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A fundamental problem in the analysis of network data is the detection of network communities,
groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe
a method for finding overlapping communities based on a principled statistical approach using
generative network models. We show how the method can be implemented using a fast, closed-
form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in
reasonable running times. We test the method both on real-world networks and on synthetic bench-
marks and find that it gives results competitive with previous methods. We also show that the same
approach can be used to extract nonoverlapping community divisions via a relaxation method, and
demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.

I. INTRODUCTION

Many networked systems, including biological and so-
cial networks, are found to divide naturally into modules
or communities, groups of vertices with relatively dense
connections within groups but sparser connections be-
tween them [1, 2]. Depending on context, the groups
may be disjoint or overlapping. A fundamental problem
in the theory of networks, and one that has attracted
substantial interest among researchers in the last decade,
is how to detect such communities in empirical network
data [2, 3]. There are a number of desirable properties
that a good community detection scheme should have.
First, it should be effective, meaning it should be able to
accurately detect community structure when it is present.
There are, for instance, many examples of networks, both
naturally occurring and synthetic, for which the commu-
nity structure is widely agreed upon, and a successful
detection method should be able to find the accepted
structure in such cases. Second, methods based on sound
theoretical principles are preferable over those that are
not. A method based on a mere hunch that something
might work is inherently less trustworthy than one based
on a provable result or fundamental mathematical in-
sight. Third, when implemented as a computer algo-
rithm, a method should ideally be fast and scale well
with the size of the network analyzed. Many of the net-
works studied by current science are large, with millions
or even billions of vertices, so a community detection al-
gorithm whose running time scales, say, linearly with the
size of the network is enormously preferred over one that
scales as size squared or cubed.
In this paper we derive and demonstrate an algorithm

for community detection in undirected, unweighted net-
works that can find either overlapping or nonoverlap-
ping communities and satisfies all of the demands above.
On standard benchmark tests the algorithm has perfor-
mance similar to the best previous algorithms in detect-
ing known community structure. The algorithm is based
on established methods of statistical inference, namely
maximum likelihood and the expectation-maximization
algorithm. And the algorithm is fast. In its simplest form

it consists of the iteration of just two sets of equations,
each iteration taking an amount of time that increases
only linearly with system size. In practice the algorithm
can handle networks with millions of vertices and edges
in reasonable running times on a typical desktop com-
puter: for the largest network we have analyzed, which
has over 4 million vertices and 40 million edges, a single
run of the algorithm takes less than an hour.
We approach the problem of community detection first

as a problem of finding overlapping communities. Early
efforts at community detection, going back to the 1970s,
assumed nonoverlapping or disjoint communities [1, 4, 5],
but as many researchers have argued in the last few years,
it is common in practical situations for communities to
overlap [6]. In social networks, for example, people often
belong to more than one circle of acquaintances—family,
friends, coworkers, and so forth—and hence those circles
should properly be considered as overlapping, since they
have at least one common member. In biological net-
works too vertices can belong to more than one group.
Metabolites in a metabolic network can play a role in
more than one metabolic process or cycle; species in a
food web can fall on the border between two otherwise
noninteracting subcommunities and play a role in both
of them. Thus the most general formulation of the com-
munity detection problem should allow for the possibility
of overlap. Our approach is to develop a solution to this
general problem first, then show how a variant of the
same approach can be applied to nonoverlapping com-
munities as well.
We tackle the detection of overlapping communities by

fitting a stochastic generative model of network struc-
ture to observed network data. This approach, which
applies methods of statistical inference to networks, has
been explored by a number of authors for the nonover-
lapping case, including some work that goes back several
decades [5, 7–9]. Extending the same approach to the
overlapping case, however, has proved nontrivial. The
crucial step is to devise a generative model that produces
networks with overlapping community structure similar
to that seen in real networks. The models used in most
previous work are “mixed membership” models [10], in
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which, typically, vertices can belong to multiple groups
and two vertices are more likely to be connected if they
have more than one group in common. This, however,
implies that the area of overlap between two communi-
ties should have a higher average density of edges than
an area that falls in just a single community. It is unclear
whether this reflects the behavior of real-world networks
accurately, but it is certainly possible to construct net-
works that do not have this type of structure. Ideally
we would prefer a less restrictive model that makes fewer
assumptions about the structure of community overlaps.
Another set of approaches to the detection of over-

lapping communities are those based on local commu-
nity structure [11]. Rather than splitting an entire net-
work into communities in one step, these methods instead
look for local groups within the network, based on anal-
ysis of local connection patterns. Methods of this kind
give rise naturally to overlapping communities when one
generates a large number of independent local communi-
ties throughout the network. Moreover, the communities
tend to be compact and connected subgraphs, a require-
ment not always met by other methods. On the other
hand, global detection methods can capture large-scale
network structure better and are more appropriate when
particular constraints, such as constraints on the number
of communities, must be satisfied.
In this paper, we develop a global statistical method

for detecting overlapping communities based on the idea
of link communities, which has been proposed indepen-
dently by a number of authors both in the physics liter-
ature [12, 13] and in machine learning [14, 15]. The idea
is that communities arise when there are different types
of edges in a network. In a social network, for instance,
there are links representing family ties, friendship, pro-
fessional relationships, and so forth. If we can identify
the types of the edges, i.e., if we can group not the ver-
tices in a network but the edges, then we can deduce the
communities of vertices after the fact from the types of
edges connected to them. This approach has the nice
feature of matching our intuitive idea of the origin and
nature of community structure while giving rise to over-
lapping communities in a natural way: a vertex belongs
to more than one community if it has more than one type
of edge.
Previous approaches to the discovery of link commu-

nities have made use of heuristic quality functions opti-
mized over possible partitions of a network’s edges [12,
13]. Such quality functions, particularly the so-called
modularity function [16], have been used in the past for
nonoverlapping communities, but while in practice these
functions often give reasonable results, they also have
some deficiencies: the modularity for instance cannot be
used to find very small communities [17], may not have
a unique optimum [18], and is somewhat unsatisfactory
from a formal viewpoint [19, 20]. Recent results of Bickel
and Chen [20] suggest that these deficiencies can be reme-
died by abandoning the quality function approach and
instead fitting a generative model to the data. This is

the approach we take, but the definition of a model for
link communities entails some subtlety. In generative
models for vertex communities, such as the mixed mem-
bership models mentioned above, one can assign vertices
to groups first and then place edges based on that as-
signment. But for a model of link communities, where
it is the edges that are partitioned, one cannot assign
edges to groups until the edges exist, so the edges and
their groupings have to be generated simultaneously. We
describe in detail how we achieve this in the following
section. Once we have the model, the goal will be to
determine the values of its parameters that best fit the
observed network and from those to determine the over-
lapping vertex communities.
The outline of the paper is as follows. First we define

our model and then demonstrate how the best-fit values
of its parameters can be calculated using a maximum like-
lihood algorithm. We also discuss how the algorithm can
be implemented to optimize speed and memory require-
ments, allowing applications to large networks. We give
example applications to numerous real-world networks,
as well as tests against synthetic networks that demon-
strate that the algorithm can discover known overlapping
community structure in such networks.
Finally, we show how our method can be used also

to detect nonoverlapping communities by assigning each
vertex solely to the community to which it most strongly
belongs in the overlapping division. We demonstrate that
this intuitive heuristic can be justified rigorously by re-
garding the link community model as a relaxation of a
stochastic blockmodel for disjoint communities [21]. Al-
gorithms have been proposed previously for fitting this
blockmodel, but their running time was typically at least
quadratic in the number of vertices, which limited their
application to smaller networks. The algorithm proposed
here is significantly faster and hence can be applied to the
detection of disjoint communities in very large networks.

II. A GENERATIVE MODEL FOR LINK

COMMUNITIES

Our first step is to define the generative network model
that we will use. The model generates networks with a
given number n of vertices and undirected edges divided
among a given number K of communities. It is con-
venient to think of the edges as being colored with K
different colors to represent the communities to which
they belong. Then the model is parametrized by a set
of parameters θiz , which represent the propensity of ver-
tex i to have edges of color z. Specifically, θizθjz is the
expected number of edges of color z that lie between ver-
tices i and j, the exact number being Poisson distributed
about this mean value. Note that this means the net-
work is technically a multigraph—it can have more than
one edge between a pair of vertices. Some real-world
networks contain such multiedges: in network represen-
tations of the world wide web, for instance, a single web
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page can contain several hyperlinks to the same other
page. Most networks, however, have single edges only,
and in this sense the model is unrealistic. However, al-
lowing multiedges makes the model enormously simpler
to treat and in practice the number of multiedges tends
to be small, so the error introduced is also small, typi-
cally vanishing as 1/n in the limit of large network size.
Multiedges are also allowed in most other random graph
models of networks, such as the widely studied config-
uration model [22, 23], and are neglected there for the
same reasons. Our model also allows self-edges—edges
that connect to the same vertex at both ends—with ex-
pected number 1

2
θizθiz , the extra factor of a half being

convenient for consistency with later results. Again, the
appearance of self-edges, while unrealistic in some cases,
greatly simplifies the mathematical developments and in-
troduces only a small error.
In the model defined here the link communities arise

implicitly as the network is generated, as discussed in
the introduction, rather than being spelled out explic-
itly. Two vertices i, j which have large values of θiz and
θjz for some value of z have a high probability of be-
ing connected by an edge of color z, and hence groups
of such vertices will tend to be connected by relatively
dense webs of color-z edges—precisely the structure we
expect to see in a network with link communities.

III. DETECTING OVERLAPPING

COMMUNITIES

Given the model defined above, it is now straightfor-
ward to write down the probability with which any par-
ticular network is generated. Recalling that a sum of in-
dependent Poisson-distributed random variables is also
a Poisson-distributed random variable, the expected to-
tal number of edges of all colors between two vertices i
and j is simply

∑

z θizθjz (or 1
2

∑

z θizθiz for self-edges),
and the actual number is Poisson-distributed with this
mean. Thus the probability of generating a graph G with
adjacency matrix elements Aij is

P (G|θ) =
∏

i<j

(
∑

z θizθjz
)Aij

Aij !
exp

(

−
∑

z

θizθjz

)

×
∏

i

(

1
2

∑

z θizθiz
)Aii/2

(Aii/2)!
exp

(

− 1
2

∑

z

θizθiz

)

. (1)

(Recall that the adjacency matrix element Aij , by con-
vention, takes the value Aij = 1 if there is an edge be-
tween distinct vertices i and j, but Aii = 2 for a self-
edge—hence the additional factors of 1

2
in the second

product.)
We fit the model to an observed network by maximiz-

ing this probability with respect to the parameters θiz , or
equivalently (and more conveniently) maximizing its log-
arithm. Taking the log of Eq. (1), rearranging, and drop-
ping additive and multiplicative constants (which have

no effect on the position of the maximum), we derive the
log-likelihood

logP (G|θ) =
∑

ij

Aij log
(
∑

z θizθjz
)

−
∑

ijz

θizθjz . (2)

Direct maximization of this expression by differentiat-
ing leads to a set of nonlinear implicit equations for θiz
that are hard to solve, even numerically. An easier ap-
proach is the following. We apply Jensen’s inequality in
the form [24]:

log
(
∑

z xz

)

≥
∑

z

qz log
xz

qz
, (3)

where the xz are any set of positive numbers and the
qz are any probabilities satisfying

∑

z qz = 1. Note that
the exact equality can always be achieved by making the
particular choice qz = xz/

∑

z xz . Applying Eq. (3) to
Eq. (2) gives

logP (G|θ) ≥
∑

ijz

[

Aijqij(z) log
θizθjz
qij(z)

− θizθjz

]

, (4)

where the probabilities qij(z) can be chosen in any way
we please provided they satisfy

∑

z qij(z) = 1. Notice
that the qij(z) are only defined for vertex pairs i, j that
are actually connected by an edge in the network (so
that Aij = 1), and hence there are only as many of them
as there are observed edges.
Since, as noted, the exact equality in this expression

can always be achieved by a suitable choice of qij(z), it
follows that the double maximization of the right-hand
side of (4) with respect to both the qij(z) and the θiz
is equivalent to maximizing the original log-likelihood,
Eq. (2), with respect to the θiz alone. It may appear that
this does not make our optimization problem any simpler:
we have succeeded only in turning a single optimization
into a double one, which one might well imagine was a
more difficult problem. Delightfully, however, it is not;
the double optimization is actually very simple. Given
the true optimal values of θiz , the optimal values of qij(z)
are given by

qij(z) =
θizθjz

∑

z θizθjz
, (5)

since these are the values that make our inequality an
exact equality. But given the optimal values of the qij(z),
the optimal θiz can be found by differentiating (4), which
gives

θiz =

∑

j Aijqij(z)
∑

i θiz
. (6)

Summing this expression over i and rearranging gives us

(

∑

i

θiz

)2

=
∑

ij

Aijqij(z), (7)
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and combining with (6) again then gives

θiz =

∑

j Aijqij(z)
√

∑

ij Aijqij(z)
. (8)

Maximizing the log-likelihood is now simply a matter of
simultaneously solving Eqs. (5) and (8), which can be
done iteratively by choosing a random set of initial val-
ues and alternating back and forth between the two equa-
tions. This type of approach is known as an expectation-
maximization or EM algorithm and it can be proved that
the log-likelihood increases monotonically under the it-
eration, though it does not necessarily converge to the
global maximum. To guard against the possibility of
getting stuck in a local maximum, we repeat the entire
calculation a number of times with random initial con-
ditions and choose the result that gives the highest final
log-likelihood. In the work presented here we found good
results with numbers of repetitions in the range from 10
to 100.
The value of qij(z) in Eq. (5) has a simple physical

interpretation: it is the probability that an edge between
i and j has color z, which is precisely the quantity we
need in order to infer link communities in the network.
Notice that qij(z) is symmetric in i, j, as it should be for
an undirected network.
The calculation presented here is mathematically

closely related to methods developed in the machine
learning community for the analysis of text documents.
Specifically, the model we fit can be regarded as a variant
of a model used in probabilistic latent semantic analysis
(PLSA)—a technique for automated detection of topics
in a corpus of text—adapted to the present context of
link communities. Connections between text analysis and
community detection have been explored by several pre-
vious authors. Of particular interest is the work of Pso-
rakis et al. [25], which, though it does not focus on link
communities, uses another variant of the PLSA model,
coupling it with an iterative fitting algorithm called non-
negative matrix factorization, to find overlapping com-
munities in directed networks. Also of note is the work
of Parkinnen et al. [14], who consider link communities
as we do, but take a contrasting algorithmic approach
based on a Bayesian generative model and Markov chain
Monte Carlo techniques. A detailed description of the
interesting connections between text processing and net-
work analysis would take us some way from the primary
purpose of this paper, but for the interested reader we
give a discussion and references in Appendix A.

IV. IMPLEMENTATION

The method outlined above can be implemented di-
rectly as a computer algorithm for finding overlapping
communities, and works well for networks of moderate
size, up to tens of thousands of vertices. For larger net-
works both memory usage and run-time become substan-

tial and prevent the application of the method to the
largest systems, but both can be improved by using a
more sophisticated implementation which makes appli-
cations to networks of millions of vertices possible.
The algorithm’s memory use is determined by the

space required to store the parameters: the θiz require
O(nK) space while the qij(z) require O(mK), where n
and m are the numbers of vertices and edges in the net-
work. Since m is usually substantially larger than n, this
means that memory use is dominated by the qij(z). We
can reduce memory use by reorganizing the algorithm
in such a way that the qij(z) are never stored. Rather
than focusing on the θiz, we work instead with the aver-
age number kiz of ends of edges of color z connected to
vertex i:

kiz =
∑

j

Aijqij(z). (9)

Given the values of these quantities on a given iteration
of the algorithm, the calculation of the values at the next
iteration is then as follows. First we define a new set of
quantities k′iz that will store the new values of the kiz .
Initially we set all of them to zero. We also calculate the
average number κz of edges of color z summed over all
vertices

κz =
∑

i

kiz , (10)

in terms of which the original θiz parameters are

θiz =
kiz√
κz

, (11)

where we have used Eq. (8). Next we go through each
edge (i, j) in the network in turn and calculate the de-
nominator of Eq. (5) for that i and j from the values of
the kiz thus:

D =
∑

z

θizθjz =
∑

z

kizkjz
κz

. (12)

Armed with this value we can calculate the value of qij(z)
for this i, j and all z from Eq. (5):

qij(z) =
θizθjz

∑

z θizθjz
=

kizkjz
Dκz

. (13)

Now we add this value onto the quantities k′iz and k′jz ,
discard the values of D and qij(z), and repeat for the
next edge in the network. When we have gone through
all edges in this manner, the quantities k′iz will be equal
to the sum in Eq. (9), and hence will be the correct new
values of kiz .
This method requires us to store only the old and new

values of kiz , for a total of 2nK quantities, and not the
values of qij(z). Depending on the values of m and n,
this can result in substantial memory savings.
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As for the running time, the algorithm as we have de-
scribed it has a computational complexity of O(mK) op-
erations per iteration of the equations, where m is again
the number of edges in the network, but this too can be
improved. In a typical application of the algorithm to
a network, the end result is that each vertex belongs to
only a subset of the K possible communities. To put
that another way, we expect that many of the parame-
ters kiz will tend to zero under the EM iteration. It is
straightforward to see from the equations above that if
a particular kiz ever becomes zero, then it must remain
so for all future iterations, which means that it no longer
need be updated and we can save ourselves time by ex-
cluding it from our calculations. This leads to two useful
strategies for pruning our set of variables. In the first,
we set to zero any kiz that falls below a predetermined
threshold δ. Once a kiz has been set to zero, the cor-
responding values of the qij(z) on all the adjacent edges
are also zero and therefore need not be calculated. Thus,
for each edge, we need only calculate the values of qij(z)
for those colors z for which both kiz and kjz are nonzero,
i.e., for the intersection of the sets of colors at vertices i
and j. This strategy leads to speed increases when the
number of communities K >∼ 4. For smaller values of K
the speed savings are outweighed by the additional com-
putational overhead and it is more efficient to simply
calculate all qij(z), but we nonetheless still set the values
of the kiz to zero below the threshold δ because it makes
possible our second pruning strategy.
Our second strategy, which can be used in tandem with

the first and gives significant speed improvements for all
values of K, is motivated by the observation that if all
but one of the kiz for a particular vertex are set to zero,
then the color of the vertex, meaning the group or groups
to which it belongs, is fixed at a single value and will
no longer change at all. If both vertices at the ends of
an edge (i, j) have this property, if both of them have
converged to a single color and are no longer changing,
then the edge connecting them no longer has any effect
on the calculation and can be deleted entirely from the
network.
By the use of these two strategies the speed of our cal-

culations is improved markedly. We find in practice that
the numbers of parameters kiz and edges both shrink
rapidly and substantially with the progress of the calcu-
lation, so that the majority of the iterations involve only a
subset, typically those associated with the vertices whose
community identification is most ambiguous. If the value
of the threshold δ is set to zero, then the pruned algo-
rithm is exactly equivalent to the original EM algorithm
and the results are identical, yet even with this choice we
find substantial speed improvements. If δ is chosen small
but nonzero—we use δ = 0.001 in our calculations—then
we introduce an approximation into the calculation which
means the results will be different in general from the
original algorithm. In practice, however, the difference is
small, and the nonzero δ gives us an additional and sub-
stantial speed improvement. (In our experiments we find

a variation of about 1% or less in the final log-likelihood
for values of δ anywhere from zero to 0.1. Note, how-
ever, that if the value of δ is greater than 1/K, then it
is possible inadvertently to prune all of the colors from a
vertex, leaving it in no community at all. To avoid this,
one must choose δ < 1/K.)
A detailed comparison of results and run-times for the

original and pruned versions of the algorithm is given in
Appendix B for a range of networks. Unless stated oth-
erwise, all calculations presented in the remainder of the
paper are done with the faster version of the algorithm.

V. RESULTS

We have tested the performance of the algorithm de-
scribed above using both synthetic (computer-generated)
networks and a range of real-world examples. The syn-
thetic networks allow us to test the algorithm’s ability to
detect known, planted community structure under con-
trolled conditions, while the real networks allow us to
observe performance under practical, real-world condi-
tions.

A. Synthetic networks

Our synthetic network examples take the form of a
classic consistency test. We generate networks using the
same stochastic model that the algorithm itself is based
on and measure the algorithm’s ability to recover the
known community divisions for various values of the pa-
rameters. One can vary the values to create networks
with stark community structure (which should make de-
tection easy) or no community structure at all (which
makes it impossible), and everything in between, and we
can thereby vary the difficulty of the challenge we pose
to the algorithm.
The networks we use for our tests have n = 10 000

vertices each, divided into two overlapping communities.
We place x vertices in the first community only, meaning
they have connections only to others in that community,
y vertices in the second community only, and the remain-
ing z = n−x−y vertices in both communities, with equal
numbers of connections to vertices in either group on av-
erage. We fix the expected degree of all vertices to take
the same value k.
We perform three sets of tests. In the first we fix the

size of the overlap between the communities at z = 500,
divide the remaining vertices evenly x = y = 4750, and
observe the behavior of the algorithm as we vary the value
of k. When k → 0 there are no edges in the network
and hence no community structure, and we expect the
algorithm (or any algorithm) to fail. When k is large, on
the other hand, it should be straightforward to work out
where the communities are.
For our second set of tests we again set the overlap at

z = 500 but this time we fix k = 10 and vary the balance
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FIG. 1: (Color online) Results from the three sets of synthetic tests described in the text. Each data point is averaged over
100 networks. Twenty random initializations of the variables were used for each network and the run giving the highest value
of the log-likelihood was taken as the final result. In each panel the black curve shows the fraction of vertices assigned to the
correct communities by the algorithm, while the lighter curve is the Jaccard index for the vertices in the overlap. Error bars
are smaller than the points in all cases.

of vertices between x and y. Finally, for our third set of
tests we set k = 10 and constrain x and y to be equal,
but allow the size z of the overlap to vary.
In Fig. 1 we show the measured fraction of vertices

classified correctly (black curve) in each of these three
sets of tests (the three separate panels), averaged over
100 networks for each point. To be considered correctly
classified a vertex’s membership (or lack of membership)
in both groups must be reported correctly by the algo-
rithm, and the algorithm considers any vertex to be a
member of a group if, on average, it has at least one edge
of the appropriate color when the maximum likelihood
fitting procedure is complete. In mathematical terms, a
vertex belongs to community z if its expected degree with
respect to color z, given by

∑

j Aijqij(z), is greater than
one.
As the figure shows, there are substantial parameter

ranges for all three tests for which the algorithm per-
forms well, correctly classifying most of the vertices in
the network. As expected the accuracy in the first test
increases with increasing k and for values of k greater
than about ten—a figure easily attained by many real-
world networks—the algorithm identifies the known com-
munity structure essentially perfectly. In the other two
tests accuracy declines as either the asymmetry of the
two groups or the size of the overlap increases, but ap-
proaches 100% when either is small.
To probe in more detail the algorithm’s ability to iden-

tify overlapping communities, we have also measured, for
the same test networks, a Jaccard index: if S is the set
of vertices in the true overlap and V is the set the algo-
rithm identifies as being in the overlap, then the Jaccard
index is J = |S ∩ V |/|S ∪ V |. This index is a standard
measure of similarity between sets that rewards accurate
identification of the overlap while penalizing both false
positives and false negatives. The values of the index are
shown as the lighter curves in Fig. 1 and, as we can see,
the general shape of the curves is similar to the overall
fraction of correctly identified vertices. In particular, we
note that for networks with sufficiently high average de-

gree k the value of J tends to 1, implying that the overlap
is identified essentially perfectly.

B. Real networks

We have also tested our method on numerous real-
world networks. In this section we give detailed results
for four specific examples. Summary results for a number
of additional examples are given in Appendix B.
Our first example is one that has become virtually

obligatory in tests of community detection, Zachary’s
“karate club” network, which represents friendship pat-
terns between members of a university sports club, de-
duced from an observational study [26]. The network is
interesting because the club split in two during the study,
as a result of an internal dispute, and it has been found
repeatedly that one can deduce the lines of the split from
a knowledge of the network structure alone [1, 2].
Figure 2a shows the decomposition of the karate club

network into two overlapping groups as found by our al-
gorithm. The colors in the figure show both the division
of the vertices and the division of the edges. The split
between the two groups in the club is clearly evident in
the results and corresponds well with the acknowledged
“ground truth,” but in addition the algorithm assigns
several vertices to both groups. The individuals repre-
sented by these overlap vertices, being by definition those
who have friends in both camps, might be supposed to
have had some difficulty deciding which side of the dis-
pute to come down on, and indeed Zachary’s original
discussion of the split includes some indications that this
was the case [26]. Note also that, in addition to identify-
ing overlapping vertices, our method can assign to each
a fraction by which it belongs to one community or the
other, represented in the figure by the pie-chart coloring
of the vertices in the overlap. The fraction is calculated
as the expected fraction of edges of each color incident
on the vertex.
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Our second example is another social network and
again one whose community structure has been studied
previously. This network, compiled by Knuth [27], rep-
resents the patterns of interactions between the fictional
characters in the novel Les Misérables by Victor Hugo.
In this network two characters are connected by an edge
if they appear in the same chapter of the book. Fig-
ure 2b shows our algorithm’s partition of the network
into six overlapping communities and the partition ac-
cords roughly with social divisions and subplots in the
plot-line of the novel. But what is particularly interesting
in this case is the role played by the hubs in the network—
the major characters who are represented by vertices of
especially high degree. It is common to find high-degree
hubs in networks of many kinds, vertices with so many
connections that they have links to every part of the
network, and their presence causes problems for tradi-
tional, nonoverlapping community detection schemes be-
cause they do not fit comfortably in any community: no
matter where we place a hub it is going to have many con-
nections to vertices in other communities. Overlapping
communities provide an elegant solution to this problem
because we can place the hubs in the overlaps. As Fig. 2b
shows, our algorithm does exactly this, placing many of
the hubs in the network in two or more communities.
Such an assignment is in this case also realistic in terms
of the plot of the novel: the major characters represented
by the hubs are precisely those that appear in more than
one of the book’s subplots.
A similar behavior can be seen in our third exam-

ple, which is a transportation network, the network of
passenger airline flights between airports in the United
States. In this network, based on data for flights in
2004, the vertices represent airports and an edge be-
tween airports indicates a regular scheduled direct flight.
Spatial networks, those in which, as here, the vertices
have well-defined positions in geographic space, are of-
ten found to have higher probability of connection for
vertex pairs located closer together [28, 29], which sug-
gests that communities, if they exist, should be regional,
consisting principally of blocks of nearby vertices. The
communities detected by our algorithm in the airline net-
work follow this pattern, as shown in Fig. 3. The three-
way split shown divides the network into east and west
coast groups and a group for Alaska. The overlaps are
composed partly of vertices that lie along the geographic
boundaries between the groups, but again include hubs
as well, which tend to be placed in the overlaps even when
they don’t lie on boundaries. As with the previous exam-
ple, this placement gives the algorithm a solution to the
otherwise difficult problem of assigning to any one group
a hub that has connections to all parts of the network.
But it also makes intuitive sense. Hubs are the “brokers”
of the airline network, the vertices that connect different
communities together, since they are precisely the air-
ports that passengers pass through in traveling between
distant locations. Thus it is appropriate that hubs be
considered members of more than one group. In most

(a)

(b)

FIG. 2: (Color online) Overlapping communities in (a) the
karate club network of [26] and (b) the network of characters
from Les Misérables [27], as calculated using the algorithm
described in this paper. The edge colors correspond to the
highest value of qij(z) for the given edge, while vertex colors
indicate the fraction of incident edges that fall in each com-
munity. For vertices in more than one community the vertices
are drawn larger for clarity and divided into pie charts repre-
senting their division among communities.

cases the hubs belong most strongly to the community in
which they are geographically located, and less strongly
to other communities.
For our fourth example we examine a network of coau-

thorships between researchers publishing on network sci-
ence. In this network, which was previously published
in [48], vertices represent scientists and unweighted edges
connect pairs of scientists who have coauthored at least
one paper together. Figure 4a shows the division of the
network’s largest component as found by our algorithm
for K = 12 communities.
The figure reveals a new phenomenon not present in

our previous examples: some of the communities found
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Guam

American Samoa

Hawaii
Puerto Rico

FIG. 3: (Color online) Overlapping communities in the network of US passenger air transportation. The three communities
produced by the calculation correspond roughly to the east and west coasts of the country and Alaska.

by the algorithm are not contiguous—they are divided
into two or more separate parts with no edges connecting
the parts. This seems unsatisfactory. Intuitively, one
expects communities to be connected.
The explanation for this behavior is that in this case

the algorithm has found a local optimum of the likeli-
hood, rather than a global one, and the local optimum
contains disconnected communities. To address this is-
sue, we adopt the following procedure. After the com-
munities are calculated with the EM algorithm we find
all their connected clusters, then work through them in
order from smallest to largest. Each cluster is added to
the neighboring cluster (of any community) with which it
has the most connections, unless it is the only cluster in
its community, in which case we reverse the process and
add the neighboring cluster to it. The only exception is
when all neighboring clusters are the only cluster in their
community, in which case we do nothing. Then we move
on to the next largest cluster, bearing in mind that clus-
ter sizes may have changed in the process. When we have
gone through all clusters in this manner we are left with
K communities, each of which is connected, consisting of
a single cluster, and any connected pair of vertices that
were originally assigned to the same cluster by the EM
algorithm will still be in the same cluster.
This procedure requires very little additional effort to

perform and in our experiments we find that it always
increases the likelihood of the community assignment,
indicating that indeed the original EM algorithm found
a local likelihood maximum. Figure 4b shows the result
of applying the procedure to our coauthorship network
and, as the figure shows, the communities found are now
connected [49].

VI. NONOVERLAPPING COMMUNITIES

As we have described it, our algorithm is an algo-
rithm for finding overlapping communities in networks,
but it can be used to find nonoverlapping communities
as well. As pointed out by a number of previous au-
thors [25, 30, 31], any algorithm that calculates pro-
portional membership of vertices in communities can be
adapted to the nonoverlapping case by assigning each
vertex to the single community to which it belongs most
strongly. In our case, this means assigning vertices to the
community for which the value of kiz/κz is largest. It
turns out that this procedure can be justified rigorously
in our case by regarding the link community model as a
relaxation of a nonoverlapping degree-corrected stochas-
tic blockmodel. The details are given in Appendix C.
Here we give some example applications to show how the
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(a)

(b)

FIG. 4: (Color online) Overlapping communities in the col-
laboration network of network scientists as calculated by the
algorithm of Section IV (a) without the post-processing step
that ensures connected communities and (b) with the post-
processing. Each community is represented as a shape/color
combination, except for overlapping vertices, which are always
drawn as circles.

approach works in practice.
As with the overlapping case, we test the method on

both synthetic and real-world networks. For the syn-
thetic case we use a standard test, the LFR benchmark
for unweighted undirected networks with planted com-
munity structure [32, 33]. To make possible comparisons
with the previous study of Ref. [33] we use the same pa-
rameters, with networks of 1000 and 5000 vertices, aver-
age degree 20, maximum degree 50, degree exponent −2,
and community exponent −1. We also use the same two
ranges of community sizes, with communities of 10 to
50 vertices for one set of tests (labeled S for “small” in
our figures) and 20 to 100 vertices for the other set (la-
beled B for “big”). The value of K for the detection
algorithm was set equal to the number of communities
in the benchmark network (which, because of the nature
of the benchmark, is not a constant but varies from one
network to another).
To quantify our algorithm’s success at detecting the

known communities in the benchmark networks we use
the variant normalized mutual information measure pro-
posed in [33]. We note that this measure is different, and
in general returns different results, from the normalized
mutual information measure most often used to evaluate
community structure [3], but using it allows us to make
direct comparisons with the results for other algorithms
given in [33].
In our benchmark tests we find that the method de-

scribed above for finding nonoverlapping communities—
just choosing the community with the highest value
of kiz/κz—returns only average performance when com-
pared with the other algorithms tested in Ref. [33]. How-
ever, a simple modification of the algorithm produces sig-
nificantly better results: after generating a candidate di-
vision into communities using the rounding method, we
then apply a further optimization step in which we move
from one community to another the single vertex that
most increases the log-likelihood of the division under
the stochastic blockmodel, and repeat this exercise until
no further such moves exist. This process, which is rem-
iniscent of the well-known Kernighan–Lin algorithm for
graph partitioning [34], is easy to implement and carries
little computational cost when compared to the calcu-
lation of the initial division, but it improves our results
dramatically.
The results of our tests are shown in Figure 5. The

top panel shows the performance of the algorithm with-
out the additional optimization step and the results fall
in the middle of the pack when compared to previous al-
gorithms, better than some methods but not as good as
others. The bottom panel shows the results with the ad-
ditional optimization step added, and now the algorithm
performs about as well as, or better than, the algorithms
analyzed in Ref. [33]. The general shape of the mutual
information curve is similar to that of the best compet-
ing methods, falling off around the same place, although
the mutual information values are somewhat lower for
low values of the mixing parameter, indicating that the
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FIG. 5: (Color online) Performance of the nonoverlapping
community algorithm described in the text when applied
to synthetic networks generated using the LFR benchmark
model of Lancichinetti et al. [33]. Parameters used are the
same as in Ref. [33] and (S) and (B) denote networks with
the “small” and “big” community sizes used by the same au-
thors. The top and bottom panels respectively show the re-
sults without and with post-processing to optimize the value
of the log-likelihood. Ten random initializations of the vari-
ables were used for each network and each point is an average
over 100 networks.

method is not getting the community structure exactly
correct in this regime. Examining the communities in de-
tail reveals that the method occasionally splits or merges
communities. It is possible that performance could be
improved further by a less simple-minded post-processing
step for optimizing the likelihood. In particular, by con-
trast with the overlapping groups of the previous section,
we made no effort to ensure that the communities in the
present tests consisted of only a single cluster, and doing
so might potentially improve the results.
We also give, in Fig. 6, an example of a test of the

method against a real-world network, in this case the
much studied college football network of Ref. [1]. In
this network the vertices represent university teams in
American football and the edges represent the schedule
of games for the year 2000 football season, two teams be-
ing connected if they played a game. It has been found in
repeated analyses that a clustering of this network into
communities can retrieve the organizational units of US
college sports, called “conferences,” into which universi-
ties are divided for the purposes of competition. In 2000
there were 11 conferences among the Division I-A teams
that make up the network, as well as 8 teams indepen-
dent of any conference. As Fig. 6 shows, every single
team that belongs in a conference is placed correctly by
our algorithm.

FIG. 6: Non-overlapping communities found in the US college
football network of Ref. [1]. The clusters of vertices represent
the communities found by the algorithm, while the vertex
shape and color combination represents the “conferences” into
which the colleges are formally divided. As we can see, the
algorithm in this case extracts the known conference structure
perfectly. (The square black vertices represent independent
colleges that belong to no conference.)

VII. CONCLUSION

In this paper we have described a method for detect-
ing communities, either overlapping or not, in undirected
networks. The method has a rigorous mathematical foun-
dation, being based on a probabilistic model of link com-
munities; is easy to implement, fast enough for networks
of millions of vertices; and gives results competitive with
other algorithms.
Nonetheless, the method is not perfect. Its main cur-

rent drawback is that it offers no criterion for determin-
ing the value of the parameter we call K, the number
of communities in a network. This is a perennial prob-
lem for community detection methods of all kinds. Some
methods, such as modularity maximization, do offer a so-
lution to the problem, but that solution is known to give
biased answers or be inconsistent under at least some cir-
cumstances [17, 20]. More rigorous approaches such as
the Bayesian information criterion [35] and the Akaike
information criterion [36] are unfortunately not applica-
ble here because many of the model parameters are zero,
putting them on the boundary of the parameter space,
which invalidates the assumptions made in deriving these
criteria.
Another approach to choosing the value of K is to per-

form the calculations with a large value and regularize
the parameters in a manner such that some communities
disappear, meaning that zero edges are associated with



11

those communities. For example, Psorakis et al. [25], in
studies using their matrix factorization algorithm, used
priors that penalized their model for including too many
nonzero parameter values and hence created a balance
between numbers of communities and goodness of fit to
the network data. Unfortunately, the priors themselves
contain undetermined parameters whose values can influ-
ence the number of communities and hence the problem
is not completely solved by this approach.
We believe that statistical model selection methods ap-

plied to generative models should in principle be able to
find the number of communities in a consistent and sat-
isfactory manner. We have performed some initial ex-
periments with such methods, and the quality of the re-
sults seems promising, but the methods are at present
too computationally demanding to be applied to any but
the smallest of networks. It is an open question whether
a reliable method can be developed that runs in reason-
able time on the large networks of interest to today’s
scientists.
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Appendix A: Community detection and statistical

text analysis

As mentioned in the main text, the generative model
we use is the network equivalent of a model used in the
text analysis technique called probabilistic latent seman-
tic analysis (PLSA) [37–39], modified somewhat for the
particular problem we are addressing. In this appendix,
we describe PLSA and related methods and models and
their relationship to the community detection problem.
A classic problem in text analysis, which is addressed

by the PLSA method, is that of analyzing a “corpus” of
text documents to find sets of words that all (or mostly)
occur in the same documents. The assumption is that
these sets of words correspond to topics or themes that
can be used to group documents according to content.
The PLSA approach regards documents as a so-called
“bag of words,” meaning one considers only the number
of times each word occurs in a document and not the
order in which words occur. (Also, one often considers
only a subset of words of interest, rather than all words
that appear in the corpus.)
Mathematically a corpus ofD documents andW words

of interest is represented by a matrix A having elements
Awd equal to the number of times word w appears in
document d. To make the connection to networks, this
matrix can be thought of as the incidence matrix of a

weighted bipartite network having one set of vertices for
the documents, one for the words, and edges connecting
words to the documents in which they appear with weight
equal to their frequency of occurrence.
In PLSA each word-document pair—an edge in the cor-

responding network picture—is associated with an unob-
served variable z which denotes one of K topical groups.
Each edge is assumed to be placed independently at ran-
dom in the bipartite graph, with the probability that
an edge falls between word w and document d being
broken down in the form

∑

z P (w|z)P (d|z)P (z), where
P (z) is the probability that the edge belongs to topic z,
P (w|z) is the probability that an edge with topic z con-
nects to word w, and P (d|z) is the probability that an
edge with topic z connects to document d. Note that,
given the topic, the document and word ends of each
edge are placed independently. (Hofmann [37] calls this
parametrization a “symmetric” one, meaning that the
word and the document play equivalent roles mathemat-
ically, but in the networks jargon this would not be con-
sidered a symmetric formulation—the network is bipar-
tite and the incidence matrix is not symmetric, nor even,
in general, square.)
An alternative description of the model, which is useful

for actually generating the incidence matrix and which
corresponds with our formulation of the equivalent net-
work problem, is that each matrix element Awd takes a
random value drawn independently from a Poisson distri-
bution with mean

∑

z P (w|z)P (d|z)ωz. In the language
of networks, each edge is placed with independent proba-
bility

∑

z P (w|z)P (d|z)P (z), where P (z) = ωz/
∑

z′ ωz′ .
In our work, where we focus on one-mode networks and
a symmetric adjacency matrix instead of an incidence
matrix, the parameter ωz is redundant and we omit it.
PLSA involves using the edge probability above to cal-

culate a likelihood for the entire word-document distri-
bution, then maximizing with respect to the unknown
probabilities P (w|z), P (d|z), and P (z). The resulting
probabilities give one a measure of how strongly each
word or document is associated with a particular topic z,
but since the topics are arbitrary, this is effectively the
same as simply grouping the words and documents into
“communities.” Alternatively, one can use the probabil-
ities to divide the edges of the bipartite graph among
the topical groups, giving the text equivalent of the “link
communities” that are the focus of our calculations.
A number of methods have been explored for maximiz-

ing the likelihood. Mathematically the one most closely
related to our approach is the expectation-maximization
(EM) algorithm of Hoffman [37–39], though the corre-
spondence is not exact. Hofmann’s work focuses solely
on text processing—the connection to networks was not
made until later—and because of its inherently asym-
metric form the method cannot be translated directly for
applications to standard one-mode networks. Instead we
must reformulate the problem using a symmetric model,
which leads to the approach described in this paper.
The symmetric formulation and the corresponding EM
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algorithm have not, to our knowledge, been used pre-
viously for community detection in networks, but sev-
eral other related approaches have, including ones based
on the techniques known as nonnegative matrix factor-
ization (NMF) [40, 41] and latent Dirichlet allocation
(LDA) [42, 43]. These formulations have similar goals
to ours, but are typically asymmetric (and hence unsuit-
able for undirected networks) and use different algorith-
mic approaches for maximizing the likelihood. The NMF
formulation is similar in style to an EM algorithm, us-
ing an iterative maximization scheme, but the specific
iteration equations are different. Several papers have
recently proposed using NMF to find overlapping com-
munities [25, 30, 31], and in particular the work of Pso-
rakis et al. [25] mentioned in the main text uses NMF
with the PLSA model, although again in an asymmetric
formulation, and not applied to link communities.
Recent work by Parkinnen et al. [14] and Gyenge et al.

[15] does consider link communities, in an asymmetric
formulation, but uses algorithmic approaches that are
different again. For instance, Parkinnen et al. [14] use
a model that attaches conjugate priors to the parame-
ters and then samples the posterior distribution of link
communities with a collapsed Gibbs sampler.
LDA [42, 43] offers an alternative but related approach

that also attaches priors to the parameters, but in a spe-
cific way that relies on the asymmetric formulation of
the model. In [44] and [45], LDA is adapted to net-
works by treating vertex-edge pairs as analogous to word-
document pairs and then associating communities with
the vertex-edge pairs. This is an interesting approach but
differs substantially from the others discussed here, in-
cluding our own, in which vertex-vertex pairs (i.e., edges)
are the quantity analogous to word-document pairs.
Finally, in Appendix C we show that our model can be

used to find nonoverlapping communities by viewing it as
a relaxation of a nonoverlapping stochastic blockmodel.
A corresponding relaxation has been noted previously for
a version of NMF and was shown to be related to spectral
clustering [46, 47].

Appendix B: Results for running time

As discussed in Section IV, a naive implementation
of the EM equations gives an algorithm that is only
moderately fast—not fast enough for very large net-
works. We described a more sophisticated implemen-
tation that prunes unneeded variables from the iteration
and achieves significantly greater speed. In this appendix
we give a comparison of the performance of the two ver-
sions of the algorithm on a set of test networks.
The results are summarized in Table I, which gives the

CPU time in seconds taken to complete the overlapping
community detection calculation on a standard desktop
computer for each of the test networks. In these tests we
use 100 random initializations of the variables and take
as our final result the run that gives the highest value of

the log-likelihood. For each network we give the results
of three different calculations: (1) the calculation per-
formed using the naive EM algorithm; (2) the calculation
using the pruned algorithm with the threshold parameter
δ set to zero, meaning the algorithm gives results identi-
cal to the naive algorithm except for numerical rounding,
but runs faster; and (3) the calculation performed using
the pruned algorithm with δ = 0.001, which introduces
an additional approximation that typically results in a
slightly poorer final value of the log-likelihood, but gives
a significant additional boost in speed.
The largest network studied, which is a network of links

in the online community LiveJournal, is an exception to
the pattern: for this network, which contains over 40
million edges, we performed runs with only ten random
initializations each, using the pruned algorithm with δ =
0.001 and with δ = 0. Each randomly initialized run took
about 50 minutes to complete for δ = 0.001 and about 9
hours for δ = 0.
While the algorithm described is fast by comparison

with most other community detection methods, it is pos-
sible that its speed could be improved further (or that
the quality of the results could be improved while keep-
ing the speed the same). Two potential improvements
are suggested by the text processing literature discussed
in Appendix A. The first, from Hofmann [39], is to use
the so-called tempered EM algorithm. The second, from
Ding et al. [41], is to alternate between the EM algo-
rithm and a nonnegative matrix factorization algorithm,
exploiting the fact that both maximize the same objec-
tive function but in different ways.

Appendix C: Nonoverlapping communities

In Section VI we described a procedure for extract-
ing nonoverlapping community assignments from net-
work data by first finding overlapping ones and then as-
signing each vertex to the community to which it belongs
most strongly. This procedure was presented as a heuris-
tic strategy for the nonoverlapping problem, but in this
appendix we show that it can be derived in a principled
manner as an approximation method for fitting the data
to a degree-corrected stochastic blockmodel.
Methods have been proposed for discovering nonover-

lapping communities in networks by fitting to the class of
models known as stochastic blockmodels. As discussed
in Ref. [21], it turns out to be crucial that the block-
model used incorporate knowledge of the degree sequence
of the network if it is to produce useful results, and this
leads us to consider the so-called degree-corrected block-
model, which can be formulated as follows. We consider
a network of n vertices, with each vertex belonging to
exactly one community. The community assignments
are represented by an indicator variable Sir which takes
the value 1 if vertex i belongs to community r and zero
otherwise. To generate the network, we place a Pois-
son distributed number of edges between each pair of
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Running conditions Time (s) Iterations Log-likelihood

US air transportation, n = 709, m = 3327, K = 3

naive, δ = 0 15.71 55719 −8924.58

fast, δ = 0 14.67 55719 −8924.58

fast, δ = 0.001 2.17 26063 −9074.21

Network science collaborations [48], n = 379, m = 914, K = 3

naive, δ = 0 0.93 13165 −3564.74

fast, δ = 0 0.82 13165 −3564.74

fast, δ = 0.001 0.13 10747 −3577.85

Network science collaborations, n = 379, m = 914, K = 10

naive, δ = 0 3.19 18246 −2602.15

fast, δ = 0 3.15 18246 −2602.15

fast, δ = 0.001 0.49 12933 −2611.96

Network science collaborations, n = 379, m = 914, K = 20

naive, δ = 0 6.16 19821 −2046.95

fast, δ = 0 6.09 19821 −2046.95

fast, δ = 0.001 0.94 14010 −2094.85

Running conditions Time (s) Iterations Log-likelihood

Political blogs [50], n = 1490, m = 16 778, K = 2

naive, δ = 0 11.42 13773 −48761.1

fast, δ = 0 11.46 13773 −48761.1

fast, δ = 0.001 4.14 13861 −48765.6

Physics collaborations [51], n = 40 421, m = 175 693, K = 2

naive, δ = 0 4339.57 424077 −1.367× 106

fast, δ = 0 2557.91 424077 −1.367× 106

fast, δ = 0.001 253.41 61665 −1.378× 106

Amazon copurchasing [52], n = 403 394, m = 2443 408, K = 2

naive, δ = 0 170646.9 1222937 −2.521× 107

fast, δ = 0 105042.3 1222937 −2.521× 107

fast, δ = 0.001 11635.0 120612 −2.538× 107

LiveJournal [53, 54], n = 4 847 571, m = 42 851 237, K = 2

fast, δ = 0 333230 278707 −4.611× 108

fast, δ = 0.001 33924 19257 −4.642× 108

TABLE I: Example networks and running times for each of the three versions of the overlapping communities algorithm described
in the text. The designations “fast” and “naive” refer to the algorithm with and without pruning respectively. “Iterations”
refers to the total number of iterations for the entire run, not the average number for one random initialization. “Time”
is similarly the total running time for all initializations. Directed networks were symmetrized for these tests. All networks
were run with 100 random initializations, except for the LiveJournal network, which was run with 10 random initializations.
Calculations were run on one core of a 4-core 3.2GHz Intel Core i5 CPU with 4GB memory under the Red Hat Enterprise
Linux operating system. Running times do not include the additional cluster aggregation process described in Section VB, but
in practice the extra time for this process is negligible.

vertices i, j, such that the expected value of the adja-
cency matrix element Aij is θiωrsθj if vertex i belongs to
group r and vertex j belongs to group s, where θi and
ωrs are parameters of the model. To put this another
way, the expected value of the adjacency matrix element
is θi

(
∑

rs SirωrsSjs

)

θj for every vertex pair. The nor-
malization of the parameters is arbitrary, since we can
rescale all θi by the same constant if we simultaneously
rescale all ωrs. In our calculations we fix the normaliza-
tion so that the θi sum to unity within each community:
∑

i θiSir = 1 for all r.
Now one can fit this model to an observed network by

writing the probability of generation of the network as
a product of Poisson probabilities for each (multi-)edge,
then maximizing with respect to the parameters θi and
ωrs and the community assignments Sir. Unfortunately,
while the maximization with respect to the continuous
parameters θi and ωrs is a simple matter of differen-
tiation, the maximization with respect to the discrete
variables Sir is much harder. A common way around
such problems is to “relax” the discrete variables, al-
lowing them to take on continuous real values, so that
the optimization can be performed by differentiation.
In the present case, we allow the Sir to take on arbi-
trary non-negative values, subject to the constraint that
∑

r Sir = 1. In effect, Sir now represents the fraction by
which vertex i belongs to group r, with the constraint
ensuring that the fractions add correctly to 1.
With this relaxation, we can now absorb the parame-

ters θi into the Sir, defining θir = θiSir with
∑

i θir = 1,
and the mean number of edges between vertices i and j

becomes
∑

rs θirωrsθjs. This is an extended form of the
overlapping communities model studied in this paper,
generalized to include the extraK×K matrix ωrs. In the
language of link communities, this generalization gives us
a model in which the two ends of an edge can belong to
different communities. One can think of each end of the
edge as being colored with its own color, instead of the
whole edge taking only a single color. If ωrs is constrained
to be diagonal, then we recover the single-color version
of the model again.
We can fit the general (nondiagonal) model to an ob-

served network using an expectation-maximization algo-
rithm, just as before. Defining a probability qij(r, s) that
an edge between i and j has colors r and s, the EM equa-
tions are now

qij(r, s) =
θirωrsθjs

∑

rs θirωrsθjs
, (C1)

and

θir =

∑

js Aijqij(r, s)
∑

ijs Aijqij(r, s)
, ωrs =

∑

ij

Aijqij(r, s).

(C2)
By iterating these equations we can find a solution for
the parameters θir. But θir = θiSir and, summing both
sides over r, we get

∑

r θir = θi, since
∑

r Sir = 1. Hence

Sir =
θir
θi

=
θir

∑

r θir
. (C3)

Thus we can calculate the values of Sir and once we have
these we can then reverse the relaxation of the model by
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rounding the values to zero or one, which is equivalent to
assigning each vertex i to the community r for which Sir

is largest, or equivalently the community for which θir is
largest.
Thus the final algorithm for dividing the network is

simply to iterate the EM equations to convergence and
then assign each vertex to the community for which θir is
largest. In the language of Section VI, this is equivalent
to looking for the largest value of kiz/κz, and hence this
algorithm is the same as the algorithm that we described
in that section, except that the model is generalized to
include the matrix ωrs, where in our original calculations
this matrix was absent, which is equivalent to assuming
it to be diagonal. In our experiments, however, we have
found that even when we allow ωrs to be nondiagonal, the
algorithm usually chooses a diagonal value anyway, which
implies that the output of our original algorithm and the

generalized algorithm should be the same. (We note that
in practice the diagonal version of the algorithm runs
faster, while both are substantially faster than the vertex
moving heuristic proposed for the stochastic blockmodel
in Ref. [21].)
Diagonal values are expected for networks with tradi-

tional community structure, where connections are more
dense within communities than between them. It is en-
tirely possible, however, that there could be networks
with interesting nondiagonal group structure that could
be detected using the more general model. The model
including the matrix ωrs can in principle find disassor-
tative community structure—structure in which connec-
tions are less common within communities than between
them—as well as the better studied assortative struc-
ture. For example, it can detect bipartite structure in
networks, whereas the unadjusted model can not.
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