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Abstract.  Using Taylor series expansion, multi-scaling, and further expansion in powers 

of a small parameter, we develop general amplitude equations for two-variable reaction-

diffusion systems with cross-diffusion terms in the cases of Hopf and Turing instabilities. 

We apply this analysis to the Oregonator and Brusselator models and find that inhibitor 

cross-diffusion induced by the activator and activator cross-diffusion induced by the 

inhibitor have opposite effects in the two models as a result of the different structure of 

their community matrices. Our analysis facilitates finding regions of supercritical and 

subcritical bifurcations, as well as wave- and anti-wave domains and domains of 

turbulent waves in the case of Hopf instability. 
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1. Introduction 

 

The effects of cross-diffusion, the phenomenon in which a gradient in the concentration 

of one species induces fluxes of other species, on pattern formation in reaction-diffusion 

systems have been discussed in many theoretical papers (for a review see Ref. [1]).  In 

general, cross-diffusion can modify any type of pattern, stationary, periodic or chaotic, 

and can even induce diffusive instability, Turing or wave [2,3].  Recent experiments [4-6] 

on the Belousov-Zhabotinsky reaction in a reverse microemulsion (BZ-AOT system [7]) 

have revealed that significant cross-diffusion takes place in this system, and model 

calculations [5] suggest that cross-diffusion effects should be large enough to affect BZ-

AOT patterns. 

Until now, however, there has been no general analysis of the possible role of 

cross-diffusion in dissipative pattern formation.  Such an evaluation can be obtained on 

the basis of amplitude equations, which provide a mathematical description of reaction-

diffusion systems close to the onset of instability [8-10].  In the case of Hopf instability, 

responsible for the onset of homogeneous oscillations, the corresponding amplitude 

equation is called the complex Ginzburg-Landau equation (CGLE) [9-11], while in the 

case of Turing instability, responsible for the emergence of stationary, spatially periodic 

patterns, the amplitude equation is simply referred to as the Turing amplitude equation 

(TAE) [12].  The TAE bears a strong resemblance to the real version of the Ginzburg-

Landau equation. 

The method [9,13] of derivation of amplitude equations for reaction-diffusion 

systems (Kuramoto’s approach) is based on multiple time and space scales, expansion of 
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the original nonlinear equations in Taylor series (consisting of linear, quadratic, cubic, … 

operators), and further expansion of all these operators in powers of a small control 

parameter  near the onset of instability, where the small parameter is the ratio between 

“small” and “large” time or space scales (as well as a measure of the deviation from the 

onset of instability).  This approach has been used for many reaction-diffusion models, 

including the Brusselator [9,14], Gray-Scott, Rössler [15], FitzHugh-Nagumo [16,17], 

and Lengyel-Epstein models [18], as well as a model for CO oxidation on a Pt surface 

[19]. 

To date, Kuramoto’s approach has been applied only to reaction-diffusion 

systems with diagonal diffusion matrices. Our goal here is to extend this method to 

systems with cross-diffusion, where the diffusion matrix has non-zero off-diagonal 

elements, and apply our results to two well-known reaction-diffusion models, the 

Oregonator [20,21] and the Brusselator [22], which we supplement with cross-diffusion 

terms.  For the abstract Brusselator model without cross-diffusion terms, the CGLE and 

TAE were deduced previously [9,12,14], whereas for the two-variable Oregonator model, 

despite the importance of this model in describing the well-known Belousov-Zhabotinsky 

reaction [23,24], there are no analytical expressions available for the coefficients of the 

amplitude equations.  Numerical calculations were done for the CGLE coefficients of the  

three-variable unnormalized Oregonator model and a four-variable unnormalized 

Oregonator-like model [25,26]. The coefficients of the CGLE and TAE obtained in the 

present work for the Oregonator model, even without cross-diffusion coefficients, may 

have their own value, since they allow us to link experimental conditions (e.g., the 

concentrations of the BZ reactants) to the parameters of the amplitude equations.   
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 The paper is organized as follows. In Section 2, we develop the mathematical 

procedure for the derivation of the amplitude equations in general vector form, extending 

Kuramoto’s approach to the cross-diffusion case.  In Section 3, we specify this method to 

a general two-component reaction-diffusion system with cross-diffusion terms.  In 

Section 4, we apply our general result to the Oregonator model and find the coefficients 

of the CGLE and the TAE. In Section 5, we present analogous results for the Brusselator 

model. We conclude in Section 6 with a general discussion.  The equivalence of the 

CGLE derivation to the Kuramoto’s results is shown in Appendix A.  The technical 

details of the CGLE coefficient calculation for the Oregonator model are collected in 

Appendix B. 

 

2. General procedure 

  

We start from a general reaction-diffusion system with cross-diffusion terms, which is 

described by the following equation in vector form 

 ( ) ( ) ( )2/  ,t ⎡ ⎤∂ ∂ = + + ⎣ ⎦Z Z Z Z ZF D D Z∇ ∇ ∇  (1) 

where Z  is vector of variables (proportional to the concentrations of reactive species), 

( )ZF  is a set of reaction rate functions, and ( )ZD  is a square diffusion matrix including 

cross-diffusion coefficients.  Here we take into account that the diffusion coefficients 

depend in general on the concentration variables [1]. The eigenvalues ofD  must be real 

and positive (this follows from the second law of thermodynamics) [1,27].  The gradient 

∇ is / r∂ ∂  for the one-dimensional (1D) case, where r is the spatial coordinate.  If all 
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elements of D  are constants, i.e., concentration-independent, then the last term in Eq. (1) 

vanishes. 

The dynamics of system (1) close to the Hopf instability can be described by the 

CGLE [9,10] 

 22
0 1 2/ (1 ) (1 ) (1 ) .W t ic W ic W ic W W∂ ∂ = + + + ∇ − +  (2) 

The constant 0c  can be eliminated by the transformation 0'exp( )→W W ic t , so 

that Eq. (2) can be rewritten as 

 22
1 2'/ ' (1 ) ' (1 ) ' '.∂ ∂ = + + ∇ − +W t W ic W ic W W  (3) 

In Eq. (2), W is the complex amplitude and the real coefficients 0c , 1c  and 2c  depend on 

the parameters of the system. 

 Close to the onset of Turing instability the system behavior is represented by the 

TAE 

 
2

2
T 2 .W WW g W W D

t r
η∂ ∂= + +

∂ ∂
 (4) 

Its normalized form with T 1Dη = =  and 1g = −  can be considered as a limiting case of 

the CGLE (3) if the constants 1c  and 2c  are equal to zero [11]. The TAE is a valid 

description only in one spatial dimension (1D), the case we consider here for Turing 

instability. In the 2D case (which we do not consider), amplitude equations (AE) of the 

Newell-Whitehead-Segel type [28,29] (with more complex spatial derivatives) are often 

used. For this case, the number of coupled AE is equal to the number of crystallographic 

rotation axes (e.g., three for hexagons).  In the case of hexagons, additional quadratic 

terms of the type i jW W  and new spatial terms of the form ∇i jW W  emerge, where the 



 6

upper bar means complex conjugate, and indices i, j = 1, 2, 3 correspond to rotation axes 

[30].  Application of such AE to reaction-diffusion systems can be found elsewhere 

[31,32].  We do not consider here the case of wave instability.  

 Consider now how to obtain Eqs. (2) or (4) from (1).  First we linearize system (1) 

around the uniform steady state Z0, which satisfies the equations 0( ) 0=ZF , introduce 

the deviation 0= −X Z Z  from Z0, and then express system (1) in terms of X and expand 

it in a Taylor series: 

 2
0/ ...,t∂ ∂ = + ∇ + + +X X X XX XXXJ D M C  (5) 

where the Jacobian matrix J has elements ( ) /ij i jJ F Z= ∂ ∂Z  at 0=Z Z  and 0 0( )= ZD D .  

The sum of the first two terms can be considered as a linear operator, 2
0+ ∇ ≡X X XJ D L .  

The quadratic term XXM  consists of two parts, “chemical” XXH , and “diffusive” 

QXX: 

 ,= +XX XX XXM H Q  (6) 

where 

 
0

2

,

( )1( ) , , 1, 2,....
2!

=

∂= =
∂ ∂∑ i

i j k
j k j k Z Z

F ZHXX X X j k
Z Z

 (7) 

 ( )( )
0

2

,

( )
( ) , , 1, 2,....

=

∂
⎡ ⎤= ∇ + ∇ ∇ =⎣ ⎦∂∑ ij

i k j k j
j k k Z Z

D Z
QXX X X X X j k

Z
 (8) 

The form XXH  is sometimes referred to as the Hessian [25].  The cubic term XXXC  

also consists of two parts, “chemical” NXXX, and “diffusive” SXXX: 

 ,= +XXX XXX XXXC N S  (9) 

where 
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0

3

, ,

( )1( ) , , , 1, 2,....
3!

=

∂= =
∂ ∂ ∂∑ i

i j k l
j k l j k l Z Z

F ZNXXX X X X j k l
Z Z Z

 (10) 

( )( )
0

2
2

, ,

( ) 1( ) , , , 1, 2,....
2

=

∂ ⎡ ⎤= ∇ + ∇ ∇ =⎢ ⎥∂ ∂ ⎣ ⎦
∑ ij

i l k j l k j
j k l k l Z Z

D Z
SXXX X X X X X X j k l

Z Z
 (11) 

 Next we introduce a small control parameter μ  as a normalized deviation from 

the critical value at which instability starts.  Using this parameter, we introduce a new 

scaled time τ  and space R  as tτ μ=  and 1/2R rμ=  (in 1D) and consider them 

independently, which modifies the time and space derivatives as follows: 

 / / / ,t t μ τ∂ ∂ → ∂ ∂ + ∂ ∂  (12) 

 1/2/ / / .r r Rμ∂ ∂ → ∂ ∂ + ∂ ∂  (13) 

Another scaled time 1/2
2 tτ μ=  can also be introduced in general [2,10].  In 2D, the 

second coordinate, 2r , is scaled as 1/4μ  (for stripes) [33].  For the sake of simplicity, we 

restrict our consideration to the simplest 1D-case (for Turing instability) and to only one 

scaled time, τ .  

All operators , , ,J H N Q  and S  in (5) are expanded in powers of μ ; for 

example, 

 2
0 1 2 ...,μ μ= + + +J J J J  (14) 

where 0 0μ=
=J J .  The expansion of X  with the lowest powers of μ  is: 

 1/2 3/2
1 2 3 ....μ μ μ= + + +X X X X  (15) 

This form follows from the structure of the spatial (12) and temporal (13) 

transformations. 
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Next, we substitute these expansions in Eq. (5) and collect all terms of the same 

power of μ , which gives us a set of equations for the first ( 1/2μ ), second ( μ ) and third 

( 3/2μ ) orders as: 

 ( )2 2
1 0 0 1 0 1/  / ,t r∂ ∂ = + ∂ ∂ ≡X X XJ D L  (16) 

 ( )
22 2

1
0 2 0 1 0 1 1 1 1 22/ –  2  ,t

r R r r
⎡ ⎤∂∂ ∂ ⎛ ⎞∂ ∂ = + + + ≡⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

XX X X X X X IL D H Q  (17) 

 ( )0 3 3/ – ,t∂ ∂ =X IL  (18) 

where 

2 2

3 1 1 1 0 1 0 2 0 1 2 0 1 1 12– /  2  2 ' ",
R r R

τ ∂ ∂≡ ∂ ∂ + + + + + + +
∂ ∂ ∂

I X X X X X X X X X I IJ D D H N  (19) 

 
2 2 2

1 2 1 1
1 2 1 1 2 12 2' 2  2   2  ,

r r R r r r r R
⎡ ⎤∂ ∂ ∂ ∂∂ ∂ ∂≡ + + + +⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

X X X XI X X X X X XQ  (20) 

 
22

2 1
1 1 12

1"  2 .  
2 r r

⎡ ⎤∂∂ ⎛ ⎞≡ +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦

XI X X XS  (21) 

 Eq. (16) is just the equation for the linear stability analysis of the homogeneous 

steady state.  For Hopf and Turing instabilities, respectively, a solution 1X  of Eq. (16) 

can be found in the following form: 

 ( )1 c, exp( ) c.c.,W R i tτ ω= +X U  (22) 

 ( )1 c( , ) exp +c.c.,W R ik rτ=X U  (23) 

where ( , )W Rτ  is a complex amplitude that we need to determine, U  is the right 

eigenvector (the column vector) of matrix 0L , cω  and ck  are the critical frequency and 



 9

wavenumber, which are characteristic for the Hopf and Turing instabilities, respectively, 

and c.c. signifies complex conjugate.  

 A solution of Eq. (17), 2X , may be sought in the general form of a linear 

combination of the zeroth, first and second subharmonics with coefficients iV : 

 2 0 1 c 2 cexp( ) exp(2 ) c.c. ,i t i tω ω= + + +X V V V  (24) 

 ( ) ( )2 0 1 c 2 cexp + exp 2 +c.c. . ik r ik r= +X V V V  (25) 

Note that the coefficients iV  depend on the amplitude ( , )W Rτ . 

Finally, the amplitude equation is just the solvability condition (Fredholm 

alternative) [34] for the third order [Eq. (18)] of our expansion: 

 *
3 0 ,=U I  (26) 

where the vector *U  is the left eigenvector (row vector) of matrix 0L .  The right U  and 

left *U  eigenvectors are determined from the eigenvalue problems 

 * *
0 0 0 0  and  λ λ= =U U U UL L  (27) 

as well as from the normalization condition 

 
** 1,= =U U U U  (28) 

where the upper bar denotes the complex conjugate vector, and from the orthogonality 

condition 

 
** 0.= =U U U U  (29) 

 From Eq. (26), after doing some algebra, one can obtain the final form of the 

amplitude equation of type (2) for Hopf instability or (4) for Turing instability. 
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From (20) and (21) it can be seen that all terms in 'I  and "I  contain derivatives 

with respect to r . For the case of Hopf instability, when the deviations 1X  [see Eq. (22)] 

and 2X  [see Eq. (24)] are independent of the spatial variable r , this means that both 'I  

and "I  vanish and 3I is determined at the constant diffusion matrix ( )0 0 .= ZD D  Note 

also that in expression (19) for 3I , the term 
2

0 22
r R
∂

∂ ∂
XD  vanishes, because 2X  is 

independent of r , while the term 
2

0 12R
∂

∂
XD  produces the diffusion term in the CGLE 

[i.e., 2
1(1 )ic W+ ∇ ]. 

 

3. Two-variable reaction-diffusion system with cross-diffusion terms 

 

Now we can specify the procedure for obtaining the amplitude equations for a general 

two-variable reaction-diffusion system, since all coefficients of the CGLE and TAE can 

be found analytically in this case. For simplicity, we restrict our consideration to constant 

diffusion coefficients in the matrix 0D . Then the general model (1) assumes the form 

 ( ) 2 2 2 2
1 11 12/ , / / ,u t F u v D u r D v r∂ ∂ = + ∂ ∂ + ∂ ∂  (30) 

 ( ) 2 2 2 2
2 21 22/ , / / .v t F u v D u r D v r∂ ∂ = + ∂ ∂ + ∂ ∂  (31) 

 Introducing the deviation u

v

x
x

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

X  from the steady state 0
0

0

u
v
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

Z , linearizing 

(30), (31) around 0Z , and assuming that deviation X  behaves as exp( )t ikrλ + , we 

obtain the eigenvalues λ  of the matrix 2= + ∇L J D  from the characteristic equation 
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 2 ( ) ( ) 0,k kλ γ λ δ+ + =  (32) 

where 2 2
11 22 11 22( ) – –k J J D k D kγ = + +  [ ( )kγ−  is the trace of the matrix 2k−J D ] and 

2 2 2 2
11 11 22 22 12 12 21 21( ) ( )( ) ( )( )k D k J D k J D k J D k Jδ = − − − − −  (determinant of 2k−J D ).  

For the onset of Hopf instability, when Re 0λ =  and Im 0λ ≠ , at 0k = , we have 

(0) 0γ = . The conditions for the onset of Turing instability are: 

 2( ) 0 2 ( ) ( ) 4 ( ) 0k k k kδ λ γ γ δ= ⇒ = − + − =  (33) 

and 
 2d ( ) / d 0 d Re / d 0k k kδ λ= ⇒ =  (34) 

which gives the critical wavenumber 

 1/4
cT (det / det ) .k = J D  (35) 

Consider first the case of Turing instability arising as a control parameter μ  is 

varied. The right eigenvector of the matrix 0 0μ=
=L L  is 

 cT

1
exp( ),u

v

U
ik r

U α
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

U  (36) 

where 

 
0 2 0 2
11 cT 11 21 cT 21
0 2 0 2
12 cT 12 22 cT 22

J k D J k D
J k D J k D

α − −= − = −
− −

 (37) 

with 0
ijJ  being the ij -element of the Jacobian 0 0μ=

=J J . The left eigenvector is 

 ( ) ( )* * * 1
cT, (1 ) 1, exp( ),−= = +u vU U ik rαβ βU  (38) 

where 

 
0 2 0 2
11 cT 11 12 cT 12
0 2 0 2
21 cT 21 22 cT 22

.J k D J k D
J k D J k D

β − −= − = −
− −

 (39) 
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The vector X  can be expanded as [see Eq. (15)]: 

 1 21/2

1 2

....u u u

v v v

x x x
x x x

μ μ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (40) 

The first and second terms of (40) have the forms [see Eqs. (23) and (25)] 

 1
cT

1

1
( , ) exp( ) c.c.,u

v

x
W R ik r

x
τ

α
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (41) 

 2 0 1 2
cT cT

2 0 1 2

exp( ) exp(2 ) c.c..u

v

x a a a
ik r ik r

x b b b
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (42) 

Here ia  and ib , 0,1, 2i = , are the components of the vectors iV  in Eq. (25). We can find 

them from the μ-order term of the expansion.  The coefficients 0a  and 0b  in (42) are 

determined as 

 20 0
0 1 22 2 12

0

2 ( )
det

a G J G J W= − −
J

 (43)  

 20 0
0 2 11 1 21

0

2 ( ) ,
det

b G J G J W= − −
J

 (44) 

where 

 
21 .

2 2
= + +uu uv vv

i i i iG H H Hαα  (45) 

Here the subscript denotes the component ( 1,2i = ), whereas the superscripts denote 

derivatives with respect to the corresponding variables, so, for example 

 
0 0 0 0

2 3

2
, ; 0 , ; 0

( , ) ( , ), .
= =

∂ ∂= =
∂ ∂ ∂ ∂

uv uuvi i
i i

u v u v

F u v F u vH N
u v u vμ μ

 (46) 

The cTexp( )ik r  term yields the combination of coefficients 1a  and 1b  as 
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 11 12 21 22
1 1 cT cT0 2 0 2

12 cT 12 22 cT 22

2 2 .D D D DW Wa b ik ik
J k D R J k D R

α αα + +∂ ∂− = =
− ∂ − ∂

 (47) 

From (47) and (39) it follows that 11 12 21 22 0D D D Dα β αβ+ + + =  so that the term 

2 2
0 1( / )R∂ ∂XD  in Eq. (19) vanishes after applying the Fredholm alternative. The last 

coefficients, 2a  and 2b , appear in the cTexp(2 )ik r  term and read 

 2
2 1 22 2 12

1 ( ) ,
det

a G G Wϕ ϕ
ϕ

= −  (48) 

 2
2 2 11 1 21

1 ( ) ,
det

b G G Wϕ ϕ
ϕ

= −  (49) 

where 0 2
cT4ij ij ijJ k Dϕ = − + . 

Finally, using the Fredholm alternative (26) rewritten in the two-component form 

* *
3 3 0u u v vU I U I+ ++ =  with 3I  expressed as 

 ( ) ( )3 3 3
3 cT cT

3 3 3

= = exp + exp  terms of other orders of ,u u u

v v v

I I I
ik r ik r r

I I I

+ −

+ −

⎛ ⎞ ⎛ ⎞⎛ ⎞
− +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
I  (50) 

where the deviations (40) – (42) are inserted in (19), we obtain the amplitude equation in 

the form of Eq. (4) with the derivatives now with respect to τ and R instead of t and r, 

where 

 1 1 1 1
T 11 12 21 22

1 ( ),
1

J J J Jη η α β αβ
αβ

= = + + +
+

 (51) 

 2 21 22 12 22
T cT 0 2

22 cT 22

4 ,
1

D D D DD k
J k D

α β
αβ

+ +=
+ −

 (52) 
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l

l 0 0
1 2 1 2 1 22 2 12 1 22 2 12

0

0 0
1 2 1 2 2 11 1 21 2 11 1 21

0

2
1 2 1 2 1

/ (1 ),

2 1( ) ( ) ( )
det det

2 1( ) ( ) ( )
det det

1 ( ) 3 ( ) 3 (
2

uu uu uv uv

uv uv vv vv

uuu uuu uuv uuv u

g g

g H H H H G J G J G G

H H H H G J G J G G

N N N N N

αβ

β α αβ ϕ ϕ
ϕ

β α αβ ϕ ϕ
ϕ

β α β α

= +

⎡ ⎤
= + + + − − + − +⎢ ⎥

⎣ ⎦
⎡ ⎤

+ + + − − + − +⎢ ⎥
⎣ ⎦

+ + + +

J

J

3
2 1 2) ( )vv uvv vvv vvvN N Nβ α β⎡ ⎤+ + +⎣ ⎦

(53) 

and 

 1

0

ij
ij

dJ
J

d μμ =

=  (54) 

for the elements of the matrix 1J . 

In general, the TAE (4) can be rescaled if we perform the transformations: 

/ / tμ τ∂ ∂ → ∂ ∂ , 1/2 / /R rμ ∂ ∂ → ∂ ∂  and W Wμ →  [12,14]. From (51) – (53), we can see 

that the effect of cross-diffusion appears in all coefficients T T, Dη  and g  of the TAE, 

since α  and β  (which determine the right and left eigenvectors) depend on 12D  and/or 

21D .  

 Now let us consider Hopf instability. The same result for the amplitude equations 

in the Hopf case may be obtained using Kuramoto’s procedure [5,9]. The equivalence of 

our manipulations to Kuramoto’s formulation is shown in Appendix A. Therefore, we use 

his method to calculate the coefficient of the cubic term in the CGLE, because only the 

coefficient 1c  of the CGLE (2) depends on cross-diffusion, while c0 and c2 are the same 

as in the case of no diffusion.  To find c1, we must calculate the eigenvectors *U  and U  

of 0J , which has a pure imaginary eigenvalue 0iω  in the case of the Hopf instability.  
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Due to the specific properties of 0J  for the Hopf case, we have two relationships between 

its elements ijJ  (here we have dropped the 0 -superscript in 0
ijJ  for simplicity): 

 11 22J J= −  (55) 

and 

 2 2
0 11 12 21.J J Jω = − −  (56) 

Now we can obtain the eigenvectors *U  and U : 

 
2

0 11* 11 11 11

21 110 21 21 0

1 /1 , ,
/2

+⎛ ⎞ ⎛ ⎞
= − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

i JJ J Ji i
J JJ J

ω
ω ω

U U  (57) 

We can then calculate * ' "d id= +U UD , which gives 1c  in general form as: 

 11 22 11 21 12 12 21
1

0 11 22

( )1"/ ' .J D D J D J Dc d d
D Dω

− − −= =
+

 (58) 

We see here that the contribution of the cross-diffusion terms, 12D  and 21D , to 1c  

depends on the sign (and absolute value) of the elements 21J  and 12J , respectively. 

In the next two sections we apply the general equations deduced here to the 

Oregonator and Brusselator models. 

 

4. Oregonator model 

 

For the two-variable Oregonator model, the functions 1( , )F u v  and 2 ( , )F u v  in Eqs. (30) 

and (31) are specified as 2
1( , ) [ ( ) / ( )] /F u v u u fv u q u q ε= − − − +  and 2 ( , )F u v u v= −  

[20,21]; the parameters , , , ijf q Dε  are positive constants, 22D  can be chosen to be 1 for 
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the normalized case, but we keep the notation 22D  for generality. The steady state 

solution, 0 0( , )u v , satisfies 1 0 0 2 0 0( , ) ( , ) 0F u v F u v= =  and reads 

 2
0 0 (1/ 2) 1 (1 ) 4 (1 ) .u v q f q f q f⎡ ⎤= = − − + − − + +

⎣ ⎦
 (59) 

The elements of the Jacobian matrix J  are 

2
11 1 0 0 0( , ) / 1 2 2 / ( ) /J F u v u u qfv u q ε⎡ ⎤= ∂ ∂ = − − +⎣ ⎦ , 

12 1 0 0( , ) / ( / )( ) / ( )J F u v v f u q u qε= ∂ ∂ = − − + , 21 2 ( , ) / 1J F u v u= ∂ ∂ = , 

22 2 ( , ) / 1J F u v v= ∂ ∂ = −   

calculated at 0u u=  and 0v v= . 

 For the onset of Hopf instability, the critical value cHε  of the parameter ε  can be 

expressed as a function of q  and f [using the general Eq. (55)]:  

 0
cH 0 2

0

21 2 .
( )

qfvu
u q

ε = − −
+

 (60) 

At the onset of Hopf instability, 0 0Im( )λ ω= , the frequency ω0 can be found from eqs. 

(56) and (60) as 

 2
0 0 cH(1 ) / 1.uω ε= − −  (61) 

 We consider the situation when, as we decrease ε, the Hopf instability occurs 

before the Turing instability. The conditions for the onset of Turing instability yield the 

critical value cTε  at the critical wavenumber cTk  [given by Eq. (35)] as 

 
2

2 2
cT 4 / (4 ),b b ac aε ⎡ ⎤= − + −

⎣ ⎦
 (62) 

where 11 12a D D= + , 11 124( )detb j j= − + D , and 12 21 11 22c j D j D= − , cT 0ε >  and 
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 12 12 0 0( ) / ( ),j J f q u q uε≡ = − +  (63) 

 2
11 11 0 0 01 2 2 / ( ) .j J u qfv q uε≡ = − − +  (64) 

When the Hopf instability occurs before the Turing instability, 

 cH cT.ε ε>  (65) 

CGLE for the Oregonator model. First we introduce a small control parameter μ:  

 cH cH( ) / .μ ε ε ε= −  (66) 

Then we calculate J0 and J1: 

 
2
0

0
1 1

,
1 1

ω⎛ ⎞− −
= ⎜ ⎟−⎝ ⎠

J  (67) 

 
cH

0

cH1

11

0 0

u
d d
d d ε ε

ε ε
ε μ =

−⎛ ⎞−⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

JJ  (68) 

and find the left and right eigenvectors of 0J  [using Eq. (57)]: 

 0*

0 0

11 , 1 , .
12

+⎛ ⎞ ⎛ ⎞
= − + =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

ii i ω
ω ω

U U  (69) 

Using (68) and (69), we compute the combination U*J1U = λ1 ≡ σ1 + iω1 = -(1/2)(1 + 

iω0) and then find the coefficient 0c  in the CGLE (2) as [9] 

 0 1 1 0/ .c ω σ ω≡ =  (70) 

Next we determine the coefficient 1c  from (58): 

 
2

22 11 12 21 0
1

0 11 22

(1 )1 .D D D Dc
D D

ω
ω

− − + +=
+

 (71) 

Finally we find 2 "/ 'c g g=  following Kuramoto’s procedure, which is rather 

cumbersome and is detailed in Appendix B.  
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The CGLE is valid only at ' 0g > , when the Hopf bifurcation is supercritical. The 

dependence of the critical value cf  [ cf  is the value of f at which 'g  changes sign from 

negative (at cf f< ) to positive (at cf f> )] on q  is shown in Fig. 1a.  Note that this 

dependence does not coincide with the dependence c ' 1f q= −  used in Ref. [17] as the 

boundary between super- and subcritical Hopf bifurcation.  

 Using the coefficients 1c  and 2c , we identify regions with specific dynamical 

behaviors of the reaction-diffusion system, such as the domain of Benjamin-Feir 

instability (chemical turbulence), where 1 21 0c c+ <  [9], and domains of waves and 

antiwaves (phase waves propagating away from and toward a source of perturbation, 

respectively) [35,36].  The transition from wave (W) to antiwave (AW) behavior occurs 

when 1 2 0c c+ =  [16,17,37].  However, some works  [16,17,37] use a different sign for 

2ic  in the term 2
2(1 )ic W W+  of the CGLE, which may lead to confusion, with the 

transition criterion then being 1 2 0c c− =  instead of 1 2 0c c+ = . Therefore, we carefully 

checked both criteria by direct numerical calculations with the original Oregonator 

reaction-diffusion model and conclude that the criterion 1 2 ( )0c c+ > <  corresponds to the 

AW (W) domain.  In Fig. 1a, these two domains, W and AW, are plotted in the q f−  

parameter plane.  Note that the necessary conditions for the validity of the CGLE, such as 

0 cH cT1 u ε ε− > >  are always fulfilled [see Eqs. (61) and (65)].  

 To illustrate the effect of cross-diffusion terms on the dynamic behavior of the 

system, the dC f−  parameter plane can be selected, where 2
d 21 0 12(1 )C D Dω≡ + −  [see 

Eq. (71)] is the cross-diffusion contribution to 1c .  First, we consider the case of 21 0D =  
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(in which case Cd = – D12).  In Fig. 1b we exhibit three domains: W, AW, and BF 

(Benjamin-Feir turbulence), which are plotted at two different values of 11D .  As is seen 

in Fig. 1b, the transition between the W and AW domains can be induced by changing 

12D  in a rather broad range of f.  In a relatively narrow range of f close to fc, an increase 

in 12D  can lead to transitions from AW to W and further to the BF domain. The interplay 

of both cross-diffusion coefficients can easily be seen by inserting 1c  from (71) into the 

criterion for BF instability, 1 21 0c c+ < , 

 0
21 11 12 22 11 222

0 2

1 ( )
1

D D D D D D
c
ω

ω
⎡ ⎤

< + − − +⎢ ⎥+ ⎣ ⎦
 (72) 

 and into the criterion for AW, 1 2 0c c+ > , 

 [ ]21 11 12 22 2 0 11 222
0

1 ( ) .
1

D D D D c D Dω
ω

> + − − +
+

 (73) 

Here we recall that 2c  is independent of the diffusion coefficients. Therefore, the BF and 

AW regions in the 12 21( , )D D  plane are bounded by parallel straight lines which 

correspond to the equalities in (72) and (73).  Note that if 2 1c = ± , the two lines coincide.  

At 21 0c− < <  or 2 1c > , there is no W-domain, since this domain then overlaps with the 

BF domain, and the resulting waves are turbulent.  The three domains, W, AW, and BF, 

are shown in Fig. 1c for 20 1c< < .  

 In Fig. 1d we show the various behavioral domains in the D21-f plane at D11 = D22 

= 1 and D12 = 0 [in which case Cd = D21(1 + ω0
2)].  We see that in addition to a region of 

BF instability close to f ≅ 1, which exists at vanishing D21 and D12, a new region of BF 

instability at large f (≈ 2 and larger) emerges, which cannot be obtained at D21 = D12 = 0.  



 20

Note also that the analogous BF region exists for the case of D21 = 0 (Fig. 1b), but only at 

much larger positive values of D12 (> 2). Figures 1b and 1d should be mirror-symmetric 

with a “magnification factor” (1 + ω0
2), since in the first case Cd = - D12, while in the 

second Cd = D21(1 + ω0
2).    

 Examples of waves and antiwaves in the 1D case are shown in Fig. 2.  In these 

computer experiments, a small portion at the left of the 1D segment was perturbed 

initially, starting from the homogeneous steady state (SS).  In both W and AW, a wave 

packet propagates slowly to the right with the group velocity.  In the case of AW (left 

column of Fig. 2), after sufficient time bulk oscillations start in the right portion of the 

system.  In case of W (right column of Fig. 2) the right (unperturbed) portion of the 1D 

segment remains in the SS.  In both cases, the boundary between the wave packet and 

either the bulk oscillations or the quiescent region moves slowly to the right.  The bottom 

sections of Fig. 2 show the wave amplitudes.  

 Since the CGLE is applicable  both the 1D and 2D cases, waves (antiwaves) 

found in 1D should correspond to circular waves (antiwaves) in 2D.  To demonstrate this, 

we show in Fig. 3 examples of circular waves and antiwaves in 2D.   

  

TAE for the Oregonator model. To analyze the Turing bifurcation, we introduce a new 

small control parameter μ  as we did in Eq. (66), replacing cHε  by cTε . The eigenvectors 

U  [given by (36)] and U* [given by (38)] are now specified by 

 
2
cT 11 11 cT

2
12 cT cT 12

/ ,
/

k D j
j k D

εα
ε

−=
−

 (74) 

 
2 2

12 cT cT 12 11 cT cT 11
2 2
cT 22 cT 21

/ / ,
1 1

j k D j k D
k D k D

ε εβ − −= = −
+ −

 (75) 
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where 11j  and 12j  are given by (64) and (63), respectively. Note that Eq. (75) can be 

solved for cTε  as 

 
2 2

11 cT 12 cT 11 22 12 21
cT 2

11 12 cT

/ / .
det

j k j k j D j D
D D k

ε + + −=
+ + D

 (76) 

If we know cTk  from (35), then we can find εcT using (76) instead of (62). Applying the 

general equations (51)-(54) for the Oregonator model, we obtain the following 

coefficients for the final form of the TAE (4):  

 11 12
T

cT

1 ,
1

j jαη η
ε αβ

+= = −
+

 (77) 

 2 21 22 12 22
T cT 2

cT 22

4 ,
1 1

D D D DD k
k D

α β
αβ

+ += −
+ +

 (78) 

 

l l cT
1 1 1

1 2 11 12

cT
1 1 1 1 1

1 2 11 12

1/ (1 ), ( 2 )
2( )

1( 2 ) ( ) (1 ) ( 3 ) / 2,
2( )

⎡ ⎤
= + = + − +⎢ ⎥− +⎣ ⎦

⎡ ⎤
+ + − + + +⎢ ⎥− +⎣ ⎦

uu uu uv

uv uu uv uuu uuv

g g g H H H
j j

H H H N N
j j

εαβ α
ϕ χϕ

εα α χ α α
ϕ χϕ

(79) 

where 

 2
1 11 cT cT 11/ 4 ,j k Dϕ ε= − +  (80) 

 2
2 12 cT cT 12/ 4 ,j k Dϕ ε= −  (81) 

 
2
cT 21
2
cT 22

1 4
1 4

k D
k D

χ −=
+

 (82) 

and the Hessian elements 1
uuH  and 1

uvH  and the elements 1
uuuN  and 1

uuvN  are given in 

Appendix B [Eqs. (B3) and (B6)] for the CGLE with the provision that εcH must be 

replaced by εcT.  
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 In Figure 4, we display several parameter planes, showing regions of Turing 

instability as calculated from the TAE for the Oregonator.  The sign of g in a region 

determines whether the instability is supercritical ( 0g < ) or subcritical ( 0g > ).  From 

Fig. 4c and 4d we observe that to obtain Turing instability when 11 22 1D D= = , 21D  

should be positive (repulsion of inhibitor from areas of concentrated activator) and 12D  

negative (attraction of activator to regions of concentrated inhibitor).  In all parameter 

planes there is a line close to f = 1 separating regions of super- and sub-critical Turing 

instability.  A second such boundary can be seen at larger f  in Fig. 4a - 4c, the position 

of which strongly depends on the diffusion coefficients. 

 

5. Brusselator model 

 

For the Brusselator model [22] with cross-diffusion terms described by Eqs. (30), (31), 

the functions 1F  and 2F  are 2
1( , ) ( 1)F u v A B u u v= − + +  and 2

2 ( , )F u v Bu u v= − .  The 

critical value of the control parameter B  at the Hopf instability is 2
cH 1B A= + . The 

critical wavenumber ck  for the onset of Turing instability is determined from Eq. (35) as 

 2
c / detk A= D  (83) 

while the critical parameter cTB  is found from Eq. (33) using Eq. (83) and is given by 

 2
cT 11 21 22 12 22( ) 2 det / ( ).B A D D A D D D⎡ ⎤= + + + +⎣ ⎦D  (84) 

To calculate the coefficients of the CGLE and TAE, we employ below these expressions 

for 2
ck  and cTB . 
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CGLE for the Brusselator model. The CGLE for the Brusselator model without cross-

diffusion terms has been derived elsewhere [9,14], and we present here only the main 

results relevant to the case of cross-diffusion. First, we choose the critical small 

parameter μ : 

 cH

cH

.B B
B

μ −=  (85) 

Then we find the operator 0J : 

 
2 2

0 2 2 .
(1 )

A A
A A

⎛ ⎞
= ⎜ ⎟− + −⎝ ⎠

J  (86) 

and calculate the coefficient 1c  from (58): 

 
2

22 11 21 12 0
1 0

11 22

(1 1/ ) .D D D Dc
D D

ωω − − + +=
+

 (87) 

For the Brusselator model, we have 0 Aω = . The coefficient 2 "/ 'c g g=  is independent 

of the diffusion coefficients and is given in Ref. [9]: 

 
2 4

2 2

4 7 4 .
3 (2 )

A Ac
A A

− +=
+

 (88) 

Note that 2 2' (2 ) / (2 )g A A= +  is always positive, and hence the Hopf bifurcation 

in the Brusselator model is always supercritical, so that we can write the CGLE for any 

value of A .  The coefficient 0c  is derived from *
1 1 1 1iλ σ ω= ≡ +U UJ  as 0 1 1/ 0c ω σ= = , 

where 2
1

1 0
(1 )

1 0
A

⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

J  and 2
1 1(1 ) / 2, 0Aσ ω= + = .  
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 We plot the W, AW, and BF domains in two parametric planes: 11( )−A D  at 

12 21 0D D= =  (Fig. 5a) and d( )−A C  [-Cd ≡ D21 - D12(1 + 1/ω0
2) and  -Cd = D21 at D12 = 

0] (Fig. 5b and 5d). As can be seen in Fig. 5d, at large enough dC−  (or large 21D  at 

12 0D = ), BF instability occurs, while at small enough dC−  (< -1), there is an AW 

domain.  The domain of waves (W) is squeezed between the AW and BF domains and 

exists only in a rather narrow range of the parameter A  (approximately between 0.4 and 

2). The minimum of the curve separating the W and AW domains and the maximum of 

the curve separating the W and BF domains correspond to A = 1. From Fig. 5b we can 

also conclude that if D11 is small enough (< 1), only AW may be found in the Brusselator 

model at D21 = D12 = 0.  Examples of BF turbulence and AW in the Brusselator model are 

shown in Fig. 6.   

 

TAE for the Brusselator model. The TAE for the Brusselator model without cross-

diffusion terms was obtained earlier [12,14]. Here we present the TAE for the Brusselator 

model with cross-diffusion. The control parameter μ is introduced as 

 cT

cT

.B B
B

μ −=  (89) 

The TAE (4) has the following coefficients 

 2
B 1 12 22 cT( / )( ) ( ),A D D B Bη η= = Ψ + −  (90) 

 1 12 22 2 3( / )( )( ),g A D D= Ψ + Ψ + Ψ  (91) 

 T B 1 12 224( / )( )det ,D D A D D= = Ψ + D  (92) 

where 
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 ( ) ( )1 12 22 22 12 11 21( ) det det ( ) det ,A D D A D A D A D D⎡ ⎤Ψ = + + − − + +⎣ ⎦D D D  (93) 

 2 2
2 22 11 21 11 21 223

2 [ ( )] 4 ( ) 15 det 4 ,
9 det

D A D D A D D A D
A

⎡ ⎤Ψ = − − + + + −⎣ ⎦D
D

 (94) 

 3 11 21
3 ( ) det .A D D
A
⎡ ⎤Ψ = − + +⎣ ⎦D  (95) 

If D12 = D21 = 0 (no cross-diffusion), we recover from (90) – (95) the amplitude equation 

obtained by De Wit and Walgraef [12,14]. 

 If g is positive, the Turing instability is subcritical.  In Fig. 7 we show the regions 

of super- and subcritical Turing instability. The condition g = 0 is determined by  the 

equation 2 3 0Ψ + Ψ =  [see Eq. (91)]. This expression can be rewritten as 

 
2 2

22 11 21 11 21 22

2
11 21

2[ ( )] 4 ( ) 15 det 4

27 det ( ) det 0.

D A D D A D D A D

A A D D

⎡ ⎤− + + + − +⎣ ⎦
⎡ ⎤+ + =⎣ ⎦

D

D D
 (96) 

If D21 = 0, then 11 22det D D=D  and Eq. (96) is independent of D12, i.e., the 

super/subcritical areas are separated in the 21( )−A D  plane by the straight (bold 

horizontal) lines in Fig. 7a.  When D11 = D22 = 1 and D21 = 0, we can find from (96) two 

values, ( )21 313 /16= ±A  (≅ 2.418 and 0.207), that correspond to the two horizontal 

straight lines in Fig.7a.  

 If D12 = 0, then we can find from Eq. (96) an expression for D21 at which g = 0: 

 ( )21 11 22 11 22 11 22 22 11 222

1 16 3 3 96 97 .
16

D D D A D D A D D D A D D
A

⎡ ⎤= − + − ± +⎢ ⎥⎣ ⎦
 (97) 

Eq. (97) gives the two branches of the boundary between the sub- and supercritical 

Turing domains (shown in Fig. 7b).  These lines tend to infinity if D21 approaches  –D11. 
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6. Discussion and conclusion  

  

We can now summarize the effects of constant cross-diffusion coefficients on the system 

behavior close to the onset of Hopf or Turing instability.  For the CGLE (Hopf 

instability), cross-diffusion affects only the linear coefficient, 1c , whereas the cubic 

coefficient 2c  is independent of diffusion terms. 

 One can see that the cross-diffusion coefficients D12 and D21 contribute to c1 

asymmetrically both in the Oregonator and Brusselator models.  For the Oregonator 

model, increasing 21D  increases 1c , while raising 12D  decreases 1c . The opposite effect 

of 12D  and 21D  on 1c  occurs in the Brusselator model.  This behavior can be understood 

from Eq. (58), which shows that the effect of D12 and D21 on c1 is proportional to the 

Jacobian matrix elements J21 and J12, respectively.  Although the instability in both 

models is of the “direct autocatalysis” type as defined by Tyson [38], examination of Eqs. 

(67) and (86) shows that the community matrix, which consists of the signs of the 

elements of 0J  at the critical point, is 
+ −⎛ ⎞
⎜ ⎟+ −⎝ ⎠

 for the Oregonator and 
+ +⎛ ⎞
⎜ ⎟− −⎝ ⎠

 for the 

Brusselator. 

 Varying the coefficient c1 shifts the boundary between the wave and anti-wave 

domains and can lead to the emergence of new behavior, such as BF instability, both in 

the Oregonator and Brusselator models.  For the Oregonator model, however, in the 

region of BF instability (at f ≈ 1), our simulations produced chaotic waves only at some 

parameters, while at other parameters in the same domain no such behavior was found.  It 
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is possible that proximity of a subcritical Hopf region may be responsible for this 

anomalous behavior.  It has also been suggested [26] that, because the Oregonator model 

contains quite different characteristic time scales, it may be badly described by the CGLE 

even in the vicinity of the Hopf bifurcation.  

 In the case of the Belousov-Zhabotinsky reaction, the link between the parameters 

of the reaction-diffusion system and the constants of the Oregonator CGLE may allow us 

to identify conditions under which unusual dynamic behavior may occur.  For example, if 

c1 = c2 = 0, both the group and phase velocities of waves are zero [16].  If we perturb the 

SS locally, then a pseudo-oscillon can emerge, i.e., a localized spot that oscillates for 

many periods while the remainder of the system is quiescent.  We refer to this 

phenomenon as a “pseudo-oscillon,” because this oscillon is not stable like a true oscillon 

[39], but rather spreads very slowly.  For the Oregonator model, one such set of 

parameters is f = 1.693, q = 0.001, ε = 0.438, D11 = 0.5, D22 = 1, D12 = 0.0481, and D21 = 

-0.2.  The presence of cross-diffusion coefficients helps to find this special point  by 

tuning D12 or D21.  At D11 = D22 = 1 and D12 = D21 = 0 such a point always exists, since c1 

= 0 at D11 = D22 and the function c2(f,q) has roots at some f and q, for example, at f ≅ 

1.722 and q = 0.01, provided that ε is given by Eq. (60). 

 In the case of Turing instability the cross-diffusion coefficients contribute to all 

the coefficients, η, DT, and g, of the amplitude equation, but we have focused here on the 

effect of Dij on g, i.e., on the boundary between supercritical and subcritical Turing 

instability.  From Fig. 4 and Fig. 7, we observe that D12 in the Oregonator and D21 in the 

Brusselator model strongly affect the position of this boundary, while the other cross-

diffusion coefficients have relatively little effect.  
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 Note also that for non-zero cross-diffusion coefficients, it is possible in general 

for det D to approach zero.  In this case, kcT becomes very large [see Eq. (35)], and 

consequently the characteristic wavelength of Turing patterns, 2π/kcT, can be vanishingly 

small.  We also note that Turing instability can occur even with D11 = D22, if we have 

cross-diffusion (see Figs. 4 and 7). 

 The results obtained here for the Oregonator should be of use in guiding the 

design of future experiments on the BZ-AOT system, where several cross-diffusion 

coefficients have already been measured [4,5] and an Oregonator-based model [7] has 

been developed.  Implementation of this approach will, however, require its extension to 

models with more than two concentration variables. 
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Appendix A. Equivalence of the CGLE derivation to Kuramoto’s 

formulation in the case of Hopf instability 

 

Here we consider in detail the method of derivation of the AE in the Hopf case to 

show that it is equivalent to Kuramoto’s procedure [5,9]. Using the eigenvector U in the 

form of (57), the deviations are chosen as 

 0 0 0 01 1 1
1

1 2 2

e e e e ,ui t i t i t i t

v

x
W W W W

x
ω ω ω ωα α

α α
− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + = = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

X U U  (A1) 

 0 0 02 0 22 2 2
2 0 2 2

2 0 2

e e e . . .ui t i t i t

v

x a a
c c

x b b
ω ω ω− ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + + = = + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦

X V V V  (A2) 

Here 0,2 0,2( , ), ( , )W W R V V W Wτ= = . The first harmonics in the second deviation (A2) 

vanish because there are only the zeroth and second harmonics in 2I  in Eq. (17) for the 

Hopf case 

 ( )0 2 0 1 1 2/ –  t∂ ∂ = ≡X X X IJ H  (A3) 

with 

 ( ) ( ) ( )0 0
22 22 2

0 1 1 0 0 0e 2 ei t i tW W Wω ω−= + +X X UU UU UUH H H H  (A4) 

or in the coordinate form 

 
( ) ( )

( ) ( )0 0

2
0 1 1 1 1 1 2 2 1 2 2

22 22 2 2 0 2
1 1 2 2

1 2 e . . 2 e . . , 1, 2.
2

uu uv vv
j j jj

i t i tuu uv vv
j j j j j

H H H W

H H H W c c G W G W c c jω ω

α α α α α α α α

α α α α +

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤+ + + ≡ + + =⎢ ⎥⎣ ⎦

X XH
(A5) 

This fact was pointed out by Kuramoto [9,13]. Then, the application of the above 

procedure for the second order yields for the zeroth harmonic terms the following 

equations 
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 20 0 0
11 0 12 0 12 ,J a J b G W− − =  (A6) 

 20 0 0
21 0 22 0 22 ,J a J b G W− − =  (A7) 

from which the coefficients 0 0,a b  are found as in Eqs. (43) and (44) with only one 

replacement 0
j jG G→ . In vector form we can write these two equations as 

 ( )
0

2 21
0 0 00

2

2 2 .
G

W W
G
⎛ ⎞

− = =⎜ ⎟
⎝ ⎠

V UUJ H  (A8) 

Hence 

 ( ) 21
0 0 02 .W−= −V UUJ H  (A9) 

The same procedure for the second harmonics yields Eqs. (48) and (49) for 2 2,a b  with 

the following replacements: j jG G+→  and 

 0
0

1, ,
2 , , 1, 2,

0, ,mn mn mn mn

m n
J i m n

m n
ϕ ω δ δ

=⎧
= − + = =⎨ ≠⎩

 (A10) 

so that the equation for 2 2,a b  can be written in vector form as 

 ( ) ( )2 21
2 0 0 2 0

2

2 ,
G

i W W
G

ϕ ω
+

+

⎛ ⎞
= − − = =⎜ ⎟

⎝ ⎠
V V UUJ H  (A11) 

i.e., 

 ( ) ( )1 2
2 0 0 02 .i Wω −= − −V UUJ H  (A12) 

For the third order of expansion with 

 
2

1 1
3 1 1 0 0 1 2 0 1 1 12–  2

Rτ
∂ ∂= + + + +
∂ ∂
X XI X X X X X XJ D H N  (A13) 

the quadratic term 



 31

 ( ) ( )0 1 2 1 2 1 2 1 2 1 2
1
2

uu uv vv
j u u j u v v u j v vj

H x x H x x x x H x x⎡ ⎤= + + +⎣ ⎦X XH  (A14) 

has contributions proportional to 0ei tω : 

 
( ) ( )
( ) ( )

0 0

0 0

1 2 1 0 1 2 1 2 1 0 1 2

1 2 2 0 2 2 1 2 2 0 2 2

e ..., e ...,

e ..., e ...,

i t i t
u u u v

i t i t
v u v v

x x Wa Wa x x Wb Wb

x x Wa Wa x x Wb Wb

ω ω

ω ω

α α α α

α α α α

= + + = + +

= + + = + +
 (A15) 

or in vector form 

 ( ) ( )0 0
0 1 2 0 0 0 2e e ....i t i tW Wω ω= + +X X UV UVH H H  (A16) 

The same manipulation with the cubic term 

 ( ) 3 2 2 3
0 1 1 1 1 1 1 1 1 1

1 3 3
6

uuu uuv uvv vvv
j u j u v j u v j vj

N x N x x N x x N x⎡ ⎤= + + +⎣ ⎦X X XN  (A17) 

results in contributions like 

 0
23 2

1 1 13 e ...,i t
ux W W ωα α= +  (A18) 

or in vector form 

 ( ) 0
2

0 1 1 1 03 e ....i tW W ω= +X X X UUUN N  (A19) 

Taking into account (A9) and (A12) we put 2
0 0 W=V V�  and 2

2 W+=V V  and recover 

Kuramoto’s result [9,13] 

 ( ) ( )
2

2 2
3 1 0 0 0 0 02–  2 3 ,W WW W W W W

Rτ
+

+
∂ ∂= + + + + +

∂ ∂
U UI U UV UV UUUJ D H H N (A20) 

where the tilde over 0V  has been omitted. 
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Appendix B. Calculation of the 2c  coefficient in the CGLE for the 

Oregonator model 

 

The calculation follows Kuramoto’s approach for deriving the CGLE [9]. To find 

2 "/ 'c g g=  in the CGLE we calculate the vectors HXX and NXXX.  For XXH , we have 

 
0 0 0 0

2 2

2
, ,

( , ) ( , )1( ) 2 .
2

i i
i u u u v

u v u v

F u v F u vU U U U
u u v

⎡ ⎤∂ ∂
⎢ ⎥= +

∂ ∂ ∂⎢ ⎥⎣ ⎦
XXH  (B1) 

where the two components of eigenvector U, Uu and Uv, are used for the deviation X. 

Here we have taken into account that 
2

1
1 2

( , ) 0∂= =
∂

vv F u vH
v

 for the Oregonator model, 

and, since F2(u, v) is a linear function, all its second derivatives are zero, which causes 

the second component 2( )XXH  of the vector XXH  to vanish. With 0μ =  (or cHε ε= ) 

the first component 0 1( )XXH  [see Eq. (B1)] is given by 

 ( )2
0 1 0 1 1 0 1 1( ) 1 / 2 ( ),= − + + +uu uv uu uvH H i H Hω ωXXH  (B2) 

 ( )2
0 1 0 1 1( ) 1 / 2 ,= + +uu uvH HωXXH  (B3) 

where 
0 0

2
01

1 2 3
cH 0, ; 0

2( , ) 2 1
( )=

⎡ ⎤∂= = − −⎢ ⎥∂ +⎣ ⎦
uu

u v

qfvF u vH
u q uμ ε

, 

0 0 0 0

2 2
1 1

1 2
cH 0, ; 0 , ; 0

( , ) ( , ) 2
( )= =

∂ ∂= = = −
∂ ∂ ∂ ∂ +

uv

u v u v

F u v F u v qfH
u v v u q uμ μ ε

, 2
0 01 2u uU U iω ω= + − , 

2
01u uU U ω= + , 01u vU U iω= − , and 01u vU U iω= + .   

 Now we calculate the vectors XXXN  and XXXN . The non-zero terms of the 

first component are 
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0 0 0 0

3 3
1 1

1 3 2
, ,

( , ) ( , )1( ) 3 ,
6 u u u u u v

u v u v

F u v F u vU U U U U U
u u v

⎡ ⎤∂ ∂
⎢ ⎥= +

∂ ∂ ∂⎢ ⎥⎣ ⎦
XXXN  (B4) 

 ( )
0 0 0 0

3 3
1 1

1 3 2
, ,

( , ) ( , )1( ) 2 .
6 u u u u v u u u v

u v u v

F u v F u vU U U U U U U U U
u u v

⎡ ⎤∂ ∂
⎢ ⎥= + +

∂ ∂ ∂⎢ ⎥⎣ ⎦
XXXN  (B5) 

The second component 2( ) 0=XXXN  for the Oregonator. With 0μ =  (or cHε ε= ) the 

first component 0 1( )XXXN  reads 

 ( ) ( )2 2
0 1 1 0 0 1 0 0( ) (1/ 6) (1 ) 1 3 2 ,⎡ ⎤= + + + + +⎣ ⎦

uuu uuvN i N iω ω ω ωXXXN  (B6) 

where 
0 0

3
01

1 3 4
cH 0,

12( , ) 1
( )

∂= = −
∂ +

uuu

u v

qfvF u vN
u q uε

, 
0 0

3
1

1 2 3
cH 0,

( , ) 1 4
( )

∂= =
∂ ∂ +

uuv

u v

F u v qfN
u v q uε

, 

2
0 0(1 ) (1 )u u uU U U i iω ω= + − , 2

01u v uU U U ω= + , 2
0 01 2u u vU U U iω ω= + − . 

 To complete the calculation of c2, we first compute a few intermediate 

expressions (see Ref. [9]) like ( )*
0 1

3 uU XXXN , J0
-1, (J0 – 2iω0)-1, V0 ≡ -2J0

-1H0X X , and 

V+ ≡ - (J0 – 2iω0)-1H0XX.  Next we derive 

 ( ) ( ) ( ) ( )* 2 2 2
0 1 0 1 0 1 0 1 01

3 1 2 / 4 ( / ) 1 3 / 4,⎡ ⎤ ⎡ ⎤= + + − + + +⎣ ⎦ ⎣ ⎦
uuu uuv uuu uuv

uU N N i N Nω ω ω ωXXXN (B7) 

 
2

1 0
0 2

0

1 11 ,
1 1

ω
ω

− ⎛ ⎞− +
= ⎜ ⎟−⎝ ⎠

J  (B8) 

 
2

1 0 0
0 0 2

0 0

1 2 11( 2 ) ,
3 1 1 2

i
i

i
ω ωω

ω ω
− ⎛ ⎞− − +

− = − ⎜ ⎟− −⎝ ⎠
J  (B9) 

 
2

1 0
0 0 0 1 12 2

0 0

11 22 ,
1

− ⎛ ⎞⎛ ⎞+= − = +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

uu uvH Hω
ω ω

V XXJ H  (B10) 

 
2

01 0
0 0 0 1 1 0 1 12

0

1 211( 2 ) ( ) ,
13 2

−
+

+⎡ ⎤ ⎛ ⎞−= − − = − + + + ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

uu uv uu uv i
i H H i H H

ωωω ω
ω

V XXJ H (B11) 



 34

 0 0 1 1 0 1 0 0( ) [ ( )] / 2= + +uu uv
u u u v v uH U V H U V U VUVH  (B12) 

and 0 0 2( ) 0=UVH , where 0uV  and 0vV  are the first and the second components of 0V , 

respectively. 

Next, we determine (following Kuramoto [9]) the complex function g as 

 ( )*
0 0 0 0' " 2 2 3 .g g ig +≡ + = − + +U UV UV XXXi H H N  (B13) 

The first term of the r.h.s. of (B13) gives 

 
2

* 0
0 0 1 1 1 1 1 12 2

0 0 0

11 22 ( ) ( 2 ) .
2
⎛ ⎞ ⎡ ⎤+− = + − + + +⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

uu uv uu uv uu uviH H H H H Hω
ω ω ω

U UVH  (B14) 

The second term of the  r.h.s. of (B13), defined by 

( ) ( )0 1 11
/ 2+ + + +

⎡ ⎤= + +⎣ ⎦
uu uv

u u u v v uH U V H U V U VUVH  and ( )0 2
0+ =UVH , reads 

 

( ) ( )

2
* 0

0 1 1 1 12
0

2 22 20
1 1 0 1 1 0 1 13

0

112 ( )
2 2

1 1 2 2 .
6 2

+
⎛ ⎞+− = + + −⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞− ⎡ ⎤+ + + − +⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠⎣ ⎦

uu uv uu uv

uu uv uu uv uu uv

H H H H

i H H H H H H

ω
ω

ω ω ω
ω

U UVH

 (B15) 

The last term in this expression is given by (B7). Collecting all terms, we obtain the 

following expressions for g′ and g″: 

 
2 2
0 0

1 1 1 1 1 12
0

1 11 1' ( ) ,
2 2 2 2

⎛ ⎞ ⎛ ⎞+ += − + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

uu uv uu uv uuu uuvg H H H H N Nω ω
ω

 (B16) 

( )
22 2

2 20 0
0 1 1 1 1 1 13

0 0 0 0

1 1' 1 1 1" 2 1 7 ) .
6 2 6 2 2

⎛ ⎞+ +⎡ ⎤= − + + + + + +⎜ ⎟⎣ ⎦ ⎝ ⎠
uu uv uu uv uv uuvgg H H H H (H Nω ωω

ω ω ω ω
 (B17) 
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Fig. 1.  Parameter planes for the Oregonator model. (a) Dependence of fc (bold line) and 

fAW (two dashed lines) on q.  Dashed lines (fAW) mark the boundary between normal wave 

(W) and antiwave (AW) domains at D11 = 1, and D12 = D21 = 0. (b) Domains of 

Benjamin-Feir (BF) instability, waves, and antiwaves in the 12D f−  plane at q = 0.001, 

D21 = 0, D11 = 1 (bold lines), 1.5 (thinner lines).  At larger D11 all curves (dashed and 

bold) shift to the left.  The leftmost point of the boundary between the AW and W 

domains is at D12 ≅ -0.22 for D11 = 1 and at D12 = -0.8 for D11 = 1.5, while the BF domain 

ends at D12 ≅ 0.01 for D11 = 1 and at D12 = -0.5 for D11 = 1.5. (c) Domains of BF, W, and 

AW in the D12-D21 plane at f = 1.1, q = 0.01, D11 = 1, c2 = 0.1917, hyperbolic curves 

correspond to the condition detD = 0;  (d) Domains of BF, W, and AW in the D21–f plane 

at q = 0.01, D12 = 0, D11 = 1.  Numerical integration of Eqs. (30),(31) was performed at 

the marked points in Fig. 1b.  Triangles correspond to D11 = 1, squares to D11 = 1.5; black 

symbols show antiwaves, white symbols waves.  D22 = 1 for all cases. 
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Fig. 2. Examples of antiwaves (left column) and waves (right column) in 1D Oregonator 

model induced by cross-diffusion coefficient 12D .  Parameters: f = 1.2, q = 10-3, ε = 0.78 

(εcH = 0.78723), D11 = D22 = 1, D21 = 0, D12 = (left column) -0.5, (right column) 1, c1 + c2 

= (left column) 0.33745, (right column) -1.1418; c1 - c2 = (left column) 0.64872, (right 

column) -0.83053.  Total time for both space-time plots is equal to 25.  Numbers 1 – 4 for 

the profiles of the variable u  correspond to relative times 5, 7, 9, and 11, respectively 

(starting from an arbitrary time long after the initial perturbation).  Zero-flux boundary 

conditions.   
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Fig. 3.  Examples of circular antiwaves (left column) and waves (right column) in 2D 

Oregonator model induced by cross-diffusion coefficient 12D .  Parameters as in Fig. 2: f 

= 1.2, q = 10-3, ε = 0.78, D11 = D22 = 1, D21 = 0, D12 = (left column) -0.5, (right column) 

1. Size of (a) and (c) is 900 × 900. White color corresponds to the minimum of activator u 

and black to the maximum.  Numbers 1 – 8 in (b) and (d) correspond to the spatial points 

at the distances 0, R/16, 2R/16, 3R/16, 4R/16, 5R/16, 6R/16, 7R/16 from the center, 

respectively (starting from an arbitrary time long after the initial perturbation made in the 

center).  Zero-flux boundary conditions.   
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Fig. 4.  Parameter planes for the Oregonator model showing regions of super- and 

subcritical Turing instability obtained by determining the sign of g in Eq. (4). Black 

rhombs and white triangles correspond to super- and sub-critical Turing patterns, 

respectively, obtained in numerical simulations. In panel (c), regions in which Hopf 

bifurcation occurs first are subdivided into regions with super- and subcritical Hopf 

bifurcation, and the supercritical Hopf region is further divided into regions of waves (W) 

and anti-waves (AW) on the basis of the CGLE.  Parameters: D22 = 1, D11 = (a) 0.1, (c, d) 

1, D12 = (a – c) 0,  D21 = (a, b, d) 0, q = (b - d) 0.001; ε = εcH [see Eq. (60)] for the region 

in which Hopf bifurcation starts first , ε = εcT [see Eq. (62)] for the region in which 

Turing bifurcation starts first.  TAE is valid only in areas shaded in gray.
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Fig. 5.  Domains of Benjamin-Feir (BF) instability, waves (W), and antiwaves (AW) for 

Brusselator model in (a) the 11A D−  plane at D12 = D21 = 0 and (b) the 21A D−  plane at 

D12 = 0 [-Cd = D21 - D12(1 + 1/ω0
2)].  In (b), dotted (boundary between wave and 

antiwave domains) and bold (boundary between regular and chaotic (BF) waves) curves 

from top to bottom are obtained at D11 = 0.5, 1, 1.5, and 2.  The BF instability develops in 

the area above the bold curves. Plot (d) is an enlargement of plot (b). (c) Three domains 

(BF, W, and AW) in the 11 21D D−  plane at A = 1 and D12 = 0.   W-domain in (a) is 

limited by two vertical lines corresponding to two roots of the equation 4 213 4 0A A− + =  

( left 0.56A ≈  and right 3.56A ≈ ).  BF domain in (a) exists only at 5 33 / 2 1.64A > + ≈  

(a root of equation 4 22 5 1 0A A− − = ).  Symbols mark points at which the model was 

numerically integrated at D11 = 2 (gray dot, BF instability; white triangle, waves; black 

rhombs for antiwaves).  D22 = 1 for all panels. 
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Fig. 6. Patterns in the Brusselator model.  (a) Example of BF turbulence at A = 3, B = 

10.05, D11 = 2, D22 = 1, and D12 = D21 = 0, 1 + c1c2 = -1.6767; size = 450 × 450.  (b) 

Example of AW at A = 0.5, B = 1.35, D11 = 2, D22 = 1, D12 = 0, and D21 = 0.5, c1 + c2 = 

0.490741 (c1 - c2 = -0.99074).  Two snapshots (with dimensions 450 × 900) in (b) are 

separated in time by Δt = 2 (the two circular waves in the middle shrink). Zero-flux 

boundary conditions.  
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Fig. 7.  Areas of super- (g < 0) and subcritical (g > 0) Turing instability in the Brusselator 

model.  Parameters: D11 = D22 = 1.  Bold lines in (a) and (b): D21 = 0 and D12 = 0, 

respectively.  Dotted lines in (a) (with closed loop): D21 = 0.1; dashed line in (a): D21 = -

0.2.  Dashed lines in (b): D12 = -0.2.  CoD2 signifies a codimension two bifurcation, 

where Turing and Hopf instabilities start simultaneously.  

 


