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The energy landscape paving (ELP) method is a class of heuristic global optimization algorithm based on Monte Carlo sampling. 

By incorporating generation of initial conformation based on greedy strategy, conformation update mechanism based on pull 

moves and some heuristic off-trap strategies into the improved ELP method, we propose a new version of ELP, called ELP-pull 

moves. We test ELP-pull moves on both two-dimensional (2D) and three-dimensional (3D) hydrophobic-hydrophilic (HP) protein 

folding model. For ten 2D benchmark sequences of length ranging from 20 to 100, the proposed algorithm finds the lowest 

energies so far. Within the achieved results, the algorithm converges more rapidly and efficiently than the previous methods. For 

all ten 3D sequences with length 64, the ELP-pull moves method finds new lower energies within comparable computational 

times. The numerical results demonstrate our algorithm is a powerful method to study lattice protein folding model. 

 

I.  INTRODUCTION 

Predicting a protein’s tertiary structure from its primary amino acid sequence is one of most challenging 

problems in biology. Two major difficulties have been challenging researchers. One is the design of appropriate 

energy functions. The effective energy function can generally distinguish the native states from non-native 

states of protein molecule. The other is the exploration of the vast space of all possible structures. The latter has 

been suggested as the current bottleneck [1], and attracts many experts who work on computational problems in 

local and global optimization. In this paper, we address to the latter which can be investigated on a particular 

simplified model: the hydrophobic-hydrophilic (HP) lattice model [2] in both two and three dimensions, which 

is a widely studied abstract one and has been used by biochemists to evaluate new hypothesis of protein 

structure formation. 

In order to search for the minimum energy conformations for HP model, people have presented many 

heuristic algorithms, including genetic algorithm (GA) [3], and its variations (improved genetic algorithm (IGA) 

with a new selection scheme and multiple-points crossover [4] and guided genetic algorithm (GGA) [5]), 

particle swarm optimization (PSO) [6], evolutionary Monte Carlo (EMC) [7], varieties of Monte Carlo (MC) 

[8], the hybrid of GA and tabu search (GTS) [9], elastic net algorithm with local search (ENLS) [10,11], 

gradient-directed Monte Carlo (GDMC) [12], GA based on optimal secondary structures (GAOSS) [13], and 

hybrid Taguchi genetic algorithm (HTGA) [14] that combines genetic algorithm, Taguchi method, and PSO. 

Meanwhile, some statistic approaches such as fragment regrowth via energy-guided sequential sampling 
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(FRESS) [15], equi-energy (EE) sampling [16], extremal optimization (EO) with constrained structure [17], 

sequential importance sampling with pilot-exploration resampling (SISPER) [18], pruned-enriched-Rosenbluth 

method (PERM) [19] and its variations (nPERMis [20] and nPERMh [21]), have also been applied to HP 

model.  

In this paper, energy landscape paving (ELP) [22] with pull moves is proposed for the protein folding 

problem in HP lattice model. ELP is an improved Monte Carlo global optimization method, and has been 

successfully applied to solving off-lattice protein models [23-25] and circular packing problems [26,27]. By 

incorporating generation of initial conformation based on greedy strategy, conformation update mechanism 

based on pull moves and some heuristic off-trap strategies into the improved ELP method, a new version of 

ELP, called ELP-pull moves, is put forward to solve the protein folding problem in HP lattice model. 

II. THE HP MODEL 

The HP model which was first proposed by Dill [28] is a free energy model based on the belief that 

interactions between hydrophobic amino acids give a major contribution to the free energy of the natural 

conformation of a protein. In the HP model, a protein, which can be represented as a string with 20 different 

letters, is composed of only two types of amino acids: hydrophobic (H for non-polar) and hydrophilic (P for 

polar). Based on this classification, the amino acid sequence of protein is abstracted to a binary string of H and 

P residues. 

In the HP model, the sequence is folded on a regular (square or simple cubic) lattice, and is restricted as a 

self-avoiding path. A folding of a protein in HP model is that amino acids are embedded in the lattice such that 

adjacent residues in sequence occupy adjacent grid points in the lattice, and no grid point in the lattice is 

occupied by more than one residue. Two amino acids are topological adjacent if they are neighbors in the lattice, 

but are not adjacent in sequence. Then a topological H-H bond is formed between two topological adjacent 

hydrophobic amino acids. The free energy of a conformation depends on the number of such H-H bonds. In 

other words, if a conformation denoted as s = s1 s2…sn, where si is H if the ith amino acid in the sequence is 

hydrophobic and P if it is hydrophilic, has exactly k such H-H bonds, its energy E(s)=k·(-1). Fig.1 shows a 

conformation with energy -9 in the 2D HP model. 

 

 

FIG. 1.  A conformation of the sequence HPHPPHHPHPPHPHHPPHPH with energy -9 in the 2D HP model, where ‘●’denotes 

hydrophobic amino acid and ‘○’ hydrophilic. 
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The HP lattice protein folding problem can be formally defined as follows: given an amino acid sequence 

s=s1s2…sn, we try to find an energy-minimizing conformation of s, that is, to find c*∈T(s) so that 

E(c*)=min{E(c)∣c∈T(s)}, where T(s) is the set of all the valid conformations of s. Even though the HP lattice 

model is highly simplified, it has been proven that the corresponding folding problem remains to be 

NP-complete [29]. 

 

Ⅲ. METHODS 

A. Energy landscape paving 

The energy landscape paving (ELP) method [22, 23] is an improved Monte Carlo (MC) global optimization 

method. As all good stochastic global optimizers, it is designed to explore low-energy conformations while 

avoiding at the same time entrapment in local minima. This is achieved by performing low-temperature MC 

simulations, but with a modified energy expression designed to steer the search away from regions that have 

already been explored. This means that if a conformation c is hit, the energy E(c) is increased by a “penalty”, 

and replaced by energy )),(()()(~ tqHfcEcE += , where the “penalty” term f(H(q, t)) is a function of the 

histogram H(q, t). In the present paper, we choose ),()()(~ tEkHcEcE +=  as the replacement of the energy E, 

where H(E, t) is the histogram in energy at MC sweep t and k is a constant. During the process of execution of 

ELP, we update the histogram by adding 1 to the frequency of the corresponding bin if the energy E(c) of the 

newly generated conformation c falls into a certain bin, where a “bin” denotes an entry of the histogram, and all 

bins in the histogram are the same in size. We set the size of every bin Ebin=1 in HP model. The sampling 

weight for a conformation c is defined as )/)(~exp())(~( TkcEcE B−=ω , where kBT is the thermal energy at the 

(low) temperature T, and kB is Boltzmann constant. 

ELP has been applied successfully to rough energy landscapes for finding low-energy conformations in the 

off-lattice protein folding problems [23-25] and the circular packing problems [26,27]. In ELP minimization, 

the sampling weight of a local minimum conformation decreases with the time that system stays in that 

minimum, and consequently the probability to escape the minimum increases. The accumulated histogram 

function H(E, t) from all previously visited energy at the MC sweeps helps the simulation escape local 

entrapments and surpass high-energy barrier easier. However, in ELP, there exists a technical flaw [26,27]. 

From the current conformation c1, we consider an attempted move in ELP which yields a new lower energy 

minimum c2 that has never been visited before and energy of which happens to fall into the same bin which 

contains other energies previously visited in the earlier steps. Undesirably, the likelihood of accepting this new 

energy minimum c2 becomes small as the result of the penalty term kH(E, t), i.e., the ELP search may miss this 

new lower energy conformation c2 near c1. To overcome this shortcoming, Refs.[26] and [27] give an 

improvement on ELP. In the improved ELP, the acceptability of the new conformation c2 is determined by a 

comparison between E(c1) and E(c2), where two cases are possible: (a) E(c2)<E(c1) and (b) E(c2)≥E(c1). For 



 4

case (a), the simulation unconditionally accepts the new conformation c2 and starts a new round of iteration; for 

case (b), if the new conformation c2 satisfies the condition expression r(0,1)<exp{[ E~ (c1, t)- E~ (c2, t)]/kBT }, 

where r(0,1) denotes a random number between 0 and 1, then the simulation accepts c2 and starts a new round 

of iteration, otherwise does not accept c2 and restores c1 as the current conformation. 

 

B. Generation of initial conformation based on greedy strategy 

For the HP protein folding problem in two and three dimensions, we build 2D and 3D Cartesian coordinate 

system, respectively. The first amino acid and the second amino acid are put at (0, 0) and (0, 1), respectively, 

for two dimensions, and at (0, 0, 0) and (0, 0, 1) for three dimensions. Subsequently the ith (3≤i≤n) amino acid 

is first “pseudo-placed” at every position which is adjacent to the (i-1)th amino acid and not occupied by other 

amino acids, where “pseudo-place” means the ith amino acid is placed temporarily and will be removed from 

the corresponding position after computing the energy of the partial conformation which consists of the 

previous i-1 amino acids placed and the ith amino acid. Then we put the ith amino acid at the position, where 

the energy of the corresponding partial conformation is lowest. This process repeats until a conformation with n 

amino acids is produced. 

 

C. Conformation update based on pull moves 

In ELP, each MC step must update current conformation. We use a local move set (i.e. pull moves of 

Refs.[30] and [31]) as the conformation update move set. The set of pull moves is complete, reversible, and 

local [30], which makes them efficient for the conformation update. Any valid conformation is connected to all 

others by pull moves. Therefore, pull moves determine how other amino acids respond in HP lattice model 

when one amino acid is moved in one direction. 
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23
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                (a)                                                (b) 

FIG. 2.  Pull moves as the conformation update. (a) Four move directions of amino acid i (2≤i ≤n-1); (b) End moves of amino 

acid i (i=1). 

 

First, we briefly describe the set of pull moves on 2D square lattice, i.e. a single XY plane. According to the 

pull move rules, four move directions, i.e. 1, 2, 3, and 4 are defined in Fig. 2. If the position in one direction 

(such as A, B, C, D) is already occupied by the other amino acid, the move in that direction is not valid. If 
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position A, B, C, or D is vacant, the moves to these positions may be permitted. Suppose the grid points xi-1 and 

xi to be occupied by the (i-1)th and ith amino acids. Consider the pull moves of the ith amino acid. If the grid 

point A is unoccupied, label the fourth grid point in the mini-square including xi-1, xi and A as V (see Fig. 2(a)). 

If V=xi+1(which is occupied by the (i+1)th amino acid), then the pull move simply operates by moving xi to A 

and generates a new conformation. If both V and A are unoccupied, the pull moves then operates by moving xi 

to A, xi+1 to V, xi+2 to xi, xi+3 to xi+1, and so on, until a new legal conformation is reached by the least number of 

grid point moves. In the pull moves described above the amino acids are pulled one by one in descending order. 

By symmetry the amino acid positions can also be pulled in ascending order in a pull move. The first and last 

amino acids in the chain require special pull moves [30]. In Fig.2 (b), if position A or B is vacant, the moves to 

these positions may be permitted. Let A and V be two adjacent unoccupied grid points. V is adjacent to the first 

amino acid position x1. The end move displaces x1 to A, x2 to V, x3 to x1, xj to xj-2, and so on, until a new legal 

conformation is reached by the least number of grid point moves (Fig. 2(b)). By symmetry, the end move on the 

last amino acid is similarly defined.  

In ELP, to update the current conformation, we consider in turn pull moves of every amino acid in the chain. 

Starting from the first amino acid, we execute pull moves for all legal move positions of each amino acid. The 

ith (1≤i≤n) amino acid may at most be moved to the four diagonal positions (see Fig.2). First, we 

“pseudo-move” it to every legal position. Then we complete remaining moves by pull move rules until a new 

legal conformation is reached. After computing the energy of the corresponding conformation for each legal 

position, we move the ith amino acid to the position, where the energy of the conformation obtained by pull 

moves is lowest. This process is repeated until a new conformation is accepted (the acceptance criterion is 

shown in section A) or pull moves on all n amino acid are executed. 

 

 
FIG. 3. Twelve potential diagonal move positions (i.e. indices A, B, C, D, E, F, G, H, I, J, K, and L) of the amino acid i (1≤i≤n) in 

3D lattice. 

 

For 3D cubic lattice, the pull moves of a grid point can be similarly defined as above. It is noteworthy that 

in 3D lattice an initial step of one pull move within one of the three planes may induce subsequent moves 

within the other planes. In addition, in 2D lattice, the ith(1≤i≤n) amino acid (which occupies grid point xi) 

may at most be moved to the four diagonal positions (see Fig.2 (a)), but in 3D lattice, at most to the twelve 

diagonal positions (see Fig. 3).  
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D. The off-trap strategy 

When we apply pull moves to update conformation in ELP, it is possible to each new conformation 

obtained by pull moves is not accepted. This means that the search is trapped into local minima that may locate 

at narrow and deep valleys of the energy landscape. For jumping out of local minima, we execute the following 

three moves in turn: 1) 90°rigid rotations (Fig.4 (a)); 2) parallel moves (Fig.4 (b)); 3) crankshaft moves (Fig.4 

(c)). In 90°rigid rotations, we suppose that grid point xi-1 (which is occupied by amino acid i-1) is a pivot and 

the grid points xi, xi+1, xi+2, …, xn compose a rigid body. The whole rigid body rotates 90°according to grid 

point xi-1 along the XY plane for 2D lattice (see Fig. 4 (a)), and along one of three planes XY, XZ, and YZ for 3D 

lattice, gaining an updating conformation. In parallel moves, the grid points xi, xi+1, xi+2, …, xn compose a rigid 

body, and the whole rigid body parallelly moves along x-axis or y-axis direction for 2D lattice, and x-axis, 

y-axis or z-axis for 3D lattice until grid point xi is still adjacent to xi-1 (see Fig.4 (b)). In crankshaft moves, a 

u-shaped structure consisting of four connected neighbors in the sequence rotates 1800 for 2D lattice, and 900, 

1800, or 2700 for 3D lattice according to the axis consisting of the grid points xi-1 and xi+2 (see Fig. 4(c)). If these 

three moves can not produce a valid conformation, we restore the previous conformation c  of the current 

conformation c as the new current conformation and continue a new round of iteration of ELP. 

xi-2 xi-1

xi

xi+1

xi+2

xi-2 xi-1 xi xi+1

xi+2

 
(a) 90° rigid rotations 

xi-2 xi-1

xi

xi+1

xi+2 xi-2 xi-1

xi xi+1

xi+2

 
(b) Parallel moves 

 
(c) Crankshaft moves 

FIG. 4. Three off-trap strategies in HP model 

 

E. Description of algorithm 

By incorporating the generation of initial conformation based on greedy strategy, conformation update 

mechanism based on pull moves and some heuristic off-trap strategies into the improved ELP method, a new 
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version of ELP, called ELP-pull moves, is developed for the protein folding problem in HP lattice model. The 

calculating procedure is presented as follows: 

1) Generate initial conformation c based on greedy strategy. Let c =c, cmin=c. Set t=1, k=0.5, T=5. 
Compute E(c) and initialize H(E(c), t). Let E~ (c)=E(c)+kH(E(c), t). 

2) Let i=1. 
3) Execute pull moves for all legal move positions of the ith amino acid of the current conformation c. If at 

least a pull move is executed successfully, we compute the energies of the corresponding legal conformations 
obtained by pull moves, and pick out the conformation with the lowest energy as a newly updated conformation 
of c, denoted as c′ and go to 4); otherwise go to 7). 

4) Compute E( c′ ) and H(E( c′ ), t), and let E~ ( c′ )=E( c′ )+kH(E( c′ ), t). 
5) If E( c′ )<E(c), then let c= c′ , E(c)=E( c′ ), c =c, cmin=c and go to 9); otherwise go to 6). 
6) If random (0, 1)<exp{[ E~ (c)- E~ ( c′ )]/kBT}, then let c= c′ , E(c)=E( c′ ), c =c and go to 9); otherwise go 

to 7). 
7) If i>n, then go to 8); otherwise let i=i+1, and go to 3). 
8) For the current conformation c, we produce the new conformation c′  by off-trap strategies. If c′  is a 

legal conformation, then update the current conformation c with c′ , i.e., let c= c′ , E(c)=E( c′ ), and set c =c; 
otherwise let c= c , E(c)=E( c ). 

9) If t>5*106, then output the lowest energy conformation cmin and stop; otherwise let t=t+1, and go to 2). 

 

IV. COMPUTATIONAL RESULTS AND ANALYSIS 

   We test the ELP method combined with pull moves (ELP-pull moves) on the HP model in both two and 

three dimensions. The tested instances include ten 2D benchmark sequences with length ranging from 20 to 100 

[12] and ten 3D ones with length 64 [3]. These benchmark instances, in part, have been used extensively in the 

literature [3-21]. A complete listing of the 2D and 3D sequences can be found in Table I and II, respectively. We 

implement ELP-pull moves in Java language and run it on a Notebook PC with Intel Core 2 Duo, 1.6 GHz 

processor and 1.0GB of RAM. For each instance, the ELP-pull moves algorithm is run five times 

independently.  

 

TABLE I. Ten 2D HP sequences 

Seq. code Length Sequence 
2D1 
2D2 
2D3 
2D4 
2D5 
2D6 
2D7 
2D8 
 
2D9 
 
2D10 

20 
24 
25 
36 
48 
50 
60 
64 
 
85 
 
100 

HPHPPHHPHPPHPHHPPHPH 
HHPPHPPHPPHPPHPPHPPHPPHH 
PPHPPHHPPPPHHPPPPHHPPPPHH 
PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 
PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH 
HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHPHH 
PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHPPPPHHHHHHPHHPHP 
HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPPHPHPHHHHHHHHH
HHH 
HHHHPPPPHHHHHHHHHHHHPPPPPPHHHHHHHHHHHHPPPHHHHHHHHHHHHPPPHHHH
HHHHHHHHPPPHPPHHPPHHPPHPH 
PPPPPPHPHHPPPPPHHHPHHHHHPHHPPPPHHPPHHPHHHHHPHHHHHHHHHHPHHPHHHH
HHHPPPPPPPPPPPHHHHHHHPPHPHHHPPPPPPHPHH 

 

For ten 2D sequences [12], Table III summarizes the ELP-pull moves’ performance together with those of 
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other methods reported in literature, including Monte Carlo (MC) [3], genetic algorithm (GA) [3], sequential 

importance sampling with pilot-exploration resampling (SISPER) [18], genetic algorithm based on optimal 

secondary structures (GAOSS) [13], Monte Carlo with pull moves (MC-pull moves) [12], and gradient-directed 

Monte Carlo with pull moves (GDMC-pull moves) [12]. 

 

TABLE II. Ten 3D HP sequences 

Seq. code Length Sequence 
3D1 
3D2 
3D3 
3D4 
3D5 
3D6 
3D7 
3D8 
3D9 
3D10 

64 
64 
64 
64 
64 
64 
64 
64 
64 
64 

PPHHHHHPPPHHPPPPPHHPPPHPPPPPPHPHPPPHPPHPPHPPPPPHPPPPHHPHHPPHPPHP 
PPHPHPPHPPHHHPHHHHPPHHHPPPPHPHPPPHPHPPPHPHPPPPPHPHPPHPHPPPHPPHPP 
HPHHPPHHPHPPPPPHHHPHHHHPPHPPHPHHPPPHPHPPHHHPHHPHPPPPPHHHHHHHHPPP 
HPPHHPPHPPHPHPPHPPPPHPPPPPPHPHPHHHPPHPHPPPHPHPPHHPPHPPHPPHPHHHPH 
HPPPHHPPHPHPPPHPPPHPHHPPPHHPHPHHPHPPHPPPHPPHPHHHPPHPPHPPHHHPHHHH 
HPPHHPHHHHPPPPPPHHPPHPPPPHHPPPHPPHPHHPHPPPPHHPPPPHPPPPPHPPPPHPHH 
PPPPHPPPHPPPHHHHPHHPPPPPHPPHPHHPHPHPPPPPHPPPPPPPPPPHHHHPPPPHHPPH 
PPPHHHPPHPHPPHPPHHPPPHPPHPPHHPHPPPHPPPPPPPHPHHHPHHHHHPPHHPPPHPPH 
HPPHPPHHHPPPPHPHPPPHPHHPHHHHHPPPPHPHPHPPPPHPHPPPHHPHPPPPHPPHHPHP 
PPHPPHPPHHHPPPHPHPPHPPHPPPPPPHPPHHHPPHPPHPPHPHPPPPPPHHHPPPPPHPHP

 

TABLE III. Comparison of performances of different methods on ten 2D HP sequences listed in Table I. NA means data not 

available. The number in each cell is the minimum energy obtained by the corresponding method for the respective HP sequence. 

The numbers in parentheses are the numbers of valid conformations scanned before the lowest energy values are found. 

2D Seq. MCa GAa SISPERb GAOSSc MC-pull movesd GDMC-pull movesd ELP-pull movese 

2D1 -9(292 443) -9(30 492) -9 -9 -9(149) -9(496) -9(127) 

2D2 -9(2 492 221) -9(30 491) NA -9 -8(144) -9(1 248) -9(441) 

2D3 -8(2 694 572) -8(20 400) NA -8 -8(674) -8(1 683) -8(753) 

2D4 -13(6 557 189) -14(301 339) -14 -14 -14(8 895) -14(4 238) -14(2 103) 

2D5 -20(9 201 755) -22(126 547) -23 -23 -23(29 269) -23(43 434) -23(1 436) 

2D6 -21(15 151 203) -21(592 887) -21 -21 -19(170 047) -21(76 349) -21(12 523) 

2D7 -33(8 262 338) -34(111 400) -36 -36 -36(198 486) -36(194 950) -36(25 718) 

2D8 -35(7 848 952) -38(97 220) -39 -42 -42(76 401) -42(61 233) -42(38 406) 

2D9 NA NA -52 -52 -52(233 039) -53(4 302 404) -53(722 323) 

2D10 NA NA -48 NA -47(295 270) -48(1 441 692) -48(619 496) 
aValues are from Ref. 3. 
bValues are from Ref.18. 
cValues are from Ref.13. 
dValues are from Ref.12. 
eValues are from this current work. 

 

From Table III one can see that, the lowest free energies for three shortest protein sequences 2D1(20-mer), 

2D2(24-mer) and 2D3(25-mer) obtained by the aforementioned seven methods are all the same, except for 

SISPER, which does not report the results for sequences 2D2 and 2D3. For other four slightly shorter 

sequences 2D4(36-mer), 2D5(48-mer), 2D6(50-mer) and 2D7(60-mer), SISPER, GAOSS, GDMC-pull moves 

and ELP-pull moves find the ground state conformations with the lowest free energies, but other three methods 

miss the optimal results in some cases, for example, MC in sequences 2D4, 2D5 and 2D7, GA in sequences 

2D5 and 2D7, MC-pull moves in sequence 2D6. For sequence 2D8(64-mer), four out of seven methods, 
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GAOSS, MC-pull moves, GDMC-pull moves and ELP-pull moves find conformations with energy of -42. 

Three quite different conformations found by ELP-pull moves are shown in Fig. 5. In Fig. 5(a) and (c) there 

exist α-helix, β-sheet, β-turn, and their mixture secondary structures, while in Fig. 5(b), there are mainly 

α-helix secondary structures. For sequence 2D9(85-mer), two out of seven methods, GDMC-pull moves and 

ELP-pull moves find the ground state conformations with the lowest free energy, -53, but SISPER, GAOSS and 

MC-pull moves find the energy of -52, and other two methods, MC without pull moves and GA do not report 

the results. One of the ground state conformations by ELP-pull moves for sequence 2D9 is shown in Fig. 6. For 

sequence 2D10(100-mer), three out of seven methods, SISPER, GDMC-pull moves, and ELP-pull moves find 

conformations with energy of -48, and MC without pull moves, GA and GAOSS do not report the results of this 

instance, whereas MC-pull moves finds the energy of -47. One of the ground state conformations by ELP-pull 

moves for sequence 2D10 is shown in Fig. 7. From Figs. 5-7, one can see that all of the conformations posses a 

compact hydrophobic core. 

            

                         (a)                        (b)                        (c) 

 FIG. 5. Three conformations with energy of -42 for sequence 2D8 (the length-64 sequence) found by ELP-pull moves. 
 

                            
FIG. 6. The conformation with energy of -53 for sequence           FIG. 7. The conformation with energy of -48 for sequence  

2D9 (the length-85 sequence) found by ELP-pull moves.           2D10 (the length-100 sequence) found by ELP-pull moves.  
 

In addition, the number of valid conformations scanned in ELP-pull moves for each sequence is also listed 

in Table III, in comparison with the results by MC [3], GA [3], MC-pull moves [12], and GDMC-pull moves 

[12]. Table III shows that ELP-pull moves spends less time to obtain the lowest energy than these four methods. 

There is no information about time cost for SISPER [18] and GAOSS [13], so we cannot make such a 

comparison. From Table III, one can also see that the putative ground state energies obtained by GDMC-pull 

moves and ELP-pull moves for all ten 2D sequences are the same, but the ELP-pull moves method requires 

much less time to obtain them than GDMC-pull moves. Therefore, ELP-pull moves explores the conformation 

surfaces more efficiently than MC, GA, SISPER, GAOSS, MC-pull moves and GDMC-pull moves. 
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TABLE IV. Comparison of performances of different methods on ten 3D HP sequences listed in Table II. NA means data not 

available. The number in each cell is the minimum energy obtained by the corresponding method for the respective HP sequence. 

The numbers in parentheses are the numbers of valid conformations scanned before the lowest energy values are found. 

3D Seq. MCa GAa IGA b GGA c PSOd ELP-pull moves e 

3D1 -12(4 139 486) -27(2 119 775) -22 NA -28(1 131 552) -31(102 640) 

3D2 -17(4 086 574) -29(2 286 289) -26 -30(14 186) -31(456 877) -36(209 922) 

3D3 -24(3 958 530) -35(1 831 102) -35 -38(493) -39(113 315) -44(101 422) 

3D4 -18(4 077 468) -34(2 315 112) NA -36(27 450) -36(1 730 129) -39(1 007 703) 

3D5 -20(4 027 596) -32(2 040 915) NA NA -38(1 602 646) -41(737 062) 

3D6 -16(4 114 480) -29(2 160 690) NA -30(1 899) -31(410 586) -34(405 219) 

3D7 -15(4 128 584) -20(2 317 862) NA NA -27(1 296 319) -28(51 015) 

3D8 -19(4 067 513) -29(2 391 876) NA NA -35(1 113 330) -37(87 188) 

3D9 -19(4 053 207) -32(2 121 287) NA -34(14 848) -35(404 199) -39(255 703) 

3D10 -14(4 125 584) -24(2 287 394) NA -25(362) -27(175 053) -31(111 953) 
aValues are from Ref. 3. 
bValues are from Ref.4. 
cValues are from Ref.5. 
dValues are from Ref.6. 
eValues are from this current work. 

 

   For ten 3D sequences with 64-mers [3], we list the results of the ELP-pull moves algorithm in Table IV, in 

comparison with those by Monte Carlo (MC) [3], genetic algorithm (GA) [3], improved genetic algorithm [IGA] 

with a new selection scheme and multiple-points crossover [4], guided genetic algorithm (GGA) [5], and 

particle swarm optimization (PSO) [6]. From Table IV one can see that ELP-pull moves finds new lower free 

energies than these five methods for all ten 3D sequences. Figs. 8-17 show typical conformations of these 

putative lowest energy states. It is obvious that each of these conformations posses a compact hydrophobic core. 

Moreover, ELP-pull moves scans less the number of valid conformations to obtain the lowest free energy than 

MC [3], GA [3], and PSO [6] for every sequence. In addition, one can notice that GGA [5] spent less times to 

obtain their results for sequences 3D2, 3D3, 3D4, 3D6, 3D9, and 3D10 than ELP-pull moves, but the lowest 

energies by GGA are far high (at least a difference of -3) from those by our method. For other four sequences, 

we cannot make a comparison between ELP-pull moves with GGA since GGA does not report the 

corresponding results. 

                      
FIG. 8. (Color online) Typical conformation with E=-31 of          FIG. 9. (Color online) Typical conformation with E=-36 of 

sequence 3D1.                                              sequence 3D2. 
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FIG. 10. (Color online) Typical conformation with E=-44 of         FIG. 11. (Color online) Typical conformation with E=-39 of 

sequence 3D3.                                             sequence 3D4. 

 

                         
FIG. 12. (Color online) Typical conformation with E=-41 of        FIG. 13. (Color online) Typical conformation with E=-34 of 

sequence 3D5.                                             sequence 3D6. 

 

                       
FIG. 14. (Color online) Typical conformation with E=-28 of        FIG. 15. (Color online) Typical conformation with E=-37 of 

sequence 3D7.                                             sequence 3D8. 

 

                     
FIG. 16. (Color online) Typical conformation with E=-39 of        FIG. 17. (Color online) Typical conformation with E=-31 of 

sequence 3D9.                                             sequence 3D10. 
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V. CONCLUSIONS 

Stochastic global optimization method ELP has been applied successfully to rough energy landscape of 

continuous space for finding low-energy conformations, including the off-lattice protein folding problems, the 

circular packing problems, etc. However, few researches applied ELP to discrete combinatorial optimization 

problem. In this paper, to demonstrate the efficiency of ELP in discrete space, the protein folding problem in 

both 2D and 3D HP lattice model is studied, and the performance of the ELP procedure for each case is 

described. In ELP, we introduce pull moves to execute local search and update conformation. Because the 

landscape for protein folding is rugged, and the set of pull moves is local, ELP may trap the optimization in 

some local minima that locate at narrow and deep valleys of the energy landscape. So, some heuristic off-trap 

strategies are used to jump out of the local minima.  

Our results indicate that for the 2D model the ELP method combined pull moves (ELP-pull moves) 

explores the conformation surface more efficiently than MC, GA, SISPER, GAOSS, MC-pull moves and 

GDMC-pull moves, and find the known lowest energies obtained by previous researchers in all cases. 

Moreover, for all ten 3D sequences, the ELP-pull moves algorithm outperforms MC, GA, IGA, GGA, and PSO, 

and finds new lower energies within comparable computational times. Briefly, this paper presents a new more 

efficient algorithm for finding lower free energy states of 2D and 3D HP lattice proteins. It is not hard to see 

that the proposed method is easy to be extended to other discrete optimization problem. Furthermore, our study 

suggests that a proper combination of normal stochastic global optimization method and local search can 

reduce the cost of stochastic global search and enhance the efficiency of search of the algorithm. It could be an 

efficient mechanism to construct high-performance algorithm in a certain problem. 
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