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We study the phenomenon of cluster synchrony that occurasarebles of coupled phase oscillators when
higher-order modes dominate the coupling between osmiflator the first time, we develop a complete analytic
description of the dynamics in the limit of a large number s€iblators and use it to quantify the degree of
cluster synchrony, cluster asymmetry, and switching. Veaugariation of the recent dimensionality-reduction
technique of Ott and Antonsen (Chat®, 037113 (2008)) and find an analytic description of the degrfe
cluster synchrony valid on a globally attracting manifoshaped by this manifold, there is an infinite family
of steady-state distributions of oscillators, resultingihigh degree of multi-stability in the cluster asymmetry.
We also show how through external forcing the degree of asstnyngan be controlled, and suggest that systems
displaying cluster synchrony can be used to encode anddatae

PACS numbers: 05.45.Xt, 05.90.+m

I. INTRODUCTION analytically tractable.

While the choicef,,,,(0) = (K/N)sin(f) that yields the
Large Systems of Coup|ed oscillators occur in many examKUramOtO model is the Simplest, describes many situatibns o
ples throughout science and nature and serve as a basic mo#ierest, and has the advantage of being analyticallyabdet
for emergent collective behavior. Examples include syachr more general choices can result in additional dynamical fea
nized flashing of fireflies [1], cardiac pacemaker cells [2],tures. If there are higher harmonicsfh, ., but the sinusoidal
walker-induced oscillations of the Millennium Bridge [3pd ~ term is dominant, there is a transition to synchrony as in the
circadian rhythms in mammals [4]. Under certain conditjons Kuramoto model as the coupling between the oscillators in-
these limit cycle oscillators can be approximately desatib creases [11]. In this case, the synchronous state is charact
entirely in terms of their phase anglésKuramoto showed [5] ized by the phases of a large fraction of the oscillators-clus
that the evolution of the phases in an ensembl&/aofieakly ~ tering around a common phase. When higher harmonic terms

coupled oscillators obeys are dominant, however, the synchronous state is charzetieri
by the formation of multiple synchronized groups (or “clus-
) N ters”) of oscillators, each with a common phase [22]. This
On = wp + Z Hypr (0, — 65), (1)  phenomenon has also been called multibranch entrainment in
m=1 previous work [23]. Cluster synchrony occurs in many ap-

plications in nature, including networks of neuronal, hot
chemical, and electrochemical oscillators [24—-26], ad al
genetic networks [27]. In this paper we will study Eq. (1)twit

whered,, andw,, are the phase and intrinsic frequency of os-
cillator n, and H,,,,, is a 2x-periodic function. The choice
of Hym(0) = (K/N)sin(f), which leads to the Kuramoto
model [5], is well motivated because the expansion of sev- K

eral coupled oscillators about a Hopf bifurcation gendiica Hum (0) = 7 sin(qf), (2)
leads to sinusoidal coupling. This choice has also become

a paradigm for the study of emergence of synchrony in coufor integerg > 2, which, as we will see, leads generi-
pled heterogeneous oscillators [6]. Many generalizatimns cally to the formation ofg clusters. There are various ex-
the Kuramoto model have been studied. Some examples agerimental and theoretical motivations for the study o thi
systems that account for time-delay [7], network strucf@fe =~ model. In Ref. [25], experiments with systems of globally
non-local coupling [9], external forcing [10], non-sinigal  coupled photochemical oscillators were performed in which
coupling [11], Josephson junction circuits [12], coupled e two synchronized clusters emerged. In Ref. [26], the cou-
citable oscillators [13], bimodal distributions of osatior fre-  pling function between electrochemical oscillatargand m
quencies [14], phase resetting [15], time-dependent asnnewas directly measured and found to be qualitatively equiv-
tivity [16], noise [17], and communities of coupled oscilla alent to eitherH,,,,(¢) = (K/N)sin(f) at a lower volt-
tors [18]. Recent analytical work [19-21] (in particulaeth age, which is equivalent to the classical Kuramoto model, or
Ott-Antonsen (OA) ansatz [19]) has allowed for the simplifi- H,.m(0) = (K/N)sin(26) at higher voltage, which is equiv-
cation of the analysis of these systems to the study of reucealent to Eq. (2) withy = 2. In some Kuramoto-type models of

low-dimensional equations and made many of these systenfiguronal networks, a coupling function of the form in Eq. (2)
and the associated cluster synchrony arises as a resuatrof le

ing and network adaptation. It has been proposed that the cou
pling between oscillators in such networks evolves acogrdi
*Electronic addressskar dal @ol or ado. edu to a Hebbian learning rule [28]. If this learning is fast, £2).
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FIG. 1: (Color online) Example oscillator configurationsao$ystem with (a) no synchronyr(|, |r2| ~ 0), (b) symmetric 1| =~ 0) cluster
synchrony [r2| > 0), and (c) asymmetrid«:| > 0) cluster synchrony|f2| > 0) and corresponding density functions (d), (e), and (f).

is recovered withy = 2 [29]. We note that the applications fraction of oscillators switching to a cluster arouhe- 0. If
mentioned above all usg = 2, but largerg values are also different values ofl are chosen for different oscillators (i.e.,
relevant. For instance, cases of three or more clusters have — ¥,,), then if F' is large enough with respect to,,| and
appeared in the study of synthetic gene networks [27]. K, the phase of oscillator will converge to a value neak,,.
This paper is organized as follows. In Section Il we solve

Cluster synchrony has been studied in many contexts, fofrorthe dynamics of the system with Eq. (2) ané- 2. In Sec-

example in networks of phase oscillators with [22] and WIth'tion [l we discuss the effect of external forcing on asymimet

out noise [30, 31], networks of integrate-and-fire osailtat . . o .
[32], and more general cases [33]. Reference [28] studierﬁlc clustering and switching, the presence of hysteresisnvh

Egs. (1) and (2) in steady-state using a self-consistent a _le ‘;Wp“”g stlr)ength(;stch?nge_d,fas W?” aslhoSw at_symlvetrlc
proach to characterize the phase distribution and staloifit gigiuesr;nﬁo(\:/srrlesillge en(()ersaﬁ;(; Itr:) (:Lrga K;g‘ 2” Fi?q (;IIIO nin we
the clusters. Reference [22] studied the dynamics of aisiste Section V/ | g thi b d'C@ . Y it

in ensembles of oscillators when the coupling functidmas ection v:we conclude this paper by discussing our results.
two Fourier modes under the effect of small noise. Despite
these and other studies [30], a complete analytical traatafe
Egs. (1) and (2) is lacking. For example, Ref. [28] studies th
steady state solution using a self-consistent approatboes

not analyze the dynamics, while Refs. [22, 30] assume iden- ) ) ) ) ) )
tical oscillators. In this paper we will use the Ott-Antonse N this section, we will study in detail Egs. (1) and (2) with
ansatz to obtain a low-dimensional description of clusger d ¢ = 2, Which leads to the system

namics and a full solution to Egs. (1) and (2). Thus, our so-

II. LOW-DIMENSIONAL DESCRIPTION OF THE
TWO-CLUSTER STATE

N
lution of Egs. (1) and (2) is analogous to the recent solution i K . B
[19, 20] of the Kuramoto model in that, even though partial On = wn + N mX::l SIn[2(0n = On)], 3)

solutions existed previously, our solution fully charaizes
the dynamics (with the same caveats as in Refs. [19, 20]). where the intrinsic frequencies, are drawn randomly from a

Two interesting phenomena that are particular to SyStemgistributiong(w). Also, we define the set of generalized order

displaying cluster synchrony are asymmetric clusterirgj [3 parameters

and switching [22, 25]. Asymmetric clustering is character N

ized by a non-uniform distribution of oscillators in diféert e = |rple = 1 Z otkbm ()
clusters and switching refers to oscillators moving betwee N = '

clusters. We find that asymmetric clustering emerges from

non-uniform initial conditions, to which systems with a eou for & € N. These generalized order parameters were intro-
pling function of the form of Eq. (2) witly > 2 are very sen- duced in previous work [35] where coupling functions with
sitive. Switching can be achieved by introducing an extiernahigher harmonics were studied. We will see that when more
forcing term,F' sin(¥ — wot — 6,,) (Wwherew is the average than one cluster emerges, more than epé needed to de-
oscillator frequency), on the right hand side of Eq. (1) withscribe the dynamics of the system. In this case ef 2, two

F # 0 nonzero for a finite amount of time. This results in a clusters emerge. The order paramétgf measures the de-



gree of cluster synchrony in the system wHitg]| measures given by
the degree of asymmetry in clustering (see Fig. 1). Eq. (8) ca
be rewritten in terms of, as > ,
° fs(O,w,t) = %w) (1 + Z fon(w, t)e*™? 4 c.c.) . (10)
. K . . & n=
0, = wn + 5 (roe™ 2 —r5e?n) (5) !
! For the new system defined by Eq. (3), we use the follow-
where* denotes complex conjugate. ing variation of the OA ansatz on the symmetric partfof
fon(w, t) = a™(w,t). When Eq. (10) with this ansatz is in-
serted into Eqg. (6) and projected onto the subspace spanned
by ¢?, all equations reduce to the following ODE fer

Following Ref. [19], we letN — oo and move to a con-
tinuum description. Accordingly, we introduce the density
function f (6, w, t), which describes the density of oscillators

with phasef and natural frequency at timet. Since os- Y K 2 _ .5 — 11
cillators are conservefl must satisfy the continuity equation @t swat (T2a TQ) ' (1)
Ocf + 96(f0) = 0, giving In the continuum limit, we have
P o K —2if % 2if -0 6 Rl
if+ 0 | fw+ % (rae —r3e®?) )1 =0.  (6) ro(t) :/7 /0 2 f(0,w,t)dOdw

To analyze Eq_. (6), we _find it convenient to define the sym- _ / g(w)a* (w, t)dw. (12)
metric and antisymmetric parts ¢f f; andf,, as oo

Jsja(O,w,t) = [f(0,w,t) £ f(O0+ 7 w,t)]/2, (7) We now assume that(w) is Lorentzian with mean, and
_ _ o spread], i.e. g(w) = m. Furthermore, by en-
where f; and f, are symmetric and antisymmetric with re- tering the rotating framé — 6 + wot we can assume without
spect to translation by, respectively, in the sense tha{6 +  |oss of generality that, — 0. With this choice ofg(w) we
mw,t) = fs(0,w,t) and fo(0 + m,w, 1) = —fa(0,w,1). We  can integrate Eq. (12) exactly by closing the contour wih th
note thatf is a solution of Eq. (6) iff = f.+f.andfsandf.  semicircle of infinite radius in the lower-half complex ptan

are both solutions of Eq. (6). Thus, we can study separatelyng evaluating at the enclosed pole (see Refs. [19, 20] for
the symmetric and antisymmetric dynamics of solutigns the validity of this procedure):

ro(t) = a* (—iA,t) = a* (1), (13)

where we've defined(t) = a(—iA,t) to simplify notation.
By evaluating Eq. (11) ab = —iA, close the dynamics for

A. Symmetric Dynamics Ty

o %2
We now use a variation of the OA ansatz to find a low- ra = =241y + K(ry —1573). (14)

dimensional analytical solution for the dynamics of the sym
metric part of f, which evolves independently from the anti-
symmetric part. For the Kuramoto model, after expanding the
distribution f in Fourier Series,

In polar coordinates;, = |rz|e?¥2, we find

ra| = —2A|ro| + K|ra|(1 — |r2[?), (15)
iy = 0. (16)

w N~ ;
f(0,w,t) = % (1 + ) Falw,t)e™ + c.c.> . (8)  Thus, the unsynchronized state (i.e»| = 0) is stable for
K < 2A, at which point it loses stability and the stable syn-
wherec.c. denotes complex conjugate terms, Ref. [19] intro-Ch\rlsgI?\(e;\(/jvbsrr?gv(\:/t:ﬁl;\t:sovll}tigniAoéﬁ(eeToerﬁeSi.ven i Eq. (10
duces the ansat, (w,t) = a™(w,t) which yields a solution g a. (10)

AR : : : with f,,(w,t) = a"(w, t), wherea obeys Eq. (11), are globally
for systems with sinusoidal coupling providedevolves ac- S G . ;
cording to a simple ODE. Solutions of this kind tumn out to attracting. An alternative way of solving for the dynamids o

form a low-dimensional, globally-attracting, invarianani- :fe\'; égnl:}ﬁtﬁ tge Sgt?gr?'e of variable= 20, which yields a
fold to which solutions converge quickly given that the sate yeq '

n=1

in g(w) is non-zero [20]. This manifold is the set of Poisson K _ _
kernels, Ocfs + O0g [2fS <w + Z(me*w - T;€Z¢)>:| =0, (17)
2
F0,w,t) = 9(w) 1 |a| (9)  whichis of the same form of the equation studied in Ref. [20].

2 1+ |a]® — 2|a| cos(arg(a) — ) There it is shown that the dynamics of given by Eq. (14)
are globally attracting provided that the spreag(©f) is non-
In terms of the Fourier series (8), the symmetric parf &f  zero. Thus, the globally attracting invariant manifold fgris



the set of double Poisson kernels centeredatf,(¢,w,t) =  To find the steady-state solutigii;, , we setd, /7, = 0.
P (20 — 1), |r2(t)],w), where

9(w) 1-p?
P(6 = .
(6. ) 2 1+ p? — 2pcos(6)

18)  For|w| < Kra| we find thatfs, /g(w) = c1.0/a8(60 -

. o : P(w)) + Ca,5/a0(0 — d(w) — ), wherep(w) andp(w) +

Since the system is invariant to rotatighs> 6 + ¢, hereafter  are the stable fixed points of Eq. (5) defined bjw) =

we assume without loss of generality thigt= 0. L arcsin[w/(K|rs|)]. (Recall that we assumg, = 0.) Im-
posing symmetric and antisymmetric conditions, we have tha

) c1,s = C2s = 1/2andcy , = —ca,4 = cWith || < 1/2.
B. Steady-State Solution ’ ’ ’

We first find the steady-state solutions of the system de- )
scribed by Eg. (3). Recall that the symmetric and antisym- FOr [w| > Klrz|, we find thatf?*/g(w) = C(w)/lw —
metric parts off satisfy the PDE K|ra|sin(20)|, where C(w) = 2y/w?— K2|ry?/m and
f3 = 0. Thus, the complete steady-state distribution of os-
Oifsja+ 09 [[fsa (w— K]|re|sin(26))] . (19) cillators is

£55(0, ) = { g(@)(1/24 )3 — p(w)) + (1/2 = )6(0 — p(w) —m)]  if |w] < K[ra], 0
’ 2g(w)\/m/|w[w — K|ra|sin(26)]] if |w| > K|ral,

with |r2] = /1 —2A/K. The interpretation of the different from initial conditions. To calculate;, we note that only the
terms in Eq. (20) is the following. Fdw| < K|rs| f5%is  locked portion [w| < K|rq|) of f contributes ta+, so
comprised of two delta functions representing the two elsst

of phase-locked oscillators 8t= ¢(w) and$(w) + 7. For Klra| - p2m 0
lw| > K|ro| oscillators drift for all time and the second line n= . |/0 £22(0, w)e” dfdw (21)
in Eq. (20) is their steady-state distribution. ;M

While the symmetric part of the distribution is only depen- — Qc/ g(w)ew(“’)dw. (22)
dent on the value of(, the antisymmetric part of the distri- —K|rs|

bution depends on the free parametawhich must be deter- . _ .
mined from initial conditions. Thus, different solutionsthv Through a series of substitutions, this integral can beveval

different degrees of cluster asymmetry coexist. ated exactly:

Now we compute the degree of cluster synchrony and 2v3¢ (arctan(A~)  arctanfAt)
asymmetry in the system at steady-state in terms of initial |r1| = ( T — e ) , (23)
conditions. The degree of cluster synchrony is exaetly =
/1 —2A/K, butthe degree of asymmetry, measuredrby, hered® — K|rq| 24
depends on the free parametewhich must be determined whereA™ = K2|rg|? + A% + K|r2|' (24)

0.8 Ir.(1)],b=0,0.4,0.8
pm-mmwm
0.6 n®.b-08
=0.4 =
i ~_ |rl(t)|, b=04
Fw 0.2
=l 4 ; . @l b=0
: TS ————e 0 1 2 3 4 5
. 3L : FIG. 3: (Color online) Order parametets;(t)| (solid colored

FIG. 2: (Color online) Stable (solid blue) and unstable teakred)  curves) andr2(t)| (dashed colored curves) for= 0, 0.4, and0.8
equilibria off as a function of. for phase-locked oscillators. Bound- from a simulation of Eqg. (3) withV = 10000 oscillators and ana-
aries between locked and drifting regions£ +K|r2|) are plotted  Iytic predictions of steady-state (black dot-dashed jinBarameters
in black dotted lines. areK =4, A =1.



FIG. 4: (Color online) Example characteristi¢&) from Eq. (A1)
for K = 4and A = 1 of (a) locked oscillatorsf = 1) and (b)
drifting oscillators (@ = 3).

As an example illustrating the dependencecobn ini-

tial conditions we assume for simplicity that the symmet-

ric dynamics are at steady-state by time= t; so that

Ir2] = /1—2A/K, but the antisymmetric part may still

0.8r
A SR
0.4 a=0.4
N — _
0z a=0.0
G0 1 2 3 4

time t

FIG. 5: (Color online) Transient dynamics pf, (¢)| for initial con-
ditions f(0,w,0) = P(20,|r2|,w)(1 4+ bcos()) from simulation
with N = 10000 andb = 0, 0.4, and0.8 (blue, red and green
curves) and from integrating Eq. (32) numerically (cyangemaa,
and black dashed curves). Parameterdiare 4 andA = 1.

each in black dot-dashed. We also plat(t)| for each value
and the predicted value difin; ., |2(t)] = 1/4/2 in black
dashed curves. Simulations agree very well with the theory.
Note that, unlikelry|, |r2| (both predicted and from simula-
tion) does not depend dn

C. Transient Dynamics

From Fig. 3 we see that the, | dynamics reach steady-state

not be at rest. Thus, phase-locked oscillators with naturafuickly. To capture the transient dynamics we can solve the
frequencyw, settle to one of the two stable equilibria of PDE (6)

0,, = w, — K|r2| sin(26,,), while the unstable equilibria serve
as boundaries for the basins of attraction. In Fig. 2 we piet t

stable equilibria in blue solid lines and the unstable dlouil
ria in red dashed lines fokk = 4 and A = 1. Boundaries
between locked and drifting regions,= +K/|ro|, are plot-

ted in dotted black lines. We denote the unstable equilliyia

©12 = —1arcsinfw/(K|ro|)] F 5. From Eq. (20) we find

thatc + 1/2 is just the fraction of oscillators in the locked re-

gion betweerD; and©,, soc in terms of the initial density
f(ovwv to) is

K [ @2
1 71!\7"'2\ f@l f(97w7t0)d9dw
c+ 5 = K|ra| T . (25)
f_K|7‘2‘ f—ﬂ' f(ev W, to)dﬁdw
To test this result, we choose initial conditions
f(0,w,to) = P(20, p2,w)[1 + bcos(0)], (26)

which has symmetric and antisymmetric parfs =
P(26,|r2],w) andf, = bP (26, |r2|,w) cos(), respectively.

Ouf + [w— Klra|sin(20)]0g f = 2K |ra| cos(20)f  (27)
coupled with thdrs| dynamics, which evolve independently,
via the method of characteristics [36]. The characteristic
equations (along witth = 0) are

0 = w — K|ry|sin(26), (28)
fz 2K |ro| cos(26), (29)
. K
|re| = 2 —A|7’2|+7|T2|(1—|T2|2) : (30)

When|rq| is at steady-state Eqgs. (28-30) can be solved an-
alytically. Analytic expressions for the characteristioc\es
0(t,0y) starting at the initial phas#, and the distribu-
tion f(6,w,t), starting with initial conditionf (6, w,ty) =
g(w)h(0) are given in Appendix A.

Using K = 4 andA = 1, we plot some example charac-
teristics using the analytic solution far = 1 andw = 3 in
Figs. 4(a) and 4(b), respectively. For these parameteesalu

ChoosingK = 4 andA = 1 we integrate Eg. (25) numer- w = 1is in the locked population and = 3 is drifting. For

ically to getc ~ 0.442351b. In Fig. 3 we plot results from

w = 1, characteristics (solid colored lines) quickly converge

a direct numerical simulation of Eq. (3) compared with theto one of the two stable fixed points, with basins of attrac-

analytical prediction above. We simulai = 10000 oscilla-
tors with K = 4 andA = 1 and plot|r(t)| for b = 0, 0.4,

tion separated by unstable fixed points (black dotted lines)
Thus, f evaluated atv = 1 converges very quickly to two

and0.8 in blue, red, and green solid lines (labeled in Fig. 3),point masses. However, far = 3, the characteristics con-

respectively, with the predicted value Bfn; . |r1(t)| for

tinue drifting with a finite velocity for all time.



FIG. 6: (Color online) Numerically-computed distributigid, w, t) /g(w) obtained from numerically solving Eq. (27) at times- 0.33 (a),
t = 0.67 (b), andt = 1 (c) with inital conditionsP(2¢,0.1,w)(1 + 0.4 cos(¢)) and parameter& = 4 andA = 1.

In principle, we could calculate, (¢) through the integral

r1(t) :/00 ! f(0,w,t)e?dbdw, (31)

where f(6,w, t) is given by Eqg. (A2) in Appendix A. How-
ever, given the quick convergence pfto delta functions in
the locked regime, Eq. (31) is difficult to integrate numeri-
cally, so we rather calculate (¢) via the integral

ri(t) = / F(0t,00), 0, ) O oo, (32)
—o0 J—7 0

exactly [19]

Py

2
) — 1| e2@A-F)t (33)
Po

[r2(t)] =F2/$1+

whereP; = /1 - 2A/K.

In Fig. 6 we plot the evolution of (6, w, t) obtained from
numerically solving Eq. (27) when the symmetric dynam-
ics are not at steady-state. Starting with initial condisio
f(0,w,0) = P(260,0.1,w)(1 + 0.4cos(d)) and parameters
K = 4, A = 1 we plot the distributioff(6,w,t)/g(w) at
t =0.33 (a),t = 0.67 (b), andt = 1 (c). We see that the dis-

In Fig. 5 we compare the results of integrating Eq. (32) nu-ribution quickly localizes, in agreement with the asynijgto

merically with the simulations of Eq. (3) usiig = 10000 os-
cillators, K = 4, A = 1,andf(0,w,0) = P(20,|r2],w)(1 +
bcos()). Forb = 0, 0.4, and0.8, |r1| obtained from simu-
lations are plotted as solid lines, and results from intigga

formin Eqg. (20). In Fig. 7 we compate, (t)| and|r»(t)| cal-
culated from the numerical solution of Eq. (27) (blue ciscle
and red triangles) with the same variables calculated from a
direct simulation of Eq. (3) witlV. = 10000 oscillators (cyan

Eqg. (32) numerically are plotted as dashed lines. The ®suliand magenta dashed lines). The analytic solutieft)| in

from Eq. (32) capture the transient dynamics very well.

The example above leading to Fig. 5 was for a case jwith
initially at steady state. Ifr2| is not initially at steady-state,
the solution to Eq. (15) with initial conditiop(0)| = po is

0.5 15
FIG. 7: (Color online) Comparison of+ | and|r2| from the numeri-
cally solved PDE (27) (blue circles and red triangles) andhfdirect
simulation of Eq. (3) withV = 10000 oscillators (cyan and magenta
dashed lines) with the same initial conditions and parareetsed in
Fig. 6.

Eq. (33) is plotted as a black dot-dashed line.

I11. EXTERNAL DRIVING AND HYSTERESISIN THE

TWO-CLUSTER STATE

As we have seen, Eq. (3) admits a family of steady-state so-
lutions characterized by a free parametdn this Section, we
demonstrate that, by appropriately forcing Eq. (3) and modu
lating the coupling strength, the system can be driven tmény
these solutions, thus allowing us to encode any desirecvalu
of ¢ in the state of the system. Assuming = 0, we consider
the forced system

N
On = wn + ;sm[z(em —0,)] + F(t)sin(®, — 6,)
(34)
Fy iftel
whereF(t) = { 8 otherwise, (35)

for some forcing magnitudg, and time interval = [ty, t2].



For Fy sufficiently large in comparison withw,,| and K €))
and durationd = t, — t; not too small,d,, will approach
~ arcsin(w, /Fy) + ©,, = @, for Fy > |w,| + K. Thus, if
®,, = 0 for all n with d and Fy large enough (i.e.Fy >
K+/1—-2A/K), all locked oscillators are entrained to the
0 = 0 cluster and remain there after= t,, thus creating Tt
a completely asymmetric cluster state. On the other hand, 2
®,, are drawn from the distributioh(®) = d§(®) + (1 —
d)é(® — ), then the ratio of the number of oscillators end-
ing up in the cluster centered @at= 0 to those in the cluster
centered at) = w is d/(1 — d), which forcesc in Eq. (23) to
d—1/2. Thus, by choosing appropriately the external forcing,

we can set any degree of asymmetry we wish. (b) 1r; ‘ ‘ ‘ ‘ 7
To explore the effect of differenfy andd values, we sim- g _._||’1|

ulate Eqg. (34) withV = 2000 oscillators with random initial 0.8

conditions and parametefs = 4 and A = 1 until steady- 0.6 "5

state (and attaining two clusters of approximately equad,si = N4

|r1] = 0), then force the system with a strengthigf for a 0.4- I3

durationd and all®,, = 0, then allow the system to reach

steady-state and plot the resultipg| value in Fig. 8(a). For 0.2

very smallFy ord, |r1| remains small, but as soon as both are 0 ‘ ‘ ‘ _o—0

large enough the resulting, | increases quickly. 100 200 300 400 50]0

~ Byforcing the system in this manner we achieve switching g g: (Color online) (a) Steady-state | after forcing a symmetric

i.e. oscillatorn switches to the cluster centered at phése istribution with forcing magnitudé?, for a durationd with K = 4

if w, is not too large. We note here that this kind of forcedandA = 1. (b) Hysteretic behavior df-; | (blue circles) vs the non-

switching is qualitatively different than that in Ref. [29h hysteretic behavior ofr»| (black triangles) wherk is changed in

our original system given by Eq. (3), switching does not eccu time (red dashed line).

spontaneously. Thus, external forcing is necessary torebse

the phenomenon. However, in Ref. [25] switching occursprevious minimum. In figure 8(b) we pldt; | and|rs| (blue

spontaneously due to a heteroclinic orbit between differencircles and black triangles, respectively) as we chakigeed

cluster states. dashed line). Whilér,| follows the predicted behavior (green
Next, we consider the effects of slowly (compared with dot-dashed line) without any hysteresis, it is clear thdtbe-

A~1) changing the coupling strengtli after a steady state haves as described above.

with some asymmetry is reached. If steady state is reached

att = to with a coupling strength’ = K, then consider

We now suggest, as others have [37], that systems such as
changingK to K. We find hysteretic behavior im | but not :jhaa,:;?“{%nesbg sli/qsie(?r’rzsprzc;\\lllg ?hvgagr?iézree;rf)%(:rr:s ta;]r;: ts;grlsr;%q
[72]. Regardless of Whethéﬁ < Ko orvice-versajra| con- o dynamics have a unique, (globally) stable fixed point
verges quickly to the predicted valiig| = /1 —2A/Ki1,  whjle there is a high degree of multi-stability in the antisy
but the dynamics ofr,| are more interesting: iy < Ko metric dynamics. Furthermore, we have demonstrated above
then|r,| decreases significantly, but i, > Ko, then|ri| 4t through forced switching and modulation of the couplin
remains approximately constant. In this situation, at timésgrength, the asymmetry (i.dr1]) can be controlled. Thus,
to, the distribution of oscillators is given by Eq. (20). If \ye syggest that a continuous valued variable could be stored
K1 < Ky the locked population loses all oscillators with 54 retrieved by representing it by |. Furthermore, in the
VET —2AKy < |w| < /K§—2AK, and|ri| changes  general; case, which we study next, we will see that in addi-
accordingly (maintaining the sanzevalue, since these oscil- tjon to one globally-attracting symmetric part, there @re 1
lators are lost in equal proportions from both clusters)tl@n  aqditional modes that display multi-stability. Thus, thgi
other hand, ifK; > K, the locked population will gain 0s-  similar techniques the — 1 quantities|r{ (¢)], .. ., rq_1(t)]
cillators with /K3 — 2AK( < |w| < v/Ki —2AK;. How-  can be controlled and used to store and retrigve different
ever, att = ty the distribution for these drifting oscillators is continuous valued variables.
perfectly symmetric, so both clusters pick up an equal numbe
of oscillators and the symmetric densjtychanges, while the
antisymmetric densityf, remains the same. Thus, the only
change inr;| comes from the slight tightening of the phases
¢(w) = 1 arcsinjw/(K|r2|)] and¢(w) + 7 about the clusters
até = 0 andr.

Extending this analysis to the case whéfteis both in-
creased and decreaséd,| will never increase significantly, We now discuss how the dynamics of the two state case
and only decrease significantly whéhis decreased below a generalize to higher-order coupling functions. Thus, welgt

IV. GENERAL ¢ > 2



the system mode dynamics. The ansatz
. K & 9(w) - ind
0, = wp + N Z sin[q(0,, — 0,)] fo(O,w,t) = o 1+ Z a™(w,t)e?™ +cc. |, (39)
m=1 n=1
=wp + 25 rge” 0 — predifn) | (36) yields the following ODE fow:
(3
for integerg > 2 andw,, randomly drawn from the distribu- a+q <iwa + K (rqa® — T*)> —0. (40)
tion g(w). We find in this situation thaf clusters form. !

Again, we introduce a continuum description and repre-
sent the distribution of oscillators with the density fuoot . ]
£(6,w,t), which satisfies the continuity equation As before, we ley(w) be Lorentzian with zero mean and
spreadA, such thatr,(t) = a*(—iA,t) = a*(¢), which
closes the dynamics foy, = |ry|e’Vs:

Ocf + Op [f (w + % (rqe*qi(f _ Tzeqie)):| —0. (37)
il =a (-8l + Glnla 1)@
g dy =0 @2)

q—
i(0w,t) =~ Z f(0+2kn/q,w,t) exp(2mijht/q), Thus, the manifold for thg = 0 mode dynamics, which can
k=0 (38) be shown to be globally attracting [20, 21], is the sej-tdiple
Poisson kernel®(¢f — v, |r4(t)],w). Again, we assume
for j = 0,...,¢. These modes satisfy the symmetry relationWithoutloss of generality that, = 0.
£i(0+27/q,w,t) = exp(2mij0/q) f;(6, w, 1). B. Steady-State Solution
In analogy with the; = 2 state, we will find that the mode
j = 0, corresponding to the symmetric part pfwhenqg =

In analogy with Eq. (10) we define the modes

LS

2, has a globally-attracting low-dimensional descriptibatt With ¢ potential clusters, the order-paramdigf measures
evolves independently from the other modes, leaving 1 the degree of cluster synchrony in the system, while thedowe
free parameters to describe the distribution. q — 1 order parametel$+ |, ..., |r,—1| measure the degree of
asynchrony. Note that the distribution is only perfectlynsy
metric ifry = --- = rq—1 = 0. Thus, there arg — 1 different
A. Dynamicsof the j = 0 Mode measures of the asymmetry.

A similar variation of the OA ansatz can be used to find Using a similar analysis as in the= 2 case, we find that
a low-dimensional description of the dynamics of the= 0 at steady-state

w(go — J 9@ XI5 (1/a+¢)d(0 — 9(w) — 2k /q) i | < Klrgl, 23
f ( aw) - ) 5 D) . if ( )
— K2[rg[?/|mlw — K|rq| sin(¢0)]| if |w| > Klryl,
|
with |r,| = /1 —2A/K and ¢(w) = arcsin (#Tq‘) /q. C. Transient Dynamics
Note that forf** to be a distribution the coefficients must
satisfyc; > —1/q andz‘l_o ¢; = 0, leavingq — 1 free pa- To capture the transient dynamics, we study the PDE and

rameters that define the distribution. Note that inghe 2  corresponding characteristics given by
case there was a single parameter [t@&,Eq. (20)] that char-

acterized the asymmetry between the two clusters. O f + [w—Klrq|sin(g0)]0p f = qK|rq| cos(ql) f,  (44)
= 0 = w — K|rq|sin(¢h), (45)
f= qK|rq| cos(q), (46)
. K 9
The steady-state order parameters can be calculated using Iral = a | =Alrel + FIrd] (1=1Irgl%) |- (47)

the same methods that led to Eq. (25), and analogous expres-
sions (not presented here) can be obtained. When|r,| is at steady-state, we can solve Egs. (45) and (46)



has a large degree of multistability.

We have demonstrated how to manipulate the degree of
asymmetry in the cluster states through the application of a
short duration forcing term and modulation of the coupling
strength. Starting from a symmetric state, any degree ahasy
metry can be established by choosing the appropriate darati
and strength of the forcing term. Furthermore, reducing the
coupling strength decreases the amount of asymmetry in the

0 0.5 1 1.5 cluster configuration, while increasing it does not haveoire
time t posite effect, as shown in Fig. 8(a). Therefore, modulation
FIG. 9: (Color online) Comparison df|, |r2|, and|rs| from the  Of the coupling strength can be used to “erase” information.
PDE (44) (blue circles, green triangles and red squaresnidation ~ While we demonstrated this procedure using a system with
with N' = 10000 oscillators (cyan and magenta dashed lines) withq = 2, similar methods could be employed fgr> 2. In
the same initial conditions and parameters from figure 6. particular,q — 1 parameters describe the cluster configura-
tion, and the system could be driven to a configuration that

. . encodes desired values of these parameters by the applicati
exactly, yielding equations analogous to Egs. (A1) and (A2) ot appropriately chosen forcing functions. Using theséitec
Appendix A for the characteristics éfand solutionf, which  hjq, e it is possible to encode information in the statédef t

we do not present here. _ . system, which might find applications in the development of
When|r,| is not at steady state its evolution is given by Kuramoto-type neural models.

— Problems that remain open include generalization such as
(&) B 11 ca(2A- KL, (48) the presence of noise and coupling functions with two or more

Ira()] = Po/y| 1+ harmonics. Thus far the work of Ott and Antonsen [19] has

not been generalized to these cases and no low dimensional
analytic solution has been found. However, we hypothesize

: . that when noise is added to Eqg. (3) spontaneous switching can
mencqlly. In Fig. 9 we Compafh'* 72|, and!r3| from the occur. The case where the coupling function has more than

numerically-computed PDE squt|_on (blue circles, green ' one harmonic has also been considered [11]. In certain cases
a_mglefsizand?)reed scE]uaies, re;pecitlvely) to a |_1”umer|cal a+mu|e_g_Hnm(9) — (K sin(q10) + Ka sin(g26)) /N whereK >

tion of Eq. (36) withg = 3 and.V = 10000 oscillators (cyan, K7, the resulting system is well-approximated to the class of

ye:loyv, afnd magenlta da(‘fhed I(ljnesc,j reﬁpgcg'lvellz)l: The daaly g qtems studied in this paper and results, such as clugterin
solution for|rs| is plotted as a dot-dashed black line. and asymmetry, are qualitatively similar.
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Po

where P, = /1 —2A/K and Eq. (44) can be solved nu-

We have found an analytic description of both steady-state
and transient dynamics of a system that shows cluster syn-
chrony given by Eqgs. (1) and (2). In the largelimit, ¢ = 2
solutions can be decomposed into symmetric and antisymmet-
ric parts. The symmetric part, which evolves independently
from the antisymmetric part and towards a steady-state-inde In this appendix we present the results of solving the PDE
pendent of initial conditions, can be found using a variatio in Eq. (27) via the method of characteristics wHes is at
of the OA ansatz [19] and is globally attracting. The antisym steady-state (i.e|rs| = /1 —2A/K). The characteristic
metric part, however, is shaped by the evolution of the symODEs are Egs. (28) and (29). Given an initial phégethed
mertic part, is strongly dependent on initial conditionsda characteristics evolve as

Appendix A: Characteristics

K|rq| — \/w? — K2|ry|? tan <arctan [M} - tm)
Vw2—K?2|ry|?

0(t,00) = arctan
w

(A1)

Several example characteristics for the locked and dgiftin Fig. 4 (a) and (b).
populations = 1 andw = 3, respectively), are plotted in



For initial conditionsf (0, w, tg) = g(w)h(#) thed charac-
teristics can be used to solve (0, w, t), given by

h(6o)

fO,w,t) = g(w)mBD, (A2)

D= [w2+K2|r2|2 cos (E) — K|ra]/w? —K2|r2|251n(E)} [

whereE = 2 arctan [(K|r2| ~wtanb(t))/ /% = K2|r2|2}.
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whereB = w — K|ro|sin[26(t)], and

w — K|ro|sin[260(t)]
wK?|rg)? — w3 ’

(A3)
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