounted for in the selection of a set of coarse variables
(observables).
Once appropriate coarse observables are identified, one

typically obtains a reduced set of equations (approxi-
mately) describing the evolution of these observables. In
this paper we will circumvent this step using the so-
called equation-free framework [13]; in this approach,
short bursts of detailed system simulation are used to
estimate the coarse time-derivatives (actions of coarse
Jacobians etc.) required to compute solutions with the
coarse variables. The use of this approach is illustrated
in more detail in the Appendix.
The remainder of this paper is structured as follows:

Section II describes our illustrative example and outlines
its relevant dynamic behavior. Section III discusses pos-
sible approaches to coarse-graining the system dynam-
ics, focusing on the selection of appropriate coarse vari-
ables (observables). A first round of results of our coarse-
grained computations is presented in Section IV; a quick
review of the the equation-free framework employed for
these computations is relegated to the Appendix. Sec-
tions V and VI focus on the heterogeneity of the intrin-
sic oscillator frequencies, its effect on their states, and
present an approach to account for these effects in coarse-
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graining. Section VII concludes with a summary and
discussion of possible generalizations of the approach.

II. SYSTEM DYNAMICS

Our illustrative example is a network of oscillators with
a single state variable (phase) associated with each os-
cillator. These phases evolve based on the Kuramoto
equations, taking into account the particular connectiv-
ity structure:

dθi
dt

= ωi +
K

N

N∑

j=1

Aijsin(θj − θi), 1 ≤ i ≤ N. (1)

Here, N is the total number of oscillators in the sys-
tem, θi and ωi are the phases and the intrinsic angular
frequencies of the individual oscillators, andK is the cou-
pling strength, measuring the influence of every oscillator
on the oscillators connected to it. The matrix A, the ad-
jacency matrix defining the network structure connecting
the oscillators, is defined as follows: Aij = 1 if oscilla-
tors i and j communicate with each other and Aij = 0
otherwise.
For our simulations, we use 500 oscillators with their

intrinsic frequencies sampled from a Gaussian distribu-
tion with mean 0 and standard deviation 1/15; we will
discuss different distributions in Section VII. For the un-
derlying connectivity we built a network with a spectral
gap, which was observed to lead to low-dimensionality
in the long-term system dynamics; this provides the mo-
tivation for coarse-graining. The target graph for our

FIG. 1. (Color online) A sample graph with a spectral gap,

G
(50,5), created using the procedure described in the text.

(The image was created using the graph layout package for
MATLAB written by Matthew Dunham, University of British
Columbia.)

illustration was created from a collection of m subgraphs
(communities) each containing s nodes; the total number
of nodes (oscillators) in the final network was N = m×s.
Each subgraph was created using the Watts-Strogatz
model [14], which contains 2 parameters, k - the average
degree of the nodes and p - the probability of rewiring.
The values of k for them subgraphs were assigned by uni-
formly sampling an even number in the interval [14,38]
(corresponding to an average degree of approximately 25-
75% of the total number of nodes in the sub-graph). The
values of p for the individual subgraphs were sampled
uniformly in a log scale between 0.001 and 1 (i.e., the
values of log10 p are sampled uniformly between -3 and
0). The Watts-Strogatz model was chosen to create the
constituent subgraphs because it creates graphs ranging
from Poisson degree distribution (random) to power law
distribution (scale-free) depending on the parameter p.
Once all the sub-graphs (or communities) are created, a
node is randomly chosen from each of the communities
to be its leader. Now, all the m leaders are connected
to each other resulting in a complete network of lead-
ers (with

(
m

2

)
edges). We thus arrive at a connected

graph, G(N,m) with m communities and N nodes in to-
tal; a sample resulting graph is shown in Fig. 1 for the
case of m = 5 and s = 10. In our simulations, we use
a graph G(500,10) created using the same procedure with
m = 10 and s = 50. The normalized Laplacian of the
graph, denoted by L, is defined as:

Lij :=





1 if i = j and di 6= 0,
−1/

√
didj if i 6= j and Aij = 1,

0 otherwise
(2)

where di is the degree of node i.
The normalized Laplacian (in this paper, the term

Laplacian should always be taken to mean the normalized
graph Laplacian) corresponding to our graph G(500,10)

was computed and its first few eigenvalues (arranged in
the ascending order) are plotted in Fig. 2; there is a clear
gap in the spectrum after the 10th eigenvalue.

FIG. 2. (Color online) The first 100 eigenvalues of the graph

Laplacian corresponding to G
(500,10).
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FIG. 3. (Color online) The temporal evolution of the phases of the oscillators at a coupling strength of K = 0.5. The oscillators
in a couple of representative communities (the fourth, C4, and ninth, C9) are marked in the last plot of the sequence.

We perform direct simulations of the phase oscillator
model (Eq. 1) at different values of coupling strength,
with the network topology and oscillator frequencies cho-
sen as described above; the initial phases of the oscilla-
tors are sampled from a uniform distribution between
−π and π. All our results are reported after the in-
stantaneous average system phase arg(

∑
j e

iθj ) has been

subtracted (i.e., in a frame that rotates along with the
average system phase). At sufficiently large values of
coupling strength K we observe (as expected) that the
oscillators spontaneously synchronize their frequencies,
and their phases “lock” at steady state. Representative
phase evolution at such a high coupling strength K = 0.5

FIG. 4. (Color online) The evolution of the Kuramoto or-
der parameter over time at a coupling strength of K = 0.5.
The results from direct simulation are the solid lines (blue)
while the results from coarse projective integration (5 time
steps for simulation and 5 for projection) are the dots (red).
(The thickness of the plotted dots make the projection step
appear shorter). The phase portrait in terms of the real and
imaginary components of the first coarse variable (see Eq. 9)
is shown in the inset.

is shown at successive time steps in Fig. 3; note how the
community structure of the oscillators quickly becomes
visually apparent in the figure.
A quantitative measure of phase synchronization (or

coherence in an oscillator population), the so-called order

parameter has been defined as:

r =

∥∥∥∥∥∥
1

N

N∑

j=1

eiθj

∥∥∥∥∥∥
. (3)

Its values can range between 0 and 1. The higher the
value of the order parameter, the higher the degree of

FIG. 5. (Color online) The evolution of the Kuramoto order
parameter over time at a coupling strength of K = 0.1. The
results from direct simulation are the solid lines (blue) while
the results from coarse projective integration (25 time steps
for simulation and 25 for projection) are the dots (red). (The
thickness of the plotted dots make the projection step appear
shorter). The phase portrait in terms of the real and imag-
inary components of the first coarse variable (see Eq. 9) is
shown in the inset.
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synchronization - a value of 1 indicates the state where
all oscillators have the exact same phase. The evolution
of this order parameter is shown at a coupling strength
of K = 0.5 as solid lines in Fig. 4. As expected (and
confirmed computationally) the steady state value of the
order parameter decreases with coupling strength until
a critical value of Kc; below this critical value the oscil-
lators do not synchronize any more, and limit cycle os-
cillations are observed initially (in parameter space), re-
sulting from a supercritical Hopf bifurcation at Kc. The
evolution of the order parameter at K = 0.1 depicted by
the solid lines in Fig. 5 exhibits such steady limit cycle
oscillations.

III. COARSE-GRAINING

Our objective is to develop and implement a computer-
assisted coarse-grained model of our illustrative coupled
oscillator system. The most important step in coarse-
graining probably consists of the selection of appropriate
coarse observables: a reduced set of variables in terms of
which a useful closed description can be obtained. Given
suitable coarse variables, it is sometimes possible to de-
rive the reduced equations analytically (in closed form).
If, however, the closures required to “write down” the
reduced equations in closed form are not known, or can-
not be easily approximated, the so-called equation-free
framework [13, 15] can be used to computationally im-
plement the reduced model, circumventing its explicit
derivation. A brief description of the main points of this
modeling/computation framework for complex systems
can be found in the Appendix.
In order to motivate our selection of coarse variables,

we first identify collective features in the detailed sim-
ulation results. Consider the temporal evolution of the
oscillator phases as shown in Fig. 3 (for K = 0.5). In our
network G(N,m), the first s(= N/m) oscillators belong to
the first community, the next s to the second community
and so on; we define Ck as the set containing the indices
of all the oscillators in the kth community:

Ck∈[1,m] = {(k − 1)s+ 1, (k − 1)s+ 2, ...ks}. (4)

Two oscillators within the same community are con-
nected “more tightly” (they share more common neigh-
bors) than oscillators in different communities. We ob-

serve in the simulations that the phases of all the oscilla-
tors within a community synchronize with each other at
much shorter time scales than those over which the entire
network synchronizes. This suggests that, because of the
construction of our network topology, its structure can
help rationalize the selection of coarse variables appro-
priate for the long-term dynamics, after initial transients
quickly die out. That this separation of time scales leads
to low-dimensionality in the system state can be seen
in Fig. 3: the randomly initialized individual oscillator
phases (our “microscopic” or “fine scale” variables, U in

equation-free notation) quickly evolve to “respect” the
coarse community structure of the network.
As a result, the following possibilities for coarse vari-

ables suggest themselves:

Option 1: Average phase in each community

An obvious choice for a set of coarse variables, u(1),
for our example is to use a single common (time-varying)
phase angle for each community. The restriction oper-

ation (fine states to coarse states in equation-free lan-
guage) is then defined by assigning the average phase,
θk, of all the oscillators in the kth community as the sin-
gle common phase of that community (Eq. 5). The lifting
operation (coarse states to consistent fine ones) is imple-
mented by assigning this common phase as the phase
angle of all the oscillators in that community (Eq. 6).

θk = 1
s

∑
j∈Ck

θj , (5)

u(1) = {θk∈[1,m]}. (6)

This apparently intuitive coarse variable selection suf-
fers from two drawbacks. Firstly, partitioning the oscil-
lators into different communities (“clustering” [16–18]) is
nontrivial for a general network structure (even though
-due to the particular construction- it was easy for our
example). Even when community structures can be iden-
tified, however, this set of coarse variables does not take
into account the differences between the different com-
munities and the structure within the communities. This
suggests an alternative set of coarse variables that uses
the graph Laplacian of the network.

Option 2: Projection to a (truncated) Laplacian
eigenbasis

Consider the normalized Laplacian matrix, defined in
Eq. 2, for the graph G(500,10). Let λj be the j

th eigenvalue
and vj the corresponding normalized eigenvector of the
graph Laplacian. From Fig. 2, it can be seen that the first
10 eigenvalues are well separated from the rest (in other
words, a spectral gap exists). The components of the
eigenvectors of the graph Laplacian corresponding to the
ten smallest eigenvalues are plotted as connected dotted
lines in Fig. 6. These eigenvectors embody, in an alter-
native way, the coarse community structure of the entire
network. Linear combinations of these eigenvectors can
be used to approximately represent any one of the indi-
vidual communities (as an example, a linear combination
of the first 10 eigenvectors whose support lies (approx-
imately) only on the oscillators in the fifth community
is shown as a thick solid line in Fig. 6). When only a
few eigenvectors capture the presence and structure of
the different communities, they form a suitable basis to
represent the long term dynamics of this system. A com-
parison of Figs. 3 and 6 also suggests that a linear com-
bination of these eigenvectors is likely to represent well
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FIG. 6. (Color online) The components of a few leading eigen-

vectors of the Laplacian of the graph G
(500,10) are plotted in

arbitrary units. The plot (blue line) at the bottom corre-
sponds to a vector that is a linear combination of the first 10
eigenvectors; it is clearly localized to oscillators in the fifth
community only. The ten linear combination coefficients are
[2.066, 0.259, 0.004, 0.273, -0.323, 0.222, -1.151, 0.017, 4.385,
-4.982].

the long term evolving states of the phase oscillators. In
other words, after a short initial transient, the system be-
comes attracted to a low-dimensional manifold on which
the individual oscillator phases can be represented using
a lower dimensional basis formed by the first few (here
10) Laplacian eigenvectors of the network; these eigevec-
tors parametrize the low-dimensional manifold.
The use of the graph Laplacian in constructing (coarse)

observables is, of course, not new [19–22]. Below we will
use these variables not only as observables, but as the
means to implement accelerated coarse-grained compu-
tations with the model. There is a clear analogy between
such observables and the use of the finite Fourier trans-
form in solving initial-boundary value problems: instead
of eigenfunctions of diffusion in physical space we have
eigenvectors of the Laplacian on a graph; instead of evo-
lution equations for time-dependent Fourier mode ampli-
tudes we envision evolution equations for time-dependent
components of the system phases on the first few graph
Laplacian eigenvectors.
It is important to point out that the graph Laplacian

also happens to be the Jacobian of the linearization of
the dynamical model around the uniform solution of a
“nearby” problem: that of coupled identical oscillators
[19, 20]. We consider our main working example with het-
erogeneous oscillators as a (small) perturbation of the ho-
mogeneous oscillator case. If our perturbation (through
oscillator heterogeneity) is small enough, the Jacobian
around the steady state of our system of heterogeneous
oscillators is expected to be similar – certainly in its gap
structure - to the case of homogeneous oscillators. In
order to quantify the relation between the dynamical Ja-
cobian around the steady state and the graph Laplacian,
we computed the steady state of our heterogeneous net-
work at a coupling strength ofK = 0.5. We evaluated the
Jacobian of our system of ODEs around its actual steady
state. We found a gap in the eigenspectrum of the Ja-
cobian after the 10th eigenvalue, similar to the spectral
gap in the graph Laplacian. We then took the first 10
eigenvectors of the linearized dynamics around the full
steady state, and considered relations between them and
the first 10 eigenvectors of the graph Laplacian. The
(10 X 10) inner product matrix between these two sets
of different eigenvectors has the following 10 eigenvalues:
0.9993, 0.9993, 0.9993, 0.9993, 0.9995, 0.9992, 0.9992,
0.9995, 0.9995, 0.9991. Note that all the 10 eigenvalues
are very close to 1. This implies that any vector in the
span of the 10 eigenvectors of the dynamical Jacobian
can be represented without much error using as a basis
the first 10 graph Laplacian eigenvectors. This justifies
our use of graph Laplacian eigenvectors to parametrize
the low-dimensional slow manifold of the system of het-
erogeneous oscillators. As an additional step, we will
also study the effect of the perturbation (the oscillator
heterogeneity) on the phase evolution in Sec. V.
We start by defining an N × 1 vector of complex phase

angles of the oscillators, Θ:

Θj = eiθj ; j ∈ [1, N ]. (7)

The phase angles should be defined modulo 2π; this
complex phase vector correctly represents the phase vari-
able on a unit circle (described by sin θ and cos θ). We
now choose as coarse variables (u(2)) the components, zj ,
of this phase vector, Θ, along the direction of the first
ten eigenvectors of the graph Laplacian.

Lvj = λjvj ; j ∈ [1, N ], (8)

u(2) = {zj∈[1,m] = v
T
j Θ}. (9)

This projection is our restriction, while translation be-
tween the fine description (phases of all the N oscilla-
tors) and the coarse description is governed by Eq. 10,
our lifting operator.

m∑

j=1

zjvj → Θ. (10)

A third option for coarse graining, which includes addi-
tional heterogeneity considerations is discussed in Sec. V.
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TABLE I. Correlation between the detailed phases of the ac-
tual fixed point, and those lifted from the converged coarse
fixed point values for each choice of coarse variables.

ρ K = 1 K = 0.5 K = 0.2

Using u(1) 0.9974 0.9975 0.9976

Using u(2) 0.9983 0.9983 0.9983

Using u(3) 0.9994 0.9994 0.9995

IV. COMPUTATIONAL RESULTS

A. Coarse projective integration

Using the set of coarse variables u(2), we accelerated
the network simulation using coarse projective integra-

tion as detailed in the Appendix. Representative results
are shown in Figs. 4 and 5, reported in the form of time-
series of the order parameter for two values of the cou-
pling strength, above and below Kc respectively. For
both these cases, the magnitude of the projective step is
equal to the duration of the full simulation used to esti-
mate the coarse time derivatives; that is, the full system,
Eq. 1, is simulated for only 50% of the overall evolution
time. The coarse evolution in both cases clearly follows
(in the “eye norm”) the resolved full direct simulation re-
sults; this demonstrates the accuracy of the equation-free
approach and indirectly validates our selection of coarse
variables.

B. Coarse fixed point computation

We performed coarse-fixed point calculations (as out-
lined in the Appendix) using both choices of coarse vari-
ables and compared it to steady states calculated with
the full model. Given an initial guess of the 10 coarse
variable steady values, the coarse time-stepper was con-
structed by lifting, followed by full model simulation (a
representative time-stepper horizon was τ = 10) and re-
striction. Fixed points of the coarse time-stepper were
arrived at through a Newton-Krylov GMRES iteration
[23, 24].

To quantify accuracy, we calculated the pairwise lin-
ear correlation coefficient between the detailed (“fine
scale”) phases of the actual fixed point, and those lifted
from the converged coarse fixed point values for each
choice of coarse variables. The results are reported
in Table I for three different coupling strengths. The
first(respectively, second) row corresponds to results ob-
tained using u(1)(respectively, u(2)) as coarse variables.
Clearly, u(2) gives a more accurate coarse description of
the system fixed points compared to just using the aver-
age phases in the communities (u(1)).

C. Coarse limit cycle computation

We have already discussed the existence of stable limit
cycle oscillations below (and close to) the critical cou-
pling strength, Kc. The limit cycle found out from direct
simulations for K = 0.1 is plotted as a solid line in the
phase space projection on the real and imaginary parts
of z1 in Fig. 7. We also find a (coarse) point on this
limit cycle by locating the (coarse) fixed point of an ap-
propriate (coarse) Poincaré map; the point is represented
as a star in Fig. 7. This point (as well as the period of
the coarse limit cycle) is found by solving (again through
Newton-Krylov GMRES) Eq. A.3 for the appropriate set
of values of the coarse variables u(2); the Poincaré map
was defined in terms of the Re(z1) coarse variable. In
these computations, the full system was simulated for
the entire Poincaré return time; but the map, and the
Newton fixed point computation were performed in the
reduced space of the coarse variables. In an extra valida-
tion step, the trajectory around the limit cycle was fol-
lowed through coarse projective integration (see Fig. 7),
and seen to coincide visually with the (phase space pro-
jection of the) full simulation limit cycle.

These representative computations confirm that com-
putational coarse-graining (with the appropriate selec-
tion of coarse variables) can be used to effectively perform
computations with the (explicitly unavailable) coarse-
grained model. Integrating the coarse model using coarse
projective integration takes about 35% less computa-
tional time than that of the full system for both the
cases corresponding to Figs. 4 and 5. Computational
savings also result in coarse fixed point and limit cycle

FIG. 7. (Color online) A coarse limit cycle computed from
direct simulations at a coupling strength of K = 0.1 is plotted
using a solid (blue) line. The star (black) corresponds to
the solution (the point on a Poincaré map) obtained using
a coarse limit cycle solver. This point is then used as the
initial condition for coarse projective integration (red dots);
the coarse trajectory returns to that point after one period.
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computations because we solve a much smaller system
of equations than that required for computing the de-
tailed fixed points and limit cycles. Coarse projective
integration, coarse fixed point and limit cycle computa-
tions (and also, easily, coarse stability and continuation
computations) can be implemented in the form of com-
putational “wrappers” around the full simulation. The
choice of coarse variables (and the associated lifting and
restriction steps) form a critical part of the approach; an
improvement on this process is presented below.

V. THE EFFECT OF OSCILLATOR
HETEROGENEITY

In our coarse graining efforts, so far, we have focused
on the structure of the network and ignored the effect of
the heterogeneity in the angular frequencies of the oscil-
lators. In this section we present a systematic approach
to taking this heterogeneity into account in the coarse-
graining procedure. The motivation comes from the ob-
servation, in the literature [25], that for all-to-all coupling
(that is, in the absence of fine network structure) the
oscillator phases will, under certain conditions, become
quickly correlated with their intrinsic frequencies. We
have observed the same phenomenon in our, more struc-
tured, networks: the sequence of insets in Fig. 8 shows
the transient evolution of the (“excess”) phase of the os-
cillators in our network plotted against their individual
frequencies. The term “excess phase”, Θex, here refers
to the portion of the phase vector that is not captured
by the projection on the first 10 Laplacian eigenvectors;
using Eq. 11 we plot the complex argument of each os-
cillator, viz., arg(Θex

j ) against ωj .

Θ
ex = Θ−

m∑

j=1

v
T
j Θvj . (11)

What we see is that, even when the oscillators are ini-
tialized with random phases (in the form of the “cloud”
seen in the first inset of Fig. 8), they very quickly (visi-
bly by time t = 2 and almost quantitatively by t = 30)
develop a strong, stationary correlation with the intrin-
sic frequencies. These plots confirm the existence of a
strong, approximately linear correlation between the “ex-
cess phase” and the angular frequencies of the oscillators.
The evolution of the slope of the best linear fit is plotted
in Fig. 8 (a) and (b) for different values of the coupling
strength K.
A number of additional observations can be made from

these plots. The time taken for the correlation slope c to
approach steady state is much less than the time scale
in which the order parameters reach steady state (com-
pare with Figs. 4 and 5). Even for the case of K = 0.1,
corresponding to stable limit cycle oscillations, the val-
ues of c do not vary much once the stable limit cycle is
approached. Fig. 9 shows how this (quickly achieved)
steady state correlation slope varies with the oscillator

coupling strength. For a range of coupling strengths,
this steady state value of c is obtained for three different
frequency distributions (the oscillator frequencies were
sampled from the normal distribution with mean 0 and
standard deviation of 1/10, 1/15 and 1/20 respectively.)
The steady state correlation between excess phase and
frequency appears to be independent of the range of (or
the variance in) the oscillator frequencies. Fig. 9 and its
insets quantify the dependence of the correlation on K;
the steady state values of c are seen to decrease with cou-
pling strength as one might expect (since, at higher cou-
pling strengths, the oscillator phases should exhibit less
variance). In particular, an approximate inverse propor-
tionality is computationally observed between the cou-
pling strength K, and the steady slope c∗, quantified by
the following fitted curve:

c∗ = 0.0383/K. (12)

We find it remarkable that our “decoupled” procedure,
which first considers heterogeneity in the network struc-

ture, and only then considers heterogeneity in the oscilla-
tor intrinsic properties gives us so robust features for the
network dynamics. Note that the constant 0.0383 applies
only for the particular network used in the simulation
shown. For different network structure realizations, the
constant will be different.
Based on these results, we can now integrate the effects

of both network structure and oscillator frequency distri-
bution in the coarse-graining of the oscillator phases (in
particular, in our lifting operator).

VI. COARSE-GRAINING THE
HETEROGENEOUS OSCILLATORS

The discussions in Section. V suggest that capturing
the correlation between excess phase and intrinsic oscil-
lator frequency can lead to a better set of coarse vari-
ables and a more accurate lifting operator for the coarse-
graining process. For our illustrative example, a single
additional variable, the slope c is, as we will show, suf-
ficient for capturing this correlation. Before we demon-
strate this, however, we note the more general question:
for arbitrary heterogeneity distributions (not just Gaus-
sian as the one studied here), what is the nature and
number of additional coarse variables necessary to quan-
titatively account for the frequency heterogeneity? We
will return to this question in the last Section.
Using the single scalar slope c as an additional coarse

variable, we define the “corrected” vector of complex

phase angles, Θ̃, similar to Θ, but now taking the cωj

into account:
∑m

j=1 zjvj → Θ, (13)

Θ̃j = ei(θj−cωj); j ∈ [1, N ]. (14)

Our corrected lifting operation, going beyond the first m
(here, 10) eigenvectors of the graph Laplacian, is given by



8

FIG. 8. (Color online) Gaussian heterogeneity distribution: Evolution of the slope c of the linear fit between excess phase and
angular frequency for K = 0.5 and K = 0.1. Insets: Plots of excess phases arg(Θex

j ) versus oscillator angular frequencies ωj at
a few representative temporal instances.

Eqs. 13 and 14. For the corrected restriction operation,
the vector of phase angles is initially projected on the
first 10 graph Laplacian eigenvectors to obtain the zj;
the “excess phases” are then used to estimate the slope
c through linear regression. Our augmented set of coarse
variables now reads:

u(3) = {zj∈[1,m] = v
T
j Θ, c}. (15)

The results of computational coarse graining with the
coarse variable set u(3) are, as one might expect, qualita-
tively similar to, but more accurate than, the results with
the coarse set u(2) presented in Sec. IV.
Note that since (as we computationally observed) c

quickly approaches an approximately constant value c∗

for each specific system realization, we can -in study-

ing long term dynamics- fix its value at c∗ and not even
consider it as an extra dynamic coarse variable. The con-
stant value c∗ for different coupling strengths can also be
inferred from formulas like Eq. 12.

Each successive coarse variable choice u(1), u(2) and
u(3) clearly includes more information about the system
than the previous one: the coarse variable set u(1) just
accounts for the presence of different communities, u(2)

accommodates the structure of the different communities
while set u(3) considers the influence of the heterogeneous
frequencies of the oscillators as well. In order to quantify
whether this additional information is also meaningful,
we compared the results of coarse fixed point analysis
using the three choices of coarse variables. The results
in Table I demonstrate that the additional information
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FIG. 9. (Color online) Gaussian heterogeneity distribution: Steady state values of slope c∗ of the linear correlation between
excess phase and intrinsic oscillator angular frequency plotted as a function of the coupling strength K. The labels z/10, z/15
and z/20 in the legend denote the three different distributions from which the intrinsic oscillator frequencies are sampled, z
representing a standard normal random variable). The inverse proportionality can be seen from the curve fit, c∗ = 0.0383/K.
Insets: Plots of excess phases arg(Θex

j ) versus oscillator angular frequencies ωj at steady state for a few values of the coupling
strength.

included in successive choices of coarse variable sets ac-
tually leads to more accurate computation of the system
features (in particular, its coarse steady states).

VII. CONCLUSIONS

We have demonstrated an approach to coarse-graining
the computations of the (long-term) dynamics of net-
works of coupled heterogeneous oscillators; our approach
was based on the equation-free framework, and was able
to account -in separate steps- for the network structure
and the oscillator intrinsic heterogeneity. The effect of
the network structure on the evolution of the individual
oscillator phases was first accounted for using the spec-
tral properties of the network (under the assumption that
the network graph Laplacian possesses a spectral gap).
In a second step, the effect of the heterogeneity in os-
cillator frequencies was accounted for by observing (and
then capturing) a strong correlation between (“excess”)
phase angles and intrinsic oscillator frequency distribu-
tion. Both steps were incorporated in the construction of
a lifting and a restriction operator (from coarse variables
to detailed, fine scale state consistent realizations and
vice versa). These operators can then be linked, in the

equation-free framework, with algorithms such as coarse
fixed point and coarse limit cycle computations, as well
as with coarse projective integration, all of which were
demonstrated.

We now briefly discuss the generality of our approach.
As mentioned before, the graph Laplacian is close to
the linearized Jacobian of our system of coupled non-
idential oscillators provided the heterogeneity in oscilla-
tor frequencies is small. This crucial observation is suffi-
cient to guarantee a good reduction of the system using
a few graph Laplacian eigenvectors as long as the sys-
tem reaches the synchronized state. (This, of course,
assumes that the network graph Laplacian has a spectral
gap.) We study different modifications of our system
in order to comment on the generality of the procedure
we have outlined. Firstly, we note that the intrinsic fre-
quencies of the oscillators are sampled independent of the
community structure in our illustrative example.This is
because we study the effect of this heterogeneity as a
random disturbance sampled from a known distribution.
We modified our original problem and biased the intrin-
sic frequencies such that oscillators in a given community
have a non-zero average frequency. As a second series of
modifications, we repeated the numerical experiments in
our paper by sampling the intrinsic oscillator frequencies
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FIG. 10. (Color online) Rayleigh heterogeneity distribution:
The evolution of the Kuramoto order parameter over time at
a coupling strength of K = 0.5. The oscillator frequencies are
chosen by sampling 500 numbers from a Rayleigh distribu-
tion with parameter 0.1 and then subtracting the mean from
these 500 samples. The results from direct simulation are the
solid lines (blue) while the results from coarse projective inte-
gration (5 time steps for simulation and 5 for projection) are
the dots (red). (The thickness of the plotted dots make the
projection step appear shorter).

from three different distributions (uniform, exponential,
Rayleigh) with mean adjusted to be 0 and variances in
the same order of magnitude as in our original illustrative
example. For all these modified problems, we find that
we can use the graph Laplacian eigenbasis to represent
the coarse evolution of the system of oscillators reaching
the synchronized state.
We report representative results obtained for the

specific case of oscillator frequencies sampled from a
Rayleigh distribution. For this case, the intrinsic oscilla-
tor frequencies are chosen by sampling 500 numbers from
a Rayleigh distribution with parameter 0.1 and then sub-
tracting the mean from these 500 samples. The results
of coarse projective integration at a coupling strength of
K = 0.5 is shown in Fig. 10. The figure indicates that
the integration of the coarse model (red dots) follows di-
rect evolution (blue line) closely even for this case. We
also study the effect of the heterogeneity in oscillator fre-
quencies and find results that are similar to the results
of Fig. 9 for the case of oscillator frequencies distributed
according to a normal distribution. The excess phase be-
comes correlated with the oscillator frequencies as before
and the steady state value of this correlation slope is sim-
ilarly found to be inversely proportional to the coupling
strength as shown in Fig. 11.
The procedure used to create the network structure

used in our example, despite its apparent simplicity, cre-
ates a wide variety of networks with community struc-
ture. The Watts-Strogatz model creates graphs that can
be structured or scale-free or Poisson random graphs de-
pending on the parameter p, which we sample uniformly
in a logarithmic scale from 0.001 to 1. Both the average

degree and the clustering coefficients of the individual
community networks vary vastly from one another. Even
though the individual oscillator dynamics used for illus-
tration here was relatively simple, we are confident that
the procedures demonstrated can be extended to differ-
ent, more complex individual oscillator dynamics. Ex-
tensions to networks of spiking neurons, which can also
be considered as coupled oscillators -but with much more
complex, and especially directional coupling topologies- is
probably too ambitious with only these tools. As pointed
out in Ref. [26], “The information required to construct a

detailed and specific configuration of neocortex containing

some 10 12 connections exceeds by far the roughly 10 8 bits

of information available in the genome for specification of

the entire organism. On these grounds alone it appears

that nature’s strategy for construction of the neocortex

must depend on the dynamic assembly of rather specific

but simple modules”. This reasoning supporting “module
simplicity and specificity” provides hope and motivation
for the deployment of reductionist approaches in such
systems [27].
In our illustrative example, the (intrinsic frequency)

heterogeneity distribution was simply a normal one (with
different variances). A single scalar quantity (the slope,
c) of the correlation between heterogeneity and system
state was sufficient to improve our coarse description
here. This slope is but the first nontrivial coefficient of an
expansion of the system state (here, the excess phases)
as a function of a random variable (here, the intrinsic fre-
quency). In effect, this is a “one-term” polynomial chaos
[28] expansion of a function of a random variable (the
oscillator frequency) with a particular probability distri-
bution. It is straightforward to use different expansions
(depending on the distribution of the random variable,
different hierarchies of polynomials are applicable, see
for example the Askey scheme [29]); it is also straight-
forward to use more than one term in the expansion in a
particular polynomial set if the correlation exhibits more
structure than the straight line we observed here. This
research avenue provides a direct link between existing
and developing tools in the study of uncertainty quantifi-
cation (polynomial chaos approaches, and the associated
collocation schemes) with the study of coupled heteroge-
neous oscillator problems, even when heterogeneity arises
in more than one properties of the coupled system. One
particularly interesting direction for network dynamics
arises when the oscillator behavior depends crucially on
the degree of this oscillator in the overall network. If
correlations between node degrees and oscillator states
quickly develop in system startup transients, the tools
we outlined above may well serve in successful coarse-
graining of the overall network dynamics.

Appendix: Outline of the Equation-Free Framework

The Equation-Free (EF) approach to modeling and
computation for complex/multiscale systems has been
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FIG. 11. (Color online) Rayleigh heterogeneity distribution: Steady state values of slope c∗ of the linear correlation between
excess phase and intrinsic oscillator angular frequency plotted as a function of the coupling strengthK. The oscillator frequencies
are chosen by sampling 500 numbers from a Rayleigh distribution with parameter 0.1 and then subtracting the mean from
these 500 samples. The inverse proportionality can be seen from the curve fit, c∗ = 0.04398/K. Insets: Plots of excess phases
arg(Θex

j ) versus oscillator angular frequencies ωj at steady state for a few values of the coupling strength.

developed for problems that can, in principle, be de-
scribed at multiple levels. In particular, it is applicable to
systems for which the evolution equations are available at
a “fine” (atomistic, microscopic, individual-based) scale,
while the equations for the “coarse” (macroscopic, sys-
tem level) behavior, which is of interest, are not avail-
able in closed form. We will illustrate the EF approach
through a brief description of coarse projective integra-

tion and coarse fixed point computation. The system of
interest is completely specified at any moment in time
by a set of fine or microscopic variables U . We start
with the assumption that an appropriate set of coarse
variables u (observables in terms of which closed equa-
tions can in principle be written at the macroscopic level)
have been selected. We also assume that good lifting

(L[·]) and restriction (R[·]) operators are available: the
lifting creates fine scale initial conditions consistent with
prescribed values of macroscopic observables, while the
restriction obtains the values of the observables from a
fine scale state. These operators effectively “translate”
fine scale states to the corresponding coarse ones, and
coarse ones to consistent fine ones respectively.

For our illustrative example, the “fine scale” state at
a time instance ti = i∆t is the vector of phase angles of
all oscillators U(ti), while the corresponding set of coarse

variable values is u(ti). A coarse projective integration
step consists of the following sub-steps:

1. Lifting step: Start with initial condition u(0) for
the coarse macroscopic variables and lift them to a
consistent microscopic description: U(0) = L[u(0)].

2. Evolve the oscillators using U(0) as the initial con-
dition for their phases in the microscopic simulator
for a time th, long enough for the fast components
of the dynamics to equilibrate, but short compared
to the slow (coarse) system time scales (see [13]).
The final state of this step is U(th).

3. Evolve the microscopic variables, U(0), for addi-
tional k time steps, generating the values U(ti),
i = h+ 1 to h+ k, i.e., U(th+k) = Eth+k

[U(0)].

4. Restriction step: Obtain the restrictions, u(ti) =
R[U(ti)], i = h+ 1 to h+ k.

5. Projective step: Estimate time derivatives from
these restrictions, u(ti), i = h+1 to h+ k, and use
any numerical scheme (the simplest one would be
forward Euler) to “project” the macroscopic vari-
ables “into the future” over a time interval p∆t to
obtain u(th+k+p).
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One then uses these projected values of the coarse vari-
ables as the initial condition in repeating the overall pro-
cedure.
Using the lifting and restriction operations, and the

fine-scale system simulator, one can define a coarse time-

stepper Φτ (Eq. A.1) that takes as input the coarse vari-
ables at a given time, u(t), and outputs the coarse vari-
ables at a later time, u(t+ τ).

u(t+ τ) = Φτ [u(t)] = R[Eτ [L[u(t)]]]. (A.1)

One can also use such a coarse time-stepper to find the
coarse fixed points, û, by solving Eq. A.2 for (in princi-
ple) any time τ , using matrix-free implementations of
algorithms like Newton-Krylov-GMRES [23, 24] to iter-
atively solve sets of nonlinear equations.

û = Φτ [û]. (A.2)

With the help of coarse Poincaré maps, one can solve
a similar equation to find a (coarse) point on the (coarse)
limit cycle, ũ, as well as its period, T .

ũ = ΦT [ũ]. (A.3)

Matrix-free implementations of eigensolvers (e.g. matrix-
free Arnoldi procedures [30]) can (and have been) used to
characterize the coarse linearized stability of coarse fixed
points and limit cycles [31–33].
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