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We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when
higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic
description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of
cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction
technique of Ott and Antonsen (Chaos18, 037113 (2008)) and find an analytic description of the degree of
cluster synchrony valid on a globally attracting manifold.Shaped by this manifold, there is an infinite family
of steady-state distributions of oscillators, resulting in a high degree of multi-stability in the cluster asymmetry.
We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems
displaying cluster synchrony can be used to encode and storedata.

PACS numbers: 05.45.Xt, 05.90.+m

I. INTRODUCTION

Large systems of coupled oscillators occur in many exam-
ples throughout science and nature and serve as a basic model
for emergent collective behavior. Examples include synchro-
nized flashing of fireflies [1], cardiac pacemaker cells [2],
walker-induced oscillations of the Millennium Bridge [3],and
circadian rhythms in mammals [4]. Under certain conditions,
these limit cycle oscillators can be approximately described
entirely in terms of their phase anglesθ. Kuramoto showed [5]
that the evolution of the phases in an ensemble ofN weakly
coupled oscillators obeys

θ̇n = ωn +
N∑

m=1

Hnm(θm − θn), (1)

whereθn andωn are the phase and intrinsic frequency of os-
cillator n, andHnm is a 2π-periodic function. The choice
of Hnm(θ) = (K/N) sin(θ), which leads to the Kuramoto
model [5], is well motivated because the expansion of sev-
eral coupled oscillators about a Hopf bifurcation generically
leads to sinusoidal coupling. This choice has also become
a paradigm for the study of emergence of synchrony in cou-
pled heterogeneous oscillators [6]. Many generalizationsof
the Kuramoto model have been studied. Some examples are
systems that account for time-delay [7], network structure[8],
non-local coupling [9], external forcing [10], non-sinusoidal
coupling [11], Josephson junction circuits [12], coupled ex-
citable oscillators [13], bimodal distributions of oscillator fre-
quencies [14], phase resetting [15], time-dependent connec-
tivity [16], noise [17], and communities of coupled oscilla-
tors [18]. Recent analytical work [19–21] (in particular the
Ott-Antonsen (OA) ansatz [19]) has allowed for the simplifi-
cation of the analysis of these systems to the study of reduced
low-dimensional equations and made many of these systems
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analytically tractable.

While the choiceHnm(θ) = (K/N) sin(θ) that yields the
Kuramoto model is the simplest, describes many situations of
interest, and has the advantage of being analytically tractable,
more general choices can result in additional dynamical fea-
tures. If there are higher harmonics inHnm, but the sinusoidal
term is dominant, there is a transition to synchrony as in the
Kuramoto model as the coupling between the oscillators in-
creases [11]. In this case, the synchronous state is character-
ized by the phases of a large fraction of the oscillators clus-
tering around a common phase. When higher harmonic terms
are dominant, however, the synchronous state is characterized
by the formation of multiple synchronized groups (or “clus-
ters”) of oscillators, each with a common phase [22]. This
phenomenon has also been called multibranch entrainment in
previous work [23]. Cluster synchrony occurs in many ap-
plications in nature, including networks of neuronal, photo-
chemical, and electrochemical oscillators [24–26], as well as
genetic networks [27]. In this paper we will study Eq. (1) with

Hnm(θ) =
K

N
sin(qθ), (2)

for integer q ≥ 2, which, as we will see, leads generi-
cally to the formation ofq clusters. There are various ex-
perimental and theoretical motivations for the study of this
model. In Ref. [25], experiments with systems of globally
coupled photochemical oscillators were performed in which
two synchronized clusters emerged. In Ref. [26], the cou-
pling function between electrochemical oscillatorsn andm
was directly measured and found to be qualitatively equiv-
alent to eitherHnm(θ) = (K/N) sin(θ) at a lower volt-
age, which is equivalent to the classical Kuramoto model, or
Hnm(θ) = (K/N) sin(2θ) at higher voltage, which is equiv-
alent to Eq. (2) withq = 2. In some Kuramoto-type models of
neuronal networks, a coupling function of the form in Eq. (2)
and the associated cluster synchrony arises as a result of learn-
ing and network adaptation. It has been proposed that the cou-
pling between oscillators in such networks evolves according
to a Hebbian learning rule [28]. If this learning is fast, Eq.(2)
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FIG. 1: (Color online) Example oscillator configurations ofa system with (a) no synchrony (|r1|, |r2| ≈ 0), (b) symmetric (|r1| ≈ 0) cluster
synchrony (|r2| > 0), and (c) asymmetric (|r1| > 0) cluster synchrony (|r2| > 0) and corresponding density functions (d), (e), and (f).

is recovered withq = 2 [29]. We note that the applications
mentioned above all useq = 2, but largerq values are also
relevant. For instance, cases of three or more clusters have
appeared in the study of synthetic gene networks [27].

Cluster synchrony has been studied in many contexts, for
example in networks of phase oscillators with [22] and with-
out noise [30, 31], networks of integrate-and-fire oscillators
[32], and more general cases [33]. Reference [28] studied
Eqs. (1) and (2) in steady-state using a self-consistent ap-
proach to characterize the phase distribution and stability of
the clusters. Reference [22] studied the dynamics of clusters
in ensembles of oscillators when the coupling functionH has
two Fourier modes under the effect of small noise. Despite
these and other studies [30], a complete analytical treatment of
Eqs. (1) and (2) is lacking. For example, Ref. [28] studies the
steady state solution using a self-consistent approach, but does
not analyze the dynamics, while Refs. [22, 30] assume iden-
tical oscillators. In this paper we will use the Ott-Antonsen
ansatz to obtain a low-dimensional description of cluster dy-
namics and a full solution to Eqs. (1) and (2). Thus, our so-
lution of Eqs. (1) and (2) is analogous to the recent solution
[19, 20] of the Kuramoto model in that, even though partial
solutions existed previously, our solution fully characterizes
the dynamics (with the same caveats as in Refs. [19, 20]).

Two interesting phenomena that are particular to systems
displaying cluster synchrony are asymmetric clustering [34]
and switching [22, 25]. Asymmetric clustering is character-
ized by a non-uniform distribution of oscillators in different
clusters and switching refers to oscillators moving between
clusters. We find that asymmetric clustering emerges from
non-uniform initial conditions, to which systems with a cou-
pling function of the form of Eq. (2) withq ≥ 2 are very sen-
sitive. Switching can be achieved by introducing an external
forcing term,F sin(Ψ − ω0t − θn) (whereω0 is the average
oscillator frequency), on the right hand side of Eq. (1) with
F 6= 0 nonzero for a finite amount of time. This results in a

fraction of oscillators switching to a cluster aroundθ = Ψ. If
different values ofΨ are chosen for different oscillators (i.e.,
Ψ 7→ Ψn), then ifF is large enough with respect to|ωn| and
K, the phase of oscillatorn will converge to a value nearΨn.

This paper is organized as follows. In Section II we solve
for the dynamics of the system with Eq. (2) andq = 2. In Sec-
tion III we discuss the effect of external forcing on asymmet-
ric clustering and switching, the presence of hysteresis when
the coupling strength is changed, as well as how asymmetric
clustering can be used to store information. In Section IV we
discuss how results generalize to the caseq > 2. Finally, in
Section V we conclude this paper by discussing our results.

II. LOW-DIMENSIONAL DESCRIPTION OF THE
TWO-CLUSTER STATE

In this section, we will study in detail Eqs. (1) and (2) with
q = 2, which leads to the system

θ̇n = ωn +
K

N

N∑

m=1

sin[2(θm − θn)], (3)

where the intrinsic frequenciesωn are drawn randomly from a
distributiong(ω). Also, we define the set of generalized order
parameters

rk = |rk|eiψk =
1

N

N∑

m=1

eikθm , (4)

for k ∈ N. These generalized order parameters were intro-
duced in previous work [35] where coupling functions with
higher harmonics were studied. We will see that when more
than one cluster emerges, more than onerk is needed to de-
scribe the dynamics of the system. In this case ofq = 2, two
clusters emerge. The order parameter|r2| measures the de-
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gree of cluster synchrony in the system while|r1| measures
the degree of asymmetry in clustering (see Fig. 1). Eq. (3) can
be rewritten in terms ofr2 as

θ̇n = ωn +
K

2i

(
r2e

−2iθn − r∗2e
2iθn

)
, (5)

where∗ denotes complex conjugate.

Following Ref. [19], we letN → ∞ and move to a con-
tinuum description. Accordingly, we introduce the density
functionf(θ, ω, t), which describes the density of oscillators
with phaseθ and natural frequencyω at time t. Since os-
cillators are conservedf must satisfy the continuity equation
∂tf + ∂θ(f θ̇) = 0, giving

∂tf + ∂θ

[
f

(
ω +

K

2i

(
r2e

−2iθ − r∗2e
2iθ
))]

= 0. (6)

To analyze Eq. (6), we find it convenient to define the sym-
metric and antisymmetric parts off , fs andfa, as

fs/a(θ, ω, t) = [f(θ, ω, t)± f(θ + π, ω, t)]/2, (7)

wherefs andfa are symmetric and antisymmetric with re-
spect to translation byπ, respectively, in the sense thatfs(θ+
π, ω, t) = fs(θ, ω, t) andfa(θ + π, ω, t) = −fa(θ, ω, t). We
note thatf is a solution of Eq. (6) iff = fs+fa andfs andfa
are both solutions of Eq. (6). Thus, we can study separately
the symmetric and antisymmetric dynamics of solutionsf .

A. Symmetric Dynamics

We now use a variation of the OA ansatz to find a low-
dimensional analytical solution for the dynamics of the sym-
metric part off , which evolves independently from the anti-
symmetric part. For the Kuramoto model, after expanding the
distributionf in Fourier Series,

f(θ, ω, t) =
g(ω)

2π

(
1 +

∞∑

n=1

f̂n(ω, t)e
inθ + c.c.

)
, (8)

wherec.c. denotes complex conjugate terms, Ref. [19] intro-
duces the ansatẑfn(ω, t) = an(ω, t) which yields a solution
for systems with sinusoidal coupling provideda evolves ac-
cording to a simple ODE. Solutions of this kind turn out to
form a low-dimensional, globally-attracting, invariant mani-
fold to which solutions converge quickly given that the spread
in g(ω) is non-zero [20]. This manifold is the set of Poisson
kernels,

f(θ, ω, t) =
g(ω)

2π

1− |a|2
1 + |a|2 − 2|a| cos(arg(a)− θ)

. (9)

In terms of the Fourier series (8), the symmetric part off is

given by

fs(θ, ω, t) =
g(ω)

2π

(
1 +

∞∑

n=1

f̂2n(ω, t)e
2inθ + c.c.

)
. (10)

For the new system defined by Eq. (3), we use the follow-
ing variation of the OA ansatz on the symmetric part off :
f̂2n(ω, t) = an(ω, t). When Eq. (10) with this ansatz is in-
serted into Eq. (6) and projected onto the subspace spanned
by einθ, all equations reduce to the following ODE fora:

ȧ+ 2iωa+K
(
r2a

2 − r∗2
)
= 0. (11)

In the continuum limit, we have

r2(t) =

∫ ∞

−∞

∫ 2π

0

e2iθf(θ, ω, t)dθdω

=

∫ ∞

−∞

g(ω)a∗(ω, t)dω. (12)

We now assume thatg(ω) is Lorentzian with meanω0 and
spread∆, i.e. g(ω) = ∆

π(∆2+(ω−ω0)2)
. Furthermore, by en-

tering the rotating frameθ 7→ θ+ω0t we can assume without
loss of generality thatω0 = 0. With this choice ofg(ω) we
can integrate Eq. (12) exactly by closing the contour with the
semicircle of infinite radius in the lower-half complex plane
and evaluatinga at the enclosed pole (see Refs. [19, 20] for
the validity of this procedure):

r2(t) = a∗(−i∆, t) ≡ a∗(t), (13)

where we’ve defineda(t) ≡ a(−i∆, t) to simplify notation.
By evaluating Eq. (11) atω = −i∆, close the dynamics for
r2:

ṙ2 = −2∆r2 +K(r2 − r∗2r
2
2). (14)

In polar coordinates,r2 = |r2|eiψ2 , we find

˙|r2| = −2∆|r2|+K|r2|(1− |r2|2), (15)

ψ̇2 = 0. (16)

Thus, the unsynchronized state (i.e.|r2| = 0) is stable for
K < 2∆, at which point it loses stability and the stable syn-
chronized branch|r2| =

√
1− 2∆/K emerges.

We now show that solutions of the form given in Eq. (10)
with fn(ω, t) = an(ω, t), wherea obeys Eq. (11), are globally
attracting. An alternative way of solving for the dynamics of
r2 is to make the change of variableφ = 2θ, which yields a
new continuity equation:

∂tfs + ∂φ

[
2fs

(
ω +

K

2i
(r2e

−iφ − r∗2e
iφ)

)]
= 0, (17)

which is of the same form of the equation studied in Ref. [20].
There it is shown that the dynamics ofr2 given by Eq. (14)
are globally attracting provided that the spread ofg(ω) is non-
zero. Thus, the globally attracting invariant manifold forfs is
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the set of double Poisson kernels centered atψ2, fs(θ, ω, t) =
P (2θ − ψ2, |r2(t)|, ω), where

P (θ, ρ, ω) =
g(ω)

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ)
. (18)

Since the system is invariant to rotationsθ 7→ θ+ϕ, hereafter
we assume without loss of generality thatψ2 = 0.

B. Steady-State Solution

We first find the steady-state solutions of the system de-
scribed by Eq. (3). Recall that the symmetric and antisym-
metric parts off satisfy the PDE

∂tfs/a + ∂θ
[
fs/a (ω −K|r2| sin(2θ))

]
. (19)

To find the steady-state solutionf sss/a, we set∂tf sss/a = 0.

For |ω| ≤ K|r2| we find thatf sss/a/g(ω) = c1,s/aδ(θ −
φ(ω)) + c2,s/aδ(θ − φ(ω) − π), whereφ(ω) andφ(ω) + π
are the stable fixed points of Eq. (5) defined byφ(ω) =
1
2 arcsin[ω/(K|r2|)]. (Recall that we assumeψ2 = 0.) Im-
posing symmetric and antisymmetric conditions, we have that
c1,s = c2,s = 1/2 andc1,a = −c2,a = c with |c| ≤ 1/2.

For |ω| > K|r2|, we find thatf sss /g(ω) = C(ω)/|ω −
K|r2| sin(2θ)|, where C(ω) = 2

√
ω2 −K2|r2|2/π and

f ssa = 0. Thus, the complete steady-state distribution of os-
cillators is

f ss(θ, ω) =

{
g(ω)[(1/2 + c)δ(θ − φ(ω)) + (1/2− c)δ(θ − φ(ω)− π)] if |ω| ≤ K|r2|,
2g(ω)

√
ω2 −K2|r2|2/|π[ω −K|r2| sin(2θ)]| if |ω| > K|r2|,

(20)

with |r2| =
√
1− 2∆/K. The interpretation of the different

terms in Eq. (20) is the following. For|ω| ≤ K|r2| f ss is
comprised of two delta functions representing the two clusters
of phase-locked oscillators atθ = φ(ω) andφ(ω) + π. For
|ω| > K|r2| oscillators drift for all time and the second line
in Eq. (20) is their steady-state distribution.

While the symmetric part of the distribution is only depen-
dent on the value ofK, the antisymmetric part of the distri-
bution depends on the free parameterc, which must be deter-
mined from initial conditions. Thus, different solutions with
different degrees of cluster asymmetry coexist.

Now we compute the degree of cluster synchrony and
asymmetry in the system at steady-state in terms of initial
conditions. The degree of cluster synchrony is exactly|r2| =√
1− 2∆/K, but the degree of asymmetry, measured by|r1|,

depends on the free parameterc which must be determined
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Θ

FIG. 2: (Color online) Stable (solid blue) and unstable (dashed red)
equilibria ofθ as a function ofω for phase-locked oscillators. Bound-
aries between locked and drifting regions (ω = ±K|r2|) are plotted
in black dotted lines.

from initial conditions. To calculater1, we note that only the
locked portion (|ω| ≤ K|r2|) of f contributes tor1, so

r1 =

∫ K|r2|

−K|r2|

∫ 2π

0

f ss(θ, ω)eiθdθdω (21)

= 2c

∫ K|r2|

−K|r2|

g(ω)eiφ(ω)dω. (22)

Through a series of substitutions, this integral can be evalu-
ated exactly:

|r1| =
2
√
2c

π

(
arctan(A−)

A+
− arctanh(A+)

A−

)
, (23)

whereA± =

√
K|r2|√

K2|r2|2 +∆2 ±K|r2|
. (24)
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FIG. 3: (Color online) Order parameters|r1(t)| (solid colored
curves) and|r2(t)| (dashed colored curves) forb = 0, 0.4, and0.8
from a simulation of Eq. (3) withN = 10000 oscillators and ana-
lytic predictions of steady-state (black dot-dashed lines). Parameters
areK = 4, ∆ = 1.
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FIG. 4: (Color online) Example characteristicsθ(t) from Eq. (A1)
for K = 4 and∆ = 1 of (a) locked oscillators (ω = 1) and (b)
drifting oscillators (ω = 3).

As an example illustrating the dependence ofc on ini-
tial conditions we assume for simplicity that the symmet-
ric dynamics are at steady-state by timet = t0 so that
|r2| =

√
1− 2∆/K, but the antisymmetric part may still

not be at rest. Thus, phase-locked oscillators with natural
frequencyωn settle to one of the two stable equilibria of
θ̇n = ωn−K|r2| sin(2θn), while the unstable equilibria serve
as boundaries for the basins of attraction. In Fig. 2 we plot the
stable equilibria in blue solid lines and the unstable equilib-
ria in red dashed lines forK = 4 and∆ = 1. Boundaries
between locked and drifting regions,ω = ±K|r2|, are plot-
ted in dotted black lines. We denote the unstable equilibriaby
Θ1,2 = − 1

2 arcsin[ω/(K|r2|)] ∓ π
2 . From Eq. (20) we find

thatc+ 1/2 is just the fraction of oscillators in the locked re-
gion betweenΘ1 andΘ2, soc in terms of the initial density
f(θ, ω, t0) is

c+
1

2
=

∫K|r2|

−K|r2|

∫ Θ2

Θ1

f(θ, ω, t0)dθdω
∫K|r2|

−K|r2|

∫ π
−π f(θ, ω, t0)dθdω

. (25)

To test this result, we choose initial conditions

f(θ, ω, t0) = P (2θ, ρ2, ω)[1 + b cos(θ)], (26)

which has symmetric and antisymmetric partsfs =
P (2θ, |r2|, ω) andfa = bP (2θ, |r2|, ω) cos(θ), respectively.

ChoosingK = 4 and∆ = 1 we integrate Eq. (25) numer-
ically to getc ≈ 0.442351b. In Fig. 3 we plot results from
a direct numerical simulation of Eq. (3) compared with the
analytical prediction above. We simulateN = 10000 oscilla-
tors withK = 4 and∆ = 1 and plot|r1(t)| for b = 0, 0.4,
and0.8 in blue, red, and green solid lines (labeled in Fig. 3),
respectively, with the predicted value oflimt→∞ |r1(t)| for

0 1 2 3 4
0

0.2

0.4

0.6

0.8

time t

|r 1|

a = 0.0

a = 0.4

a = 0.8

FIG. 5: (Color online) Transient dynamics of|r1(t)| for initial con-
ditions f(θ, ω, 0) = P (2θ, |r2|, ω)(1 + b cos(θ)) from simulation
with N = 10000 and b = 0, 0.4, and0.8 (blue, red and green
curves) and from integrating Eq. (32) numerically (cyan, magenta,
and black dashed curves). Parameters areK = 4 and∆ = 1.

each in black dot-dashed. We also plot|r2(t)| for each value
and the predicted value oflimt→∞ |r2(t)| = 1/

√
2 in black

dashed curves. Simulations agree very well with the theory.
Note that, unlike|r1|, |r2| (both predicted and from simula-
tion) does not depend onb.

C. Transient Dynamics

From Fig. 3 we see that the|r1| dynamics reach steady-state
quickly. To capture the transient dynamics we can solve the
PDE (6)

∂tf + [ω −K|r2| sin(2θ)]∂θf = 2K|r2| cos(2θ)f (27)

coupled with the|r2| dynamics, which evolve independently,
via the method of characteristics [36]. The characteristic
equations (along witḣω = 0) are

θ̇ = ω −K|r2| sin(2θ), (28)

ḟ = 2K|r2| cos(2θ), (29)

˙|r2| = 2

[
−∆|r2|+

K

2
|r2|(1− |r2|2)

]
. (30)

When|r2| is at steady-state Eqs. (28-30) can be solved an-
alytically. Analytic expressions for the characteristic curves
θ(t, θ0) starting at the initial phaseθ0 and the distribu-
tion f(θ, ω, t), starting with initial conditionf(θ, ω, t0) =
g(ω)h(θ) are given in Appendix A.

UsingK = 4 and∆ = 1, we plot some example charac-
teristics using the analytic solution forω = 1 andω = 3 in
Figs. 4(a) and 4(b), respectively. For these parameter values
ω = 1 is in the locked population andω = 3 is drifting. For
ω = 1, characteristics (solid colored lines) quickly converge
to one of the two stable fixed points, with basins of attrac-
tion separated by unstable fixed points (black dotted lines).
Thus,f evaluated atω = 1 converges very quickly to two
point masses. However, forω = 3, the characteristics con-
tinue drifting with a finite velocity for all time.
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FIG. 6: (Color online) Numerically-computed distributionf(θ, ω, t)/g(ω) obtained from numerically solving Eq. (27) at timest = 0.33 (a),
t = 0.67 (b), andt = 1 (c) with inital conditionsP (2θ, 0.1, ω)(1 + 0.4 cos(θ)) and parametersK = 4 and∆ = 1.

In principle, we could calculater1(t) through the integral

r1(t) =

∫ ∞

−∞

∫ π

−π

f(θ, ω, t)eiθdθdω, (31)

wheref(θ, ω, t) is given by Eq. (A2) in Appendix A. How-
ever, given the quick convergence off to delta functions in
the locked regime, Eq. (31) is difficult to integrate numeri-
cally, so we rather calculater1(t) via the integral

r1(t) =

∫ ∞

−∞

∫ π

−π

f(θ(t, θ0), ω, t)e
iθ(t,θ0)

∂θ

∂θ0
dθ0dω. (32)

In Fig. 5 we compare the results of integrating Eq. (32) nu-
merically with the simulations of Eq. (3) usingN = 10000os-
cillators,K = 4, ∆ = 1, andf(θ, ω, 0) = P (2θ, |r2|, ω)(1 +
b cos(θ)). For b = 0, 0.4, and0.8, |r1| obtained from simu-
lations are plotted as solid lines, and results from integrating
Eq. (32) numerically are plotted as dashed lines. The results
from Eq. (32) capture the transient dynamics very well.

The example above leading to Fig. 5 was for a case with|r2|
initially at steady state. If|r2| is not initially at steady-state,
the solution to Eq. (15) with initial condition|r2(0)| = ρ0 is
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FIG. 7: (Color online) Comparison of|r1| and|r2| from the numeri-
cally solved PDE (27) (blue circles and red triangles) and from direct
simulation of Eq. (3) withN = 10000 oscillators (cyan and magenta
dashed lines) with the same initial conditions and parameters used in
Fig. 6.

exactly [19]

|r2(t)| = P 2/

√√√√1 +

[(
P 2

ρ0

)2

− 1

]
e2(2∆−K)t, (33)

whereP 2 =
√
1− 2∆/K.

In Fig. 6 we plot the evolution off(θ, ω, t) obtained from
numerically solving Eq. (27) when the symmetric dynam-
ics are not at steady-state. Starting with initial conditions
f(θ, ω, 0) = P (2θ, 0.1, ω)(1 + 0.4 cos(θ)) and parameters
K = 4, ∆ = 1 we plot the distributionf(θ, ω, t)/g(ω) at
t = 0.33 (a), t = 0.67 (b), andt = 1 (c). We see that the dis-
tribution quickly localizes, in agreement with the asymptotic
form in Eq. (20). In Fig. 7 we compare|r1(t)| and|r2(t)| cal-
culated from the numerical solution of Eq. (27) (blue circles
and red triangles) with the same variables calculated from a
direct simulation of Eq. (3) withN = 10000 oscillators (cyan
and magenta dashed lines). The analytic solution|r2(t)| in
Eq. (33) is plotted as a black dot-dashed line.

III. EXTERNAL DRIVING AND HYSTERESIS IN THE
TWO-CLUSTER STATE

As we have seen, Eq. (3) admits a family of steady-state so-
lutions characterized by a free parameterc. In this Section, we
demonstrate that, by appropriately forcing Eq. (3) and modu-
lating the coupling strength, the system can be driven to anyof
these solutions, thus allowing us to encode any desired value
of c in the state of the system. Assumingω0 = 0, we consider
the forced system

θ̇n = ωn +
K

N

N∑

m=1

sin[2(θm − θn)] + F (t) sin(Φn − θn)

(34)

whereF (t) =

{
F0 if t ∈ I
0 otherwise, (35)

for some forcing magnitudeF0 and time intervalI = [t1, t2].
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For F0 sufficiently large in comparison with|ωn| andK
and durationd = t2 − t1 not too small,θn will approach
≈ arcsin(ωn/F0) + Φn ≈ Φn for F0 ≫ |ωn| +K. Thus, if
Φn = 0 for all n with d andF0 large enough (i.e.F0 ≫
K
√
1− 2∆/K), all locked oscillators are entrained to the

θ = 0 cluster and remain there aftert = t2, thus creating
a completely asymmetric cluster state. On the other hand, if
Φn are drawn from the distributionh(Φ) = dδ(Φ) + (1 −
d)δ(Φ − π), then the ratio of the number of oscillators end-
ing up in the cluster centered atψ = 0 to those in the cluster
centered atψ = π is d/(1 − d), which forcesc in Eq. (23) to
d−1/2. Thus, by choosing appropriately the external forcing,
we can set any degree of asymmetry we wish.

To explore the effect of differentF0 andd values, we sim-
ulate Eq. (34) withN = 2000 oscillators with random initial
conditions and parametersK = 4 and∆ = 1 until steady-
state (and attaining two clusters of approximately equal size,
|r1| ≈ 0), then force the system with a strength ofF0 for a
durationd and allΦn = 0, then allow the system to reach
steady-state and plot the resulting|r1| value in Fig. 8(a). For
very smallF0 or d, |r1| remains small, but as soon as both are
large enough the resulting|r1| increases quickly.

By forcing the system in this manner we achieve switching,
i.e. oscillatorn switches to the cluster centered at phaseΦn
if ωn is not too large. We note here that this kind of forced
switching is qualitatively different than that in Ref. [25]. In
our original system given by Eq. (3), switching does not occur
spontaneously. Thus, external forcing is necessary to observe
the phenomenon. However, in Ref. [25] switching occurs
spontaneously due to a heteroclinic orbit between different
cluster states.

Next, we consider the effects of slowly (compared with
∆−1) changing the coupling strengthK after a steady state
with some asymmetry is reached. If steady state is reached
at t = t0 with a coupling strengthK = K0, then consider
changingK toK1. We find hysteretic behavior in|r1| but not
|r2|. Regardless of whetherK1 < K0 or vice-versa,|r2| con-
verges quickly to the predicted value|r2| =

√
1− 2∆/K1,

but the dynamics of|r1| are more interesting: ifK1 < K0

then |r1| decreases significantly, but ifK1 > K0, then |r1|
remains approximately constant. In this situation, at time
t0, the distribution of oscillators is given by Eq. (20). If
K1 < K0 the locked population loses all oscillators with√
K2

1 − 2∆K1 < |ω| <
√
K2

0 − 2∆K0 and |r1| changes
accordingly (maintaining the samec value, since these oscil-
lators are lost in equal proportions from both clusters). Onthe
other hand, ifK1 > K0 the locked population will gain os-
cillators with

√
K2

0 − 2∆K0 < |ω| <
√
K2

1 − 2∆K1. How-
ever, att = t0 the distribution for these drifting oscillators is
perfectly symmetric, so both clusters pick up an equal number
of oscillators and the symmetric densityfs changes, while the
antisymmetric densityfa remains the same. Thus, the only
change in|r1| comes from the slight tightening of the phases
φ(ω) = 1

2 arcsin[ω/(K|r2|)] andφ(ω) + π about the clusters
atθ = 0 andπ.

Extending this analysis to the case whereK is both in-
creased and decreased,|r1| will never increase significantly,
and only decrease significantly whenK is decreased below a

d
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FIG. 8: (Color online) (a) Steady-state|r1| after forcing a symmetric
distribution with forcing magnitudeF0 for a durationd with K = 4
and∆ = 1. (b) Hysteretic behavior of|r1| (blue circles) vs the non-
hysteretic behavior of|r2| (black triangles) whenK is changed in
time (red dashed line).

previous minimum. In figure 8(b) we plot|r1| and|r2| (blue
circles and black triangles, respectively) as we changeK (red
dashed line). While|r2| follows the predicted behavior (green
dot-dashed line) without any hysteresis, it is clear that|r1| be-
haves as described above.

We now suggest, as others have [37], that systems such as
that given by Eq. (3) provide ways for encoding and storing
data. These systems have the unique property that the sym-
metric dynamics have a unique, (globally) stable fixed point,
while there is a high degree of multi-stability in the antisym-
metric dynamics. Furthermore, we have demonstrated above
that through forced switching and modulation of the coupling
strength, the asymmetry (i.e.,|r1|) can be controlled. Thus,
we suggest that a continuous valued variable could be stored
and retrieved by representing it by|r1|. Furthermore, in the
generalq case, which we study next, we will see that in addi-
tion to one globally-attracting symmetric part, there areq − 1
additional modes that display multi-stability. Thus, through
similar techniques theq − 1 quantities|r1(t)|, . . . , |rq−1(t)|
can be controlled and used to store and retrieveq− 1 different
continuous valued variables.

IV. GENERAL q ≥ 2

We now discuss how the dynamics of the two state case
generalize to higher-order coupling functions. Thus, we study
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the system

θ̇n = ωn +
K

N

N∑

m=1

sin[q(θm − θn)]

= ωn +
K

2i

(
rqe

−qiθn − r∗qe
qiθn

)
, (36)

for integerq ≥ 2 andωn randomly drawn from the distribu-
tion g(ω). We find in this situation thatq clusters form.

Again, we introduce a continuum description and repre-
sent the distribution of oscillators with the density function
f(θ, ω, t), which satisfies the continuity equation

∂tf + ∂θ

[
f

(
ω +

K

2i

(
rqe

−qiθ − r∗qe
qiθ
))]

= 0. (37)

In analogy with Eq. (10) we define the modes

fj(θ, ω, t) =
1

q

q−1∑

k=0

f(θ + 2kπ/q, ω, t) exp(2πijkθ/q),

(38)

for j = 0, . . . , q. These modes satisfy the symmetry relation
fj(θ + 2π/q, ω, t) = exp(2πijθ/q)fj(θ, ω, t).

In analogy with theq = 2 state, we will find that the mode
j = 0, corresponding to the symmetric part off whenq =
2, has a globally-attracting low-dimensional description that
evolves independently from the other modes, leavingq − 1
free parameters to describe the distribution.

A. Dynamics of the j = 0 Mode

A similar variation of the OA ansatz can be used to find
a low-dimensional description of the dynamics of thej = 0

mode dynamics. The ansatz

f0(θ, ω, t) =
g(ω)

2π

(
1 +

∞∑

n=1

an(ω, t)eqinθ + c.c.

)
, (39)

yields the following ODE fora:

ȧ+ q

(
iωa+

K

2

(
rqa

2 − r∗q
))

= 0. (40)

As before, we letg(ω) be Lorentzian with zero mean and
spread∆, such thatrq(t) = a∗(−i∆, t) ≡ a∗(t), which
closes the dynamics forrq = |rq|eiψq :

˙|rq | = q

(
−∆|rq|+

K

2
|rq|(1 − |rq|2)

)
, (41)

ψ̇q = 0. (42)

Thus, the manifold for thej = 0 mode dynamics, which can
be shown to be globally attracting [20, 21], is the set ofq-tuple
Poisson kernelsP (qθ − ψq, |rq(t)|, ω). Again, we assume
without loss of generality thatψq = 0.

B. Steady-State Solution

With q potential clusters, the order-parameter|rq| measures
the degree of cluster synchrony in the system, while the lower
q − 1 order parameters|r1|, . . . , |rq−1| measure the degree of
asynchrony. Note that the distribution is only perfectly sym-
metric if r1 = · · · = rq−1 = 0. Thus, there areq− 1 different
measures of the asymmetry.

Using a similar analysis as in theq = 2 case, we find that
at steady-state

f ss(θ, ω) =

{
g(ω)

∑q−1
j=0(1/q + cj)δ(θ − φ(ω)− 2kπ/q) if |ω| ≤ K|rq|,

qg(ω)
√
ω2 −K2|rq|2/|π[ω −K|rq| sin(qθ)]| if |ω| > K|rq|,

(43)

with |rq| =
√
1− 2∆/K andφ(ω) = arcsin

(
ω

K|rq|

)
/q.

Note that forf ss to be a distribution the coefficientscj must
satisfycj ≥ −1/q and

∑q−1
j=0 cj = 0, leavingq − 1 free pa-

rameters that define the distribution. Note that in theq = 2
case there was a single parameter [i.e.,c in Eq. (20)] that char-
acterized the asymmetry between the two clusters.

The steady-state order parameters can be calculated using
the same methods that led to Eq. (25), and analogous expres-
sions (not presented here) can be obtained.

C. Transient Dynamics

To capture the transient dynamics, we study the PDE and
corresponding characteristics given by

∂tf + [ω−K|rq| sin(qθ)]∂θf = qK|rq| cos(qθ)f, (44)

⇒ θ̇ = ω −K|rq| sin(qθ), (45)

ḟ = qK|rq| cos(qθ), (46)

˙|rq | = q

[
−∆|rq|+

K

2
|rq|

(
1− |rq|2

)]
. (47)

When|rq| is at steady-state, we can solve Eqs. (45) and (46)
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FIG. 9: (Color online) Comparison of|r1|, |r2|, and |r3| from the
PDE (44) (blue circles, green triangles and red squares) to simulation
with N = 10000 oscillators (cyan and magenta dashed lines) with
the same initial conditions and parameters from figure 6.

exactly, yielding equations analogous to Eqs. (A1) and (A2)in
Appendix A for the characteristics ofθ and solutionf , which
we do not present here.

When|rq| is not at steady state its evolution is given by

|rq(t)| = P q/

√√√√1 +

[(
P q
ρ0

)2

− 1

]
eq(2∆−K)t, (48)

whereP q =
√
1− 2∆/K and Eq. (44) can be solved nu-

merically. In Fig. 9 we compare|r1|, |r2|, and|r3| from the
numerically-computed PDE solution (blue circles, green tri-
angles, and red squares, respectively) to a numerical simula-
tion of Eq. (36) withq = 3 andN = 10000 oscillators (cyan,
yellow, and magenta dashed lines, respectively). The analytic
solution for|r3| is plotted as a dot-dashed black line.

V. DISCUSSION

We have found an analytic description of both steady-state
and transient dynamics of a system that shows cluster syn-
chrony given by Eqs. (1) and (2). In the largeN limit, q = 2
solutions can be decomposed into symmetric and antisymmet-
ric parts. The symmetric part, which evolves independently
from the antisymmetric part and towards a steady-state inde-
pendent of initial conditions, can be found using a variation
of the OA ansatz [19] and is globally attracting. The antisym-
metric part, however, is shaped by the evolution of the sym-
mertic part, is strongly dependent on initial conditions, and

has a large degree of multistability.
We have demonstrated how to manipulate the degree of

asymmetry in the cluster states through the application of a
short duration forcing term and modulation of the coupling
strength. Starting from a symmetric state, any degree of asym-
metry can be established by choosing the appropriate duration
and strength of the forcing term. Furthermore, reducing the
coupling strength decreases the amount of asymmetry in the
cluster configuration, while increasing it does not have theop-
posite effect, as shown in Fig. 8(a). Therefore, modulations
of the coupling strength can be used to “erase” information.
While we demonstrated this procedure using a system with
q = 2, similar methods could be employed forq > 2. In
particular,q − 1 parameters describe the cluster configura-
tion, and the system could be driven to a configuration that
encodes desired values of these parameters by the application
of appropriately chosen forcing functions. Using these tech-
niques, it is possible to encode information in the state of the
system, which might find applications in the development of
Kuramoto-type neural models.

Problems that remain open include generalization such as
the presence of noise and coupling functions with two or more
harmonics. Thus far the work of Ott and Antonsen [19] has
not been generalized to these cases and no low dimensional
analytic solution has been found. However, we hypothesize
that when noise is added to Eq. (3) spontaneous switching can
occur. The case where the coupling function has more than
one harmonic has also been considered [11]. In certain cases,
e.g.Hnm(θ) = (K1 sin(q1θ)+K2 sin(q2θ))/N whereK2 ≫
K1, the resulting system is well-approximated to the class of
systems studied in this paper and results, such as clustering
and asymmetry, are qualitatively similar.

Acknowledgements: The work of J. G. R. was supported
by NSF grant No. DMS-0908221. The work of E. O. was
supported by ONR grant No. N 0014-07-0734.

Appendix A: Characteristics

In this appendix we present the results of solving the PDE
in Eq. (27) via the method of characteristics when|r2| is at
steady-state (i.e.|r2| =

√
1− 2∆/K). The characteristic

ODEs are Eqs. (28) and (29). Given an initial phaseθ0, theθ
characteristics evolve as

θ(t, θ0) = arctan



K|r2| −

√
ω2 −K2|r2|2 tan

(
arctan

[
K|r2|−ω tan θ0√
ω2−K2|r2|2

]
− t
√
ω2 −K2|r2|2

)

ω


 . (A1)

Several example characteristics for the locked and drifting
populations (ω = 1 andω = 3, respectively), are plotted in

Fig. 4 (a) and (b).
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For initial conditionsf(θ, ω, t0) = g(ω)h(θ) theθ charac-
teristics can be used to solve forf(θ, ω, t), given by

f(θ, ω, t) = g(ω)
h(θ0)

BD|θ=θ0
BD, (A2)

whereB = ω −K|r2| sin[2θ(t)], and

D =
[
ω2 +K2|r2|2 cos (E)−K|r2|

√
ω2 −K2|r2|2 sin (E)

] [ω −K|r2| sin[2θ(t)]
ωK2|r2|2 − ω3

]
, (A3)

whereE = 2 arctan
[
(K|r2| − ω tan θ(t))/

√
ω2 −K2|r2|2

]
.

[1] J. Buck, Quarterly Review of Biology63, 265 (1988).
[2] L. Glass and M. C. Mackey,From Clocks to Chaos: The

Rhythms of Life (Princeton University Press, 1988).
[3] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and

E. Ott, Nature438, 43 (2005); M. M. Abdulrehem and E. Ott,
Chaos19, 013129 (2009).

[4] S. Yamaguchi et al., Science302, 1408 (2003).
[5] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

(Springer, 1984).
[6] S. H. Strogatz, Physica D143, 1 (2000).
[7] W. S. Lee, E. Ott, and T. M. Antonsen, Phys. Rev. Lett.103,

044101 (2009).
[8] J. G. Restrepo, E. Ott, and B. R. Hunt, Phys. Rev. E71, 036151

(2005); A. Pikovsky and M. Rosenblum, Phys. Rev. Lett.101,
264103 (2008); Physica D224, 114 (2006); G. Barlev, T. M.
Antonsen, and E. Ott, Chaos21, 025103 (2011).

[9] E. A. Martens, C. R. Laing, and S. H. Strogatz, Phys. Rev. Lett.
104, 044101 (2010); W. S. Lee, J. G. Restrepo, E. Ott, and T.
M. Antonsen, Chaos21, 023122 (2011).

[10] L. M. Childs and S. H. Strogatz, Chaos18, 043128 (2008); T.
M. Antonsen, R. T. Faghih, M. Girvan, E. Ott, and J. H. Platig,
Chaos18, 037112 (2008).

[11] H. Daido, Phys. Rev. Lett.73, 760 (1994); Physica D91, 24
(1996).

[12] S. A. Marvel and S. H. Strogatz, Chaos19, 013132 (2009).
[13] L. M. Alonso, J. A. Allende, and G. B. Mindlin, Eur. Phys.J.

B 60 361, (2010); L. F. Lafuerza, P. Colet, and R. Toral, Phys.
Rev. Lett.105, 084101 (2010).

[14] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T.
M. Antonsen, Phys. Rev. E79, 026204 (2009); D. Pazo and E.
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