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We reveal and give a theoretical explanation for spiral-like structures of periodicity hubs in the
bi-parameter space of a generic dissipative system. We show that organizing centers for “shrimp”-
shaped connection regions in the spiral structure are due to the existence of L. Shilnikov homoclinics
near a codimension-2 bifurcation of saddle-foci.
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Over recent years, a great deal of experimental stud-
ies and modeling simulations have been directed toward
the identification of various dynamical and structural in-
variants to serve as key signatures uniting often diverse
nonlinear systems into a single class.

One such class of low order dissipative systems has
been identified to possess one common, easily recogniz-
able pattern involving spiral structures, called the pe-
riodicity hub, along with shrimp-shaped domains in a
biparametric phase space [1, 2]. Such patterns turn out
to be ubiquitously alike in both time-discrete [3, 4] and
time-continuous systems [5–7], as well as in experiments
[1, 8].

Despite the overwhelming number of studies report-
ing the occurrence of spiral structures, there is still lit-
tle known about the fine construction details and un-
derlying bifurcation scenarios for these patterns. In this
Brief Communication we study the genesis of the spi-
ral structures in two exemplary, low order systems and
reveal the generality of underlying global bifurcations.
We will demonstrate that such parametric patterns along
with shrimp-shaped zones are the key feature of sys-
tems with homoclinic connections involving saddle-foci
meeting the single Shilnikov condition [9]. The occur-
rence of this bifurcation causing complex dynamics is
common for a plethora of dissipative systems, describ-
ing (electro)chemical reactions [10], population dynamics
[11], electronic circuits and nonlinear optics [2, 8, 12].

The first paradigmatic example is the canonical Rössler
system [13]:

ẋ = −(y + z), ẏ = x+ ay, ż = b+ z(x− c), (1)

with two bifurcation parameters a and c (we fix b = 0.2).
For c2 > 4ab the model has two equilibrium states,
P1,2(ap±,−p±, p±), where p± = (c±

√
c2 − 4ab)/2a. This

classical model exhibits the spiral and screw chaotic at-
tractors after a period doubling cascade followed by the
Shilnikov bifurcations of the saddle-focus P2.

The second example is the Rosenzweig-MacArthur

model [11, 14]:

ẋ = x [ r (1− x/K)− 5y/(1 + 3z) ] ,
ẏ = y [ 5y/(1 + 3x)− z/10(1 + 2y)− 0.4 ] ,
ż = z [ y/10(1 + 2y)− 0.01 ] ,

(2)

for a tritrophic food chain composed of a logistic prey,
x, a Holling type II predator, y, and a top-predator, z;
two bifurcation parameters K and r control the regrowth
rates of the prey [11].

Bi-parametric screening the Rössler (panels A-B) and
food chain (panels C-D) models unveils a stunning uni-
versality of the periodicity hubs in the bifurcation dia-
grams shown in Fig. 1 of both models. Each diagram is
built on a dense grid of 1000 × 1000 points in the pa-
rameter plane. Solutions of the models were integrated
using the high precision ODE solver TIDES [15]. The
color bars on the right in Fig. 1 yield a spectrum of the
Lyapunov exponents. Panels (A) and (C) of the figure
reveal the characteristic spiral patterns, where dark and
light colors discriminate between the regions of regular
and chaotic dynamics corresponding to a zero and posi-
tive maximal Lyapunov exponent λ1, respectively. Pan-
els (B) and (D) show the enhanced fine structures of the
bifurcation diagrams of the models, due to variations of
both Lyapunov exponents λ1 and λ2. The white stripes
expose shrimps-shaped areas (within red-boxes) on the
dark background of the regular (λ1 = 0) region, as well
as in the multicolored region corresponding to complex
dynamics (λ1 > 0).

The panels are overlaid with (thin blue) curves (ob-
tained using [16]) that correspond to saddle-node (or
fold) bifurcations of periodic orbits. These curves demar-
cate the stability windows from chaotic regions within the
spiral structure which are either via the intermittency
of type I boundary crisis [6], or due to a period dou-
bling bifurcation. In the case of the Rössler model, the
saddle-node curves spiral onto a F(ocal) point [1, 2] at
(a, c) = (0.1798, 10.3084). This F-point seems to be the
turning point of a bifurcation curve (thick black) cor-
responding to a formation of a homoclinic loop of the
saddle-focus, P2, of the Rössler model. Another curve
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Figure 1. (Color online) Spirals and “shrimps” in the 1000 × 1000 grid biparametric bifurcation diagrams for the Rössler
(A-B) and tritrophic food chain (C-D) models. The F-point of the hub is located at (a, c) = (0.1798, 10.3084) and (K, r∗) =
(1.0587,−1.6285 · 10−3) (resp.). The color bars for the Lyapunov exponent range identify the regions of chaotic and regular
dynamics. For visibility the parameter plane of the food chain model is untwisted by transformation r∗ = r + 0.11(K −

1)/0.14− 0.83. Left monochrome panels are superimposed with bifurcation curves: thin blue for saddle-nodes, and thick black
for homoclinic bifurcations of saddle-foci. The medium-thick green boundary determines a change in the topological structure
of chaotic attractors from spiral (at •) to screw-shaped (at ⋆).

(medium-thick green) passes (up to our numerical pre-
cision) through the F-point: crossing it rightward the
chaotic attractor changes the topological structure from
spiral to screw-shaped. This curve has been singled out
of a 1000×1000 grid of points in the parameter plane. In
what follows we will describe the topological algorithms
applied for detecting this boundary, which are based on
the examination of the number of critical points and
monotonicity intervals in corresponding 1D Poincaré re-
turn maps [6, 17]. This transition is completely different
from one considered in [17], where maps with an increas-
ing number of branches are detected in other parametric
ranges [6].

The topological structure of the Rössler attractor can
be described in terms of topological templates [18]. A
template is a branched two-dimensional manifold to
which any periodic orbits (space curves in R

3) in the
attractor are projected without changing their (self)

knotting and (mutually) linking invariants. Practically,
the template may be derived using a Poincaré return
map defined on successive local maxima, y(i), of the y-
coordinate of trajectories on the chaotic attractor for fur-
ther examining the knots of the unstable periodic orbits
(UPOs) foliating the attractor. The map allows for the
determination of the number of branches of the template,
which is associated with the number of monotone compo-
nents in the map graph. The study of the signed crossings

of the UPOs uniquely determine topological template of
the chaotic attractor [18]. So, the spiral attractor in the
Rössler model at a = 0.14 (the point labeled by “•” in
the diagram in Fig. 1(A)) generates a 1D unimodal map
shown in Fig. 2 (top). The single critical point of the map
graph determines the boundary between the normal and
twisted (resp.) stripes. This lets a symbolic description
be naturally introduced for the map using two symbols,
0 and 1, for corresponding branches. In the case of the



3

01

012

−25 −20 −15 −10 −5
−25

−20

−15

−10

−5
a=0.14

−25 −20 −15 −10 −5

−25

−20

−15

−10

−5 a=0.18

y(i)

y(i)

y
(i

+
1

)
y

(i
+

1
)

012

01

Figure 2. (Color online) Poincaré return maps in the left pan-
els for the spiral and screw-shaped (resp.) chaotic attractors
in the Rössler model (1) at a = 0.14 and 0.18 for c = 15.
Right panels show the corresponding topological templates.

screw attractor at a = 0.18 (the point labeled by “⋆”
in the diagram in Fig. 1(A)), the corresponding map in
Fig. 2 (bottom) has a bimodal graph with two critical
points. Here the symbolic dynamics can be defined using
three symbols: {0, 1, 2}. The addition of the second crit-
ical point in the map is a direct indication that the spiral
attractor changes topology. This criteria was used to
locate the corresponding boundary (medium-thick green
line) that separates the existence regions of the attractors
of both types in the bifurcation diagram in Fig. 1. Notice
that this boundary passes right through the F-point.
The linking matrices, which contain necessary topolog-

ical information for the spiral and screw attractors of the
Rössler model are given by:

Msp =

(

0 −1
−1 −1

)

, Msc =





0 −1 −1
−1 −1 −2
−1 −2 −2



 , (3)

using the same notation as [17]. The diagonal elements
in each matrix are the sum of the signed half-twists in
each branch. The off-diagonal elements are the sum of
the oriented crossings between the branches. Thus, in
the spiral attractor we have a 0 entry implying that the
right branch (0) has no twists (Fig 2(A)), and the middle
branch (1) (left branch (2)) has a half-twist (the entry −1
(or−2)). The other−1 entries indicate that two branches
of the topological template cross once only.
The (thick black) bifurcation curve in Fig. 1(A) cor-

responds to a formation of the primary homoclinic or-
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Figure 3. (Color online) Transformation of homoclinic orbits
to the saddle-focus, P2, in the Rössler system: AUTO L2-
norm of the orbit is plotted against the bifurcation parameter
a. The turning point terminates two branches: bottom cor-
responding to the primary homoclinic loop, while the top one
corresponds to the secondary loop with an additional round.
Homoclinic orbits are sampled at the indicated points.

bit to the saddle-focus, P2, of topological type (1,2), i.e.
with 1D stable and 2D unstable manifolds, in the Rössler
model (1). Depending on the magnitudes of the charac-
teristic exponents of the saddle-focus, the homoclinic bi-
furcation can give rise to the onset of either rich complex
or trivial dynamics in the system [9, 19]. The cases under
considerations meet the Shilnikov conditions and hence
the existence of a single homoclinic orbit implies chaotic
dynamics in the models within the parameter range in
the presented diagrams. The magnification of the corre-
sponding bifurcation curve in the diagram (Fig. 1(A,B))
reveals that what appears to be as a single bifurcation
curve has two branches (Fig. 3). This curve has a U-
shape which turning point seems to be at the F-point.
To examine the U-shape in detail we plot the bifurca-
tion curve in terms the L2-norm [16] of the homoclinic
orbit against the bifurcation values of the parameter a
(for periodic solutions U(t), the L2-norm is defined as

‖U‖2 =
√

∫ 1

0
‖U(t)‖2dt, where the independent variable

t is scaled to [0, 1]). Fig. 3 shows that the F-point termi-
nates two branches of homoclinic loops or, alternatively,
serve as a turning for the homoclinic branches.

Fig. 4 outlines a structure of the bifurcation unfold-
ing around the spiral hub [7]. Inset (A) depicts a num-
ber of the identified saddle-node bifurcation curves origi-
nating from codimension-2 points, labeled as B(elyakov),
toward the spiral hub in the (a, c)-parameter plane for
the Rössler model. At these B-points, the saddle with
real characteristic exponents becomes a saddle-focus for
smaller values of the parameter a. The unfolding of this
bifurcation is known [20] to contain bundles of countable
many curves corresponding to saddle-node and period
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Figure 4. (Color online) Outline of the spiral structures: (A)
two kinds, folded and cusp-shaped of saddle-node bifurcation
curves for the Rössler model originating from the cod-2 homo-
clinic B-point. (B) phenomenological sketch of the spiral hub
formed by the “shrimps.” (C) Magnification of the bifurca-
tion portrait of the spiral hub, overlaid with principal folded
(thick red) and cusp-shaped (thin blue) bifurcation curves
setting the boundaries for largest “shrimps” in the Rössler
model.

doubling bifurcations of periodic orbits [14], as well as to
various secondary homoclinic bifurcations of the saddle-
focus. Indeed, both B- and F-points together globally
determine the structure of the (a, c)-bifurcation portrait
of the Rössler model. Fig. 4(B) sketches phenomenologi-
cally a caricature of the bifurcation structure of the spiral
hub along with “shrimps.” In it, the saddle-node bifur-
cation curves originating from the B-point demarcate the
boundaries of “shrimps” near the spiral hub, Indeed, the
hub can generate an infinite chain of “shrimps” [2, 10]. A
zoom of the Rössler bifurcation diagram the in panel C in
Fig.4 depicts a few such shrimps, S2j and S2j±1, that are

singled out by the saddle-node curves (solid red) fold-
ing back around the F-point in the existence region of
the spiral attractor (to the left from the corresponding
boundary (green) passing through the F-point). The
cusp-shaped saddle-node bifurcation curves (light blue)
join the successive S2j−1-th and S2j-th shrimps in the ex-
istence region of the screw-type attractor (here, the sub-
script j stands for an ordinal number of nearby shrimps).
Thus, both fold- and cusp-shaped bifurcation curves of
saddle-node periodic determine the local structure of the
hub and the “shrimps.” The latter serve as connection
centers between hubs that contribute towards the forma-
tion of characteristic spiral structures in the bifurcation
diagram of the system.

We have presented a generic scenario for the formation
of the spiral structures and “shrimps” in the biparame-
ter space of a system with a Shilnikov saddle-focus. The
skeleton of the structure is due to fold- and cusp-shaped
bifurcation curves of saddle-node periodic orbits that ac-
company the homoclinics of the saddle-focus. These bi-
furcation curves distinctively shape the “shrimp” zones
in the vicinity of the spiral hub. In the Rössler model,
these bifurcation curves originate from the codimension-
2 Belyakov point corresponding to the transition to the
saddle-focus from a simple saddle. The common feature
of the spiral hub in the Rössler and the tritrophic food
chain models is the F-point at the center of the spiral
structure that gives rise to the alternation of the topo-
logical structure of the chaotic attractor transitioning be-
tween the spiral and screw-like types. The findings let us
hypothesize about a universality of the structure of the
spiral hubs in similar systems with chaotic attractors due
to homoclinics of the Shilnikov saddle-focus.
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