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We exploit a simple model to numerically and analytically investigate the effect of enforcing a
time constraint for achieving a system-wide goal during an evolutionary dynamics. This situation
is relevant to finding antibody specificities in the adaptive immune response as well as to artificial
situations in which an evolutionary dynamics is used to generate a desired capability in a limited
number of generations. When the likelihood of finding the target phenotype is low, we find that
the optimal mutation rate can exceed the error threshold, in contrast to conventional evolutionary
dynamics. We also show how a logarithmic correction to the usual inverse scaling of population
size with mutation rate arises. Implications for natural and artificial evolutionary situations are
discussed.

PACS numbers: 87.23.Kg, 87.19.xw

I. INTRODUCTION

Normally in population genetics, a novel mutation be-
comes ubiquitous in a population before new mutations
occur at the same locus—this is the process of fixation.
This reflects the time scale of the development of new
phenotypes, which is usually very long due to the fact
that the mutation rate is small compared to the rate
at which the new mutation expands in the population.
There are examples of systems where the mutation rate
is large, leading to evolutionary dynamics without fixa-
tion.

Quasispecies theory is used to model these systems[1–
3]. Furthermore, systems are often exposed to short-
timescale fluctuations due to changing environments,
which can change the evolutionary dynamics [4]. We in-
vestigate the case where the effect of the short-timescale
influence is absolute. That is, rather than a system ex-
posed to a time-varying stress (to which the system may
respond in many different ways), we ask what happens
when an evolution has a fixed time limit, after which the
population as a whole is considered to have failed.

This situation is seen in the adaptive immune sys-
tem. During the immune response, discovery of new an-
tibody specificities (phenotypes) and the dominance of
high affinity clones (fixation) occur on similar time scales
of tens of generations by way of somatic hypermutation
[5, 6]. Failure to discover responding antibodies within a
certain time interval can lead to the death of the host.

Another example where this applies is in artificial
genetic algorithms. Directed evolution is used for in-
dustrial applications: protein design[7], optimized wing
aerodynamics[8], the design of support structures[9, 10],
and many other systems. In such applications, the evo-
lutionary timescale is compressed as much as possible
towards the goal of developing a specific functionality,
in which case beneficial mutations may not have time
to become fixed. Similarly, in artificial systems such as
applied genetic algorithms, it is desirable to make the
simulation converge upon a good solution as quickly as
possible, and as such one can utilize any evolutionary
parameters that yield at least one optimal instance, even

if the population of its descendents would be unstable
under continued mutation.

In all of these cases, only a single successful individ-
ual must be discovered by the end of the adaptive phase
of the process, and it can then be amplified after reduc-
tion of the mutation factor (as in the immune system)
or by the experimenter extracting and analyzing the suc-
cessful case. This objective contrasts with that for com-
peting organisms, in which population stability is often
more important than the discovery of rare beneficial mu-
tations. We thus expect the optimal evolutionary dy-
namic to maximize the system-wide fitness rather than
be tuned for the expansion of individuals and their de-
scendents. This represents a form of altruism [11], in
that individual members sacrifice their own expansion,
e.g., by having harmfully high mutation rates, to help
achieve the system-wide goal. In the present study, we
develop a model to explore these evolutionary dynamics
and understand how best phenotypes can be generated
in short times.

To ground our model in reality, we cast it in terms of
the adaptive immune system. The humoral immune re-
sponse centers on activated production of antibodies by B
lymphocytes, each with some affinity to the antigen. The
initial generation of activated B cells comes from a pool
of naive cells (or clones), each with particular rearrange-
ments of the heavy- and light-chain variable regions that
determine the antibody specificity. B cells with antibod-
ies with high affinity for the antigen are most strongly ac-
tivated, and undergo an increase in both their replication
rate and their mutation rate. This leads to an evolution-
ary dynamic in which higher affinity subpopulations of
B cells grow more rapidly (as they more frequently bind
to antigen) and eventually dominate the system. The in-
creased mutation rate (compared to resting B cells) also
allows for novel sequences to be discovered, leading to
a form of evolution in which new B-cell specificities are
developed on the same time scale as their population dy-
namics.

Evolutionary aspects of the adaptive immune system
have been extensively modeled in prior work. Abstract
models of affinity maturation have been used to gauge
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the rate of response to antigens [12]. These models have
accurately predicted qualitative details of the immune re-
sponse, and have hinted at the importance of secondary
mechanisms for achieving quantitative agreement with
experimental observations [13, 14]. Furthermore, this
sort of modeling has been used to understand how the
process of adaptation leads to the generation of memory,
and how hyperspecificity can lead to a poor secondary re-
sponse (original antigenic sin) [15, 16]. Our focus is less
on a quantitative replication of the course of a particular
infection as it is to understand what generic changes to
the evolutionary dynamics can emerge due to the short
time scales and high mutation rates.

To this end, we exploit a simple representation of B-
cell specificity to model the evolutionary dynamics of the
primary immune response. Given that we consider evo-
lutionary pressure to be on the host, rather than directly
on the components of the adaptive immune system, we
expect that we can capture the observed B-cell hypermu-
tation rate by optimizing the system-wide success rate.
We model the host-scale success or failure by consider-
ing a time limit on the evolutionary dynamics (T ), at
which point the system has succeeded at maturation to
a particular antigen to a certain degree, and this defines
a system-wide fitness.

We use the simulations to estimate the dependence of
the probability of success on the mutation rate, and then
we show that these curves can be described analytically
in terms of a uniform volumetric search. In this picture,
the scale of the search volume is determined by mutation
rate and time. The unique sequences that are produced
by the dynamics randomly cover this search space, and
we evaluate the probability that at least one of those
sequences lies within the target region. To predict the
success rate using this picture we need to know the to-
tal number of unique sequences produced by the end of
the evolutionary interval. To this end, we compute the
dependence of the final population size on the mutation
rate and, in turn, the theoretical success rate curves. Re-
markably, despite the strong selection that we impose on
antibody affinity in the simulations (which would suggest
that the actual set of search paths should be highly rele-
vant), the volumetric search picture successfully captures
the salient aspects of the dependence of the success rate
on mutation rate and time limit T .

From the simulations, we also compute the optimal
mutation rate. In conventional evolutionary dynamics
the mutation rate is normally limited by the error thresh-
old [17, 18]: µ ≤ log(σ)/L, where σ is the selection
strength and L is the genome length. In the case where
one is considering the distinction between a fitness peak
and a survivable plateau (that is, the plateau corresponds
to a state with no lethal mutations), this threshold de-
termines the point at which selection fails to maintain
information about the peak. When distinguishing be-
tween a peak and a lethal valley, the threshold no longer
applies [1], as any offspring generated in the lethal val-
ley simply die, and so the population does not forget the

peak, but does risk extinction. If one is attempting to
find higher fitness peaks from within a fitness valley, the
error threshold does apply, and normally limits the opti-
mal mutation rate of the system.

The error threshold is the mutation rate over long
times at which a system loses the ability to maintain
a fitness maximum. If the system has a time-variable
mutation rate[19] (that is, it shuts down mutation after
T has been reached and then allows the system to grow)
then the error threshold of the high-mutation period need
not actually constrain the optimal mutation rate in all
cases. Basically, a short-duration spike of the mutation
rate followed by a period of low mutation can have an
average rate of mutation below the error threshold, even
though instantaneously the mutation rate crosses the er-
ror thresold.

However, if a large portion of the population dies due
to failed mutations, then fewer sequences can be explored
during the time available. It is the interplay between
these two effects that constrains the evolutionary dynam-
ics. We find that the instantaneous optimal rate can be
above the error threshold, but only in those cases where
there is a low chance of success overall. Implications of
the results for the immune system and artificial evolu-
tionary situations are discussed.

Methods

We use a string-based model of antibody-epitope affin-
ity (similar to [20] and others) to understand the conse-
quences of fast macroevolution. In such models, each
molecule (antibody or epitope) is represented by a se-
quence of values. Matching values at corresponding
points in the antibody sequence and the epitope sequence
increase affinity, while unlike pairs decrease affinity. In
these models, the affinity is then some function of the
Hamming distance between the two sequences: the total
number of matches. Here, we use a base-4 representation.

Our simulations consist of a set of B cells, each of which
produces a specific antibody. They evolve via selection
on the initial population and by mutation to maximize
affinity with one of a number of target epitopes Ne of the
invading virus. The target epitopes and the antibodies
produced by the B cells are both represented by a string
of bases of length L. The affinity between an antibody
and a set of epitopes is the maximum of the affinity A
between the antibody and each of the epitopes present;
it is defined to be the number of matches between the
antibody string (xk) and the epitope string (yi):

Ak = max
i
di (1)

where

di ≡
∑
j

δxk
j
,yi

j
(2)

is the Hamming distance between antibody and epitope,
and δ is the Kronecker delta.
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This representation gives rise to an additive fitness
function. Recently, there has been interest in multiplica-
tive fitness landscapes[21, 22]. These are fitness land-
scapes in which the factors given by each feature of the
organism to control its replicative success rate are multi-
plied rather than added. This has the consequence that
the dominant factor to replication rate of the organism is
its worst feature, and so the evolutionary process empha-
sizes removing negative aspects before developing new
positive aspects. One consequence of this type of land-
scape is that specific mutations can give rise to lethal-
ity regardless of whether an individual has other, posi-
tive traits. This could be relevant to the immune sys-
tem in that mutations that dramatically decreased the
surface expression of the receptor regardless of its affin-
ity for antigen could lead to death of a clone. As dis-
cussed below, the growth rate depends exponentially on
the affinity, and we work primarily in the infinite selec-
tion strength limit. In this limit, the difference in replica-
tion rate between the most fit clonal line and the second
most fit clonal line becomes exponentially large, in ef-
fect killing (or at least neutralizing) all mutations that
do not at least maintain the current fitness. Therefore
we expect that in this limit there is no strong dependence
on the overall structure of the fitness landscape (multi-
plicative or additive), as all mutations will either create
a new high-fitness cell line, do nothing, or neutralize the
B-cell with respect to replication.

The landscape that we use does not have interdepen-
dence between bases—it is a fairly easy problem. More
convoluted landscapes occur biologically, in which there
is epistasis and more general co-dependence between mu-
tations. For much of this work we consider the infinite
selection strength limit, in which epistasis insufficient to
create a fitness barrier is equivalent to the case of no
epistasis. In general however, there can be situations
where gene interactions make it necessary to go uphill
first in order to find the global optimum. These may in-
clude “glassy” problems in which frustration is possible,
requiring large-scale sequence changes in order to escape
a local optimum [4]. In our case, our model concerns the
approach to a local minimum of the immune space, as the
large population of naive B-cells provides redundancy in
the form of covering the immune space. As such, we ex-
pect the naive B-cells to be initialized in the basins of
attraction of the target minima.

A cell with affinity Ak establishes a population that
grows as (1+rk)t (where t here is the generation number,
not the physical time) where the replication rate of this
set of cells is

rk = C exp(γAk), (3)

C is a population-wide normalizing factor and γ indicates
the strength of selection. C is chosen so that the total
replication rate of the fastest growing B-cell in the pop-
ulation is 2 to create a non-dimensionalized time scale in
terms of the number of cell doublings. As a consequence
of this rescaling of the growth rate, the absolute time al-

lotted for evolution is not fixed. Our choice is reasonable
in systems where the resources needed for replication are
limited. In that case, if one organism is much more fit
than the others, the result will be that it will still have
some fixed replication rate corresponding to resource sat-
uration. Here, the limiting factor is the availability of ac-
tivation factors. B-cells that identify the antigen present
it to helper T-cells, which activate the B-cell increasing
its replication rate. In a B-cell population with varying
specificities to the antigen, there is competition between
B-cells for the antigen and for the helper T-cells, both of
which could potentially limit the B-cell replication rate.
The normalization of the growth rate leads to an effective
interaction between otherwise independently growing cell
lines. This can lead to a form of clonal interference. If
two different mutations are discovered by the system in
different cell lines, then only one of those mutations is
likely to be further explored, specifically whichever gains
a second beneficial mutation first. Once that happens,
the other mutation, even if useful, will be frozen out.
In effect, two simultaneous but different beneficial muta-
tions will interfere with each other as they are competing
for dominance within the population.

When a cell replicates in this model, each base of
its string mutates with probability m/L, so that the
global mutation rate is m. With regard to the selection
strength, we observe little change in the numerical results
when γ > 1 (see inset of Fig. 2), so we only consider the
limiting behavior for strong (γ � 1) and weak (γ ≈ 0)
selection. While clones of varying affinities will clearly
contribute to an actual immune response, we exploit the
insensitivity to the value of γ in deriving our analytical
results and work in the infinite selection strength limit
(γ →∞) as it is more tractable than the finite selection
strength case. We can estimate a biologically reasonable
value of γ using the results of [23], in which an amplifica-
tion factor of 125 in 10 generations was reported (corre-
sponding to 15625 in 20 generations). Using the inset of
Fig. 2, this corresponds to approximately γ = 0.7, which
is at the border of the strong selection and weak selection
limits.

We also make the choice to consider only relative cell
growth factors, rather than the influence of cell death.
During a primary immune response, cell replication rates
are enhanced above the normal level. While cell death
does occur, much of its evolutionary effect can be ex-
pressed in a modification of the growth rate of the dif-
ferent cell populations. As such, we expect to observe
a series of exponentially growing subpopulations of B-
cells. We also assume that the population can continue
to grow exponentially without limit for the duration of
the response. Because of this, we can take the entire
immune response consisting of the responses to many
epitopes across many germinal centers and consider the
characteristic dynamics of the response of a single cell
line to a single epitope. Within the context of our model,
these populations would only interact by competing for
activation, but this would not happen strongly between
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germinal centers, and so we can consider the dynamics
of a single germinal center’s subpopulation that reacts
to a single epitope independently from the others. Each
separate epitope and each separate germinal center are
additional chances to produce immunity. We may then
compute the combined probability of finding a success-
ful sequence across the whole set of initial conditions. If
the probability of success for evolution around a single
epitope is p, then the probability of success for evolution
around any of Ne epitopes is 1− (1− p)Ne .

We define success here as whether or not a sequence
with sufficient affinity is discovered after a fixed amount
of time, where the threshold for sufficient affinity can
be varied as a model parameter. One could argue that
average affinity is a better indicator of the strength of
response to the infection, but once a high affinity cell has
been discovered it will be strongly activated and clonal
amplification will take place. There is no need to actu-
ally simulate this process as it is simply a growth curve
with the growth rate of that high affinity clone. To cor-
rect for this, we take into account how long it would take
for clonal amplification to expand a single cell into a rea-
sonable germinal center B-cell population of around 1000
cells[23]. This means that the time intervals over which
we explicitly simulate are shorter than the total duration
of the immune response, and the T values considered re-
flect this.

We initialize the system with a single cell at an initial
Hamming distance d0 from one of the epitope sequences.
We then let it evolve for T generations and check if at
least one cell with distance dt < d0 is present in the sys-
tem. If such a cell is found, then the system is considered
to have succeeded at adapting to the invader. If such a
cell is not found, then the system has failed to combat
the infection. We repeat this experiment and average
over 1000 trials to determine the average success rate.
We vary T , d0, and D = d0 − dt to gauge the ability of
the immune system to make some number of beneficial
mutations in the period of hypermutation as a function
of these parameters.

The parameters of the model L and T need to be cho-
sen realistically for the immune system, as the results
depend very strongly on both. A B cell has a variable re-
gion in its genome of about 660 bases due to VDJ recom-
bination, and within this variable region are hypervari-
able complementarity determining regions (CDRs) that
determine specificity, comprising between 20% and 30%
of the variable region [24]. Furthermore, mutation is not
evenly distributed across the hypervariable regions. Cer-
tain motifs (RGYW/WRCY) tend to concentrate muta-
tions [25] and lead to a reduction in the effective length of
the dynamic component of the genome by a factor of up
to 3/32 for a random sequence. Experimentally, half of
the mutations that occur during hypermutation are as-
sociated with RGYW/WRCY motifs and there is strong
codon bias favoring G and C mutations [26]. As such
the relevant length of our antibody strings is some where
between L = 12 at minimum to L = 200 at maximum

(assuming every site in the hypervariable region has a
uniformly high mutation rate). We investigate L = 30
and L = 150 as representative relevant lengths.

A generalized timeline of infection suggests that the
time from infection to the peak of the primary non-
specific immune response is from 3 to 14 days [27]. Dur-
ing this time, adaptive immunity must select for higher
affinity B cells to become memory cells that participate in
the secondary immune response. Activated B cells have
a wide variation in division rates related to the mecha-
nism of isotype switching, with the fastest dividing cells
in the system dividing approximately twice a day [28]. As
such, the adaptive immune system must develop a broad
repertoire of mutated B cells during the initial period of
from 6 to 28 generations, which may then be amplified to
the point of clonal dominance during the remaining time
that the infection is resident in the body. We investigate
adaptation durations of T = 10, T = 15, T = 20, and
T = 25 generations. A single run of this model is shown
in Fig. 1a and b.

II. RESULTS

In this section, we use our model to illustrate how fast
macroevolution of the adaptive immune system differs
from standard evolutionary dynamics. If we consider the
final population size in the limit of infinite selection, in
general we expect an inverse dependence on the mutation
rate as organisms develop harmful mutations. In both
fast macroevolution and standard dynamics, this corre-
sponds to the fraction of offspring who are non-viable
due to harmful mutation. However, due to the rapid
discovery of beneficial mutations we expect that this in-
verse dependence should be tempered in the case of fast
macroevolution. We predict the correction factor and
compare with numerical experiments. We also predict
how the success rate of adaptation toward a given target
should scale with mutation rate, allowing us to determine
the optimum mutation rate.

A. Fixation time

In the usual picture of evolutionary dynamics, there
is a separation between the time to develop new mu-
tations and the time for mutations that are introduced
to become present in every member of the system or to
become extinct (fixation time). We first verify that the
adaptive immune system is operating in a regime in which
the development of beneficial mutations and the process
of fixation have similar time scales. To this end, let us
consider the introduction of a high affinity clone into a
population P0 comprised of clones with a baseline level
of affinity. We would like to compare the fixation time
of this new clone with the rate of introduction of bene-
ficial mutations. Fixation is based upon the extinction
of either the new line or the old line of cells, which is
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FIG. 1: (a) Data from a single run of the simulation with
L = 30, γ = ∞, T = 20, and d0 = 10. The total cell pop-
ulation is shown, along with the number of beneficial mu-
tations discovered at that point in time. Every time a new
beneficial mutation is discovered, that sub-population must
expand, leading to a series of sequential exponential growths
in the population. (b) (Color online) Muller plot of the same
simulation. The outline of the plot shows the growth of the
population, and the separate colors are different mutated cell
lines plotted in the center of their parent cell line.

limited by the mortality rate. However, the time scale
of the immune response is such that the mortality rate
of B cells that are not of the high-affinity cell line will
be much slower than the actual dynamics of interest. As
such, rather than the time to fixation, we consider the
time for the high-affinity clone to become the dominant
contributor to the response (clonal dominance [29]); we
take this time to be that at which the newly introduced
clone has a population equal to the rest of the B cell pool.

Let us consider affinity-driven selection on the growth
rate. We can do this either by assuming a growth rate
that increases with affinity, or by assuming that there is
some background death rate that is decreased by high
affinity. In either event, we can discuss both of these sce-
narios in terms of the doubling time of the (surviving)
population. We will mark time by the progress of the
highest affinity population for ease of computation: we
define the doubling time of the highest affinity popula-
tion to be one generation. In reality, the rate of growth

of the highest affinity population may change in time,
and so to determine an exact mapping between genera-
tion number and physical time one needs to know exactly
how the net growth rate depends on affinity. We perform
all of our calculations in this generation time scheme so
that we can determine what results are independent of
the choice of model for the connection between affinity
and growth rate. With such a model (e.g., [30]), all of our
generation-based times can in principle be converted to
physical times. In cases where we need to reference phys-
ical times, such as in the overall duration of our process,
we use the average growth rate of the entire germinal
center B-cell population to convert timescales as a first
approximation.

In this notation, the high- and low-affinity populations
expand in time as Ph(t) = 2t and Pl(t) = P0(1 + r2)t

with (0 < r2 < 1), respectively, so that Ph(t) = Pl(t)
at t = log(P0)/[log(2) − log(1 + r2)]. If the new B-cell
population is doubling every generation with respect to
a fixed baseline population (corresponding to r2 = 0),
then it takes a new subpopulation as long to overtake
the existing population as it took to establish the origi-
nal one. As such, the maximum timescale for fixation is
of the order of the timescale of the immune response—
around 20 or 30 generations. This corresponds to the
maximum number of cells that could be produced from
a single initial B-cell over the course of the immune re-
sponse. It has been observed that actual clonal domi-
nance occurs somewhat faster than this in the immune
system[31], suggesting that in the case of the immune
response the baseline population is not holding constant
but is actually decreasing. This difference is consistent
with our choice to approximate the underlying death rate
of cells as a modification to the replication rate.

We can compare this to the timescale for the discovery
of beneficial mutations. Given that the rate of hypermu-
tation in the immune system is approximately 10−3 per
basepair, corresponding to one mutation every two gen-
erations [32], let us consider the slowest scenario for the
discovery of a beneficial mutation. For a long character-
istic sequence length L = 200 in which there is only a sin-
gle specific possible beneficial mutation to be found, we
would need a population of 1200 descendents uniformly
covering the space of possible mutations to have an O(1)
probability of having found that mutation. This corre-
sponds to a time scale of 17 generations starting from
only a single cell (and fewer with an existing growing pop-
ulation), which is comparable to the fixation timescale.

B. Population

The final population of B cells constrains how many
sequences can be explored in total during the period
of affinity maturation. In the limit of zero selection
strength, the final population of B cells would be 2T ,
where T is the number of generations. In the infinite
selection strength limit, however, only the current best
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FIG. 2: Population dependence on the mutation rate. We plot
the total population at the end of the interval of evolution.
The solid line is our theoretical result (Eq. 10) with no free
parameters. L = 30, γ =∞, T = 20, and d0 = 10. The inset
shows the dependence of the results on selection strength γ
for m = 0.05. For values of γ � 1, the resultant population
approaches the infinite selection strength asymptotic limit.

subpopulation grows at all; the total population then be-
comes a sum of a set of subpopulations, each of which
grew while that specificity was the best but stopped
growing upon the emergence of a new beneficial muta-
tion.

Fig. 2 shows the final population as a function of muta-
tion rate, m, for a system at time T = 20, starting from
an initial distance in sequence space of d0 = 10, and in
the infinite selection strength limit, γ = ∞. Power-law
behavior is observed for small m, and the final population
decreases monotonically as m increases. Conceptually
this makes sense—as m increases, so too do the number
of harmful mutations that occur during the growth of
the system, thus reducing the expanding component of
the population. Furthermore, as the rate of discovery of
beneficial mutations increases, large parts of the system
are left behind and do not grow as quickly. out any free
parameters Let us now see how we can understand the
population scaling that we see in our simulations. For
a subpopulation that has already obtained n beneficial
mutations, the probability of a single mutation improv-
ing the affinity, p+, is the product of the fraction of sites
remaining with mismatches (d0 − n)/L and the fraction
of alternative values that would result in a match for each
such site (1/3 for our base-4 representation). Because the
subpopulation continues to grow so long as no beneficial
mutations occur, we must compute the average time τ
between beneficial mutations to obtain the total popula-
tion growth. The cumulative probability that a beneficial

mutation is found by time t is

p = 1− (1− p+)m2t (4)

where m2t is the total number of mutations made by
the subpopulation, neglecting corrections to the growth
owing to deleterious mutations.

We proceed by assuming that the rate of beneficial mu-
tations per individual cell division, r+ ≡ mp+, is small
(by definition, r+ ≤ 1/3). This is reasonable for both dif-
ficult evolutionary problems (close to the optimum) and
small mutation rates. We can thus expand p to obtain
p ≈ r+2t. The probability of having found a beneficial
mutation approaches 1 when t = τ for

τ(n) = − log2 r+ = log2 3L/m(d0 − n). (5)

We now want to obtain the (average) final number of
beneficial mutations, nf , in total evolution time T , re-
gardless of whether the search was successful (nf = d0)
or not (nf < d0). Approximating n as a continuous vari-
able,

T =

∫ nf

0

τ(n)dn. (6)

We consider two limiting cases. If the optimum sequence
is easily found (nf/d0 ≈ 1) then we expect to quickly
obtain a single exponentially growing population. In this
limit we recover the general case of P ≈ m−1. On the
other hand, for hard evolutionary problems, we are suffi-
ciently far from the optimum that we do not consistently
find it, and so nf/d0 � 1. We now discuss the latter case
in depth.

Substituting Eq. 5 into Eq. 6, integrating, expanding
the resulting logarithms, and keeping terms to second
order in nf/d0, we obtain

n2f + 2d0nfQ(m)− 2d0T log(2) = 0, (7)

where Q(m) ≡ log(3L/md0). Solving for nf ,

nf = −d0Q

(
1−

√
1 +

2T

d0Q2

)
. (8)

Employing Eqs. 5 and 8, the final population of cells
is

P =

∫ nf

0

2τ(n)dn (9)

= −3L

m
log

[
1 +Q

(
1−

√
1 +

2T

d0Q2

)]
. (10)

Keeping in mind the dependence of Q on m, we see that,
to first order in 1/ logm,

P ∼ m−(1+1/ logm). (11)
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In Fig. 2 we plot the prediction of Eq. 10 (solid line)
against the results of our simulation. The predicted curve
fits the data well with no free parameters. For com-
parison, the leading order 1/m behavior is also shown
(dashed line). The effect of the logarithmic corrections
in the relevant range of mutation rates is sufficient to
change the apparent scaling exponent by about 25%.

The difference from the standard picture that has given
rise to this logarithmic correction is that because the evo-
lutionary timescale is faster than the timescale of cell
death in this system, old cell populations still remain
in the system even after they have been made obsolete
by the discovery of beneficial mutations. As such, rather
than having one dominant species that contributes to the
population, the resultant population contains a memory
of the evolutionary trajectory leading to the current state
in the residual subpopulations.

Now that we have a theory for the final population of
sequences, we can estimate how many different sequences
are explored by the system. Using this, we can then un-
derstand how the rate of success of the fast macroevolu-
tionary process depends on mutation rate.

C. Success Rate

We now consider the likelihood that the immune sys-
tem will find a sufficiently high-affinity receptor to have
a response. Beyond a certain required distance of adap-
tation, the system will often fail, but the presence of
multiple B cell lines independently evolving can greatly
amplify the chance of success. With this in mind, we
examine the dependence of the success rate on the sys-
tem parameters for a cutoff in the individual success rate
of 10%. Below this point, the success rate decays very
quickly and becomes difficult to measure accurately in
our simulations. Note that the success rate we measure
concerns adaptation to a single epitope. If multiple epi-
topes are available, each epitope will attract a popula-
tion of B cells. As such, each epitope can be viewed as
an independent trial. For Ne epitopes and an individ-
ual probability of success S, the overall success rate is
1 − (1 − S)Ne . This means that an individual 10% suc-
cess rate corresponds to a 65% system-wide success rate
if there are ten epitopes, an 88% success rate if there are
twenty epitopes, and so on.

In Fig. 3, we plot the success rate as a function of
mutation rate for different success thresholds, D, in the
infinite selection limit (γ = ∞). These data tell us the
ability of the system to respond to an epitope, as well as
the mutation rate that optimizes the chance of success.
We would like to construct a picture that allows us to
understand and predict these curves. To do this we con-
struct a simple approximation in which there is a search
space of sequences constructed by the set of mutations,
and all sequences explored by the system are randomly
chosen from this search space. This is somewhat analo-
gous to the shape-space approaches used to understand
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d0 = 10 for different values of the target distance D. The
data points are success rates from simulation and the solid
curves are fits of Eq. 14 to each set of data.

coverage of epitope space by antibody repertoirs[33, 34].
The essential picture is the following. We begin at an
initial distance from the optimal sequence and seek to
end up within a certain radius of that optimal sequence.
If the mutation rate is large, we explore a larger space
in total. However, the volume of the space is larger and
the number of points we can try is smaller (because the
final population decreases monotonically with the muta-
tion rate), and so the density of coverage of our search
space is smaller as well. If our mutation rate is too small,
however, we never search far enough to find the target re-
gion of sequence space. Fig. 4 is a schematic depiction of
this situation, where the shading indicates the density of
coverage of each search region.

Let us consider the case of a search that saturates a
distance r in the sequence space so that each sequence
within that distance of the origin is equally likely to be
generated. For sequences of total length L sites that can
take on q = 4 values, the number of sequences in the
space is the volume of the q-ary Hamming ball of radius
r in dimension L.

Vq(r) =

r∑
i=0

(
L
i

)
(q − 1)i. (12)

A real evolutionary search of this space does not have
a sharp cutoff at r mutations. Rather, the probability
of finding a sequence at more than r mutations away
falls off monotonically. If we consider the limit in which
the saturated search volume completely encompasses the
target, then the probability of a random sequence gen-
erated within the search volume also being within the
target volume is proportional to V −1 = f(r)Vq(r)

−1,
where f(r) encodes the overlap between the expanding
search volume and the target region. Let us consider the
asymptotic behavior of f(r) as r → 0. When r = 0,
there should be no overlap (unless the initial sequence
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FIG. 4: Schematic diagram of the evolutionary search of se-
quence space. The ellipses are shaded by density and repre-
sent the search region of increasing mutation rate searches of
fixed duration. The paths correspond to potential evolution-
ary trajectories for three mutation rates. One path stops short
of the target region, while another wanders around the space
in larger steps and so overshoots the target. The branches
from the high mutation rate path indicate deleterious muta-
tions that lead to non-replicating sub-populations.

is actually inside the target zone, in which case the suc-
cess rate will simply be 1), such that if we expand f(r)
around r = 0 the lowest order behavior we expect to see
is f(r) = αr + O(r2). The parameter α should depend
strongly on both the volume of the target region and the
distance from the initial sequence to the target region.

Neglecting reversion, the number of different sequences
explored by a population of final size P is mP . Taking
mP as the number of attempts to hit the target, the
success rate is

S = 1− [1− αrVq(r)−1]mPf (m) (13)

where Pf (m) is the final population of the system at time
T .

To see how S depends on the mutation rate, m, we
must relate r to m and the total time, T . Dimensionally,
m has units of L/T , so we expect that the distance r
scales as r = βmT , where β is an undetermined constant
of proportionality. This corresponds to a directed search,
consistent with the strong selection limit in which B-cell
evolution operates (for contrast, a random walk would

instead scale as r ≈
√
T ). Substituting for r in Eq. 13

and defining a ≡ αβT and b ≡ βT ,

S(m) = 1− [1− amVq(bm)−1]mPf (m). (14)

This approach has the problem that because m can

vary continuously, r = bm need not be an integer. How-
ever, the volume of the q-ary Hamming ball is only de-
fined for integer values of the radius. We have made an
implicit approximation by replacing a sum over a distri-
bution of mutational radii with the average value. To
evaluate this expression for non-integer values of the av-
erage saturation distance r we must make some sort of
continuous approximation of the function Vq. To do this
we first evaluate this function numerically and then con-
struct a 5th order polynomial fit. This continuously in-
terpolates values of Vq without introducing maxima or
minima to the function.

We now treat a and b as fitting parameters to compare
this predicted form with the success rate curves we mea-
sured previously. We compare our predicted functional
form, Eq. 14, with the data (Fig. 3), using the measured
number of unique sequences from the simulation. The
predicted curves fail in cases where the success rate is
very large at low mutation rates and in cases where the
success rate is very small all around. Despite the fact
that the theory effectively assumes that the search space
is searched evenly, without a driven component that one
would expect from the infinite selection limit, the curves
fit very well to the simulations for a range of parameter
values. This suggests that the effect of selection in fast
macroevolution is to narrow the volume of the search
space quantitatively, rather than to change the funda-
mental dynamics (and thus the scaling with T ) of the
search. Put another way, it would appear that the role
of selection in the immune system is mainly to amplify
beneficial discoveries found following the initial random
exploration, as opposed to guiding the search step by
step. This result contrasts with the long-time case, in
which selection dominates the dynamics.

By studying the scaling of a and b, we can understand
whether the search process is ballistic (as our simple di-
mensional analysis predicted), diffusive, or a complex
mixture of behaviors. We expect the fitting parameters
a and b to scale linearly with time. Moreover, a should
change with the target radius, but b should not because
the factors contributing to it depend only on the dynam-
ics of the search, not its conclusion. Because the param-
eter a comes from the leading expansion of f(r), it in
particular tells us about the development of the overlap
of the leading edge of the search volume to the target
area. The parameter b on the other hand comes from the
volume of the search space and so tells us how the search
volume expands with distance.

We have extracted these fitting parameters from a
number of success rate curves (d0 = 4, D = 2; d0 =
6, D = 3; d0 = 9, D = 4) chosen to have the largest dy-
namic range across the range of durations 5 ≤ T ≤ 25.
The parameter b increases approximately linearly with
T as expected: straight line fits to the data on the log-
log plot yield an exponent of 0.910 ± 0.02 over the ob-
served range (Fig. 5). On the other hand, the parameter
a changes with time much faster than anticipated (the
best-fit power-law exponent is 5.48 ± 0.03). The differ-
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FIG. 5: Fit parameters of Eq. 14 for success curves at times
between T = 3 and T = 25 for L = 30 and initial dis-
tance/target distance pair 6, 3, which exhibits the largest dy-
namic range of success rates in our data set. The success
curves for these points were evaluated with 2.5 × 106 trials.
The parameter b depends almost linearly on time for central
values from T = 5 to T = 20 (b T 0.91±0.02) but deflects at the
edges. The parameter a however changes very sharply with
time in contrast to the prediction of the leading-order effect.

ence in the time scaling between a and b suggests that the
shape of the leading edge of the search volume is chang-
ing with time. In essence, the f(r) we proposed above
is actually f(r, T ), and a more detailed theory that cap-
tures the evolution of the leading edge is necessary to
understand the a scaling. Overall, though, the theory
fits the simulation data remarkably well, which suggests
that the volumetric picture captures the main features of
the dynamics.

D. Optimal Mutation Rate

Let us consider the mutation rate which maximizes
the rate of success over many trials for a specific prob-
lem. This mutation rate, corresponding to the peak of
the success rate curve, is the optimal mutation rate for
that problem. From the simulations, we can compute the
optimal mutation rate given the time T , initial distance
d0 (corresponding to the maximum number of beneficial
mutations that can be achieved), and target number of
beneficial mutationsD. We determine this optimal muta-
tion rate empirically by trying mutation rates from 10−2

per generation up to 4 per generation, in increments of
10−2. We restrict ourselves to d0 < L/2, as otherwise
we are in a regime where an arbitrary random string is
closer to the epitope than our initial guess.

Because the dynamics of our system are dominated by
the discovery of a successful sequence rather than the
maintenance of a population of that sequence, the error
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FIG. 6: Optimal mutation rate versus the failure rate for L =
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and for various values of d0 = [1, 17] and the success thresh-
old D = [1, d0 − 1]. The horizontal line indicates the error
threshold for this system. For high failure rates, the optimal
mutation rate is above the error threshold.

threshold does not necessarily limit the optimal mutation
rate during the initial discovery phase. This is in contrast
to the usual case, in which populations with mutation
rate above the error threshold are unstable, regardless
of their fitness. The idea is that the system follows the
brief period of mutation above the error threshold with
a period of low mutation during which those sequences
that were discovered may be amplified without being lost.
We do in fact find parameter ranges in which our system
prefers to be above the error threshold. When the suc-
cess rate is large and D is small compared to d0, then
the optimal mutation rate lies below the error thresh-
old, from 0.3 to 0.6 per generation (and so in some cases
may in fact be smaller than that of the real immune sys-
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fix the mutation rate per generation to be 0.5, which is con-
sistent with biological values for the hypermutation rate in
B-cells. The immune system finds the optimum up to a point,
beyond which it cannot keep up with the potential number
of beneficial mutations. As the immune response duration is
lengthened, this point encompasses an increasing number of
mutations. The solid line corresponds to all possible muta-
tions being found.

tem dynamics). However, as the success rate drops then
the optimal mutation rate rises above the error threshold
(Fig. 6). Random guesses can sometimes find the target
sequence, even if they hurt the total growth rate of the B
cell population. This suggests that the immune system
is generally operating in the reliable regime, rather than
trying to bridge large evolutionary distances during the
period of adaptation.

The hypermutation rate of the immune system was
recently studied theoretically [35], and despite the very
different perspective from which that study starts, it pre-
dicts an optimal rate of about 50% of offspring cells hav-
ing a single mutation. Despite different assumptions, our
model reproduces mutation rates consistent with this op-
timum over parameter ranges in which we expect the
effect of short-time constraints on the evolutionary dy-
namics should be small. This is consistent with the idea
that the optimal mutation rate is normally limited by the
error threshold [17, 18].

If the immune system is operating near optimal, then
the number of beneficial mutations that are likely to ac-
cumulate in this case tells us how far afield memory B
cells are likely to be from their initial naive progenitors.
This in turn tells us the degree of adaptation that can be
expected via hypermutation, and determines how many
mutations the immune system must be able to sustain.
This tells us that the spacing between features of the se-
quence space is at least that large. We plot the results
in Fig. 7 for the two sequence lengths that we consider.
If sufficient time is available, the immune system is able

to find all of the potential beneficial mutations that are
available. However, as the number of potential beneficial
mutations increases, the immune system only finds a de-
creasing portion. The number of beneficial mutations at
which this turning point occurs scales linearly with the
duration of the primary immune response. In the case of
an immune response of relatively long duration (T = 25),
the discovery of up to four or five beneficial point muta-
tions seems possible. In the case of the longer sequence
(L = 150), very little progress is made beyond a single
beneficial mutation. However even in the most stringent
case of T = 10, L = 150, at least one beneficial mutation
can be found 18% of the time for a single epitope. Even
a single point mutation has been found to be responsible
for large changes in affinity [36].

III. DISCUSSION

Here, we investigated the dynamics of a short-time evo-
lutionary search for a system-wide goal. In the model,
the rate of phenotypic exploration is fast enough that
old populations do not become extinct before new bene-
ficial mutations are discovered. As such, the system re-
members the evolutionary trajectory that led to the final
state, leading to a logarithmic correction to the popula-
tion count. This particular aspect is a direct consequence
of the short time scales involved in the evolutionary dy-
namics rather than of interference between fixation and
mutation. The other factor is the collective success or
failure of the search. As such, one expects the parame-
ters of the evolutionary dynamics to be optimal from a
system point of view rather than an individual point of
view. In cases where the success rate is low, this leads to
a relaxation of the error threshold constraint on the opti-
mal mutation rate. However, for the majority of param-
eter values, the error threshold still bounds the optimal
mutation rate.

The mutation rate only exceeds the error threshold
when the problem is difficult (the overall success rate is
small). In these cases, the optimal strategy is to generate
large numbers of highly distributed sequences in hope of
finding the target region, at which point the system can
make a more directed search. It does not appear that the
immune system is generally operating in this regime, as
evidenced by observations of a hypermutation rate of 0.5
per generation averaged over the immune response [32].
However, it has been shown that a phasic schedule of mu-
tation, with periods of high mutation punctuating inter-
vals of mutation-free growth, is likely to provide a strong
benefit relative to a constant mutation rate [19, 37]. A
phasic schedule is expected to be especially advantageous
as the amount of time available increases, as repeated
random search combined with strong selection pressure
and low mutation rate of the positively selected cells will
outperform the evolutionary dynamics that result from
simply having a high mutation rate.

If the immune system is utilizing intervals of high mu-
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tation beyond the error threshold, it has implications for
the coevolution of an invading virus and the adaptive im-
mune system. This situation has been studied in [24], in
which the error catastrophes for the virus and the im-
mune response place bounds on the mutation rates of
both systems. Over the short time, the immune system
may be able to outrace the initial adaptation of a virus by
having an anomalously high mutation rate. However, if
the initial attempt failed, one would expect that a system
with a high mutation rate becomes unstable and is unable
to maintain pressure on the evolving virus. As such, the
short timescale over which the adaptive immune response
occurs may introduce an additional regime of behavior in
the response to a highly adapting virus, if the immune
system is able to quickly defeat the virus by outpacing
it on the time scale on which the error threshold is less
relevant.

Another point of interest in earlier theoretical studies
has been the structure of the epitope/antibody affinity
space. Cohn and Langman [38] used an argument about
the total number of B cells in small organisms to pro-
pose the minimum necessary repertoire of naive B cells
needed to respond to any plausible invader. If one consid-
ers the consequences of an adaptive response operating
in the space of possible specificities, the need to densely
cover all possible epitopes is strongly reduced. Instead,
the blood need only contain naive B cells that are close
enough to each epitope that they can evolve to affin-
ity mature. To understand just how diverse the naive
repertoire can be, we compute the number of beneficial
mutations generated in our model and find it to be four
or five. This number sets the necessary scale of coverage
of the initial sequence space as well as the minimal size
of the buffer around self epitope reactivity. Knowledge
of the structure of the epitope/antibody affinity space is
important for developing a conceptual framework for un-
derstanding autoimmune disorders produced by age, such
as rheumatoid arthritis [39, 40], and those produced by
mis-adaptation to an invader [41, 42]. The structure of
this space also influences viral escape [43] and viral evo-
lution.

Our finding that the optimal mutation rate can ex-
ceed the error threshold has implications for the design of
computational optimization strategies. In difficult prob-
lems, it can be better to make large random jumps in
the the search space in combination with local refine-
ment rather than to make a simple directed search. This
is analogous to the phasic schedule of mutation [37] dis-
cussed above. It is also akin to the well-known fact that
it is more efficient to search a high-dimensional space by
drawing points at random rather than from a grid with
uniform spacing—this is the basis of the Monte Carlo
method [44].

To apply our results to algorithmic design, it will be
important to account for the fact that such algorithms
typically use a fixed population rather than one that
grows or shrinks. Death and birth rates are thus less
relevant than comparisons of the fitness of different mem-
bers of the population. For example, in such a system, if
one wished to search the space in a trans-error threshold
manner it would be possible to specify that new states of
lower fitness than their progenitor are not added to the
population pool. This would remove much of the stabil-
ity issue with trans-error threshold mutation and might
push the optimal mutation rate even higher (though in
this case, optimal must be measured with respect to com-
putational time required for solution rather than genera-
tions). It would be interesting to derive general rules for
identifying the optimal strategy in evolutionary dynam-
ics with constraints, like the short-time limit discussed
here.
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