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Abstract

A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively,

if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area

focused on situations where the deformation kinematics of the membrane were prescribed. Here

we consider models where the deformation of the membrane is not prescribed, but instead the

membrane is internally forced. Both the time-varying membrane shape, and the resulting fluid

motion, result then from a balance between prescribed internal active stresses, internal passive

resistance, and external viscous stresses. We introduce two specific models for such active internal

forcing: one where a distribution of active bending moments is prescribed, and one where active

inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we

asymptotically calculate the membrane shape and the fluid transport velocities for small forcing

amplitudes, and recover our results using scaling analysis.

PACS numbers: 47.63.-b, 47.63.Gd, 47.63.mf, 47.61.-k
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I. INTRODUCTION

From living fluids of swimming microorganisms to soft membranes actively deformed

by molecular machines, active materials are ubiquitous in the microscopic world and pose

vexing challenges to biologists and physicists alike [1]. Rather than external constraints,

many of the global properties of active soft matter are determined by a dynamic balance

of internal stresses. In the example of a cellular membrane, in addition to mechanical

feedback with the environment, a cell also makes use of internal non-equilibrium constituents

to produce dynamic shape changes, guiding important mechanisms for survival such as

motility, morphology, and reproduction [2–5]. Morphologys role in ultimately determining

the functionality of a cell has long generated interested in the scientific community, as the

geometry of a cell impacts the proteins embedded in its surface [6], and the shape fluctuations

of an active membrane yields insight about the activity within [7–10].

In recent decades cell locomotion has occupied a great deal of attention [11–14]. One of

the possible justifications for this interest stems from the fact that self-propelled organisms

represent one of the ways in which soft active transport is accessible to our intuition. In all of

these cases, and in many others, shape matters. The deformation of a biological membrane,

and the rate at which it occurs, inevitably determines the effect that the internal stress

state has on the world around it: Internal activity competes with dissipative forces arising

from viscous fluids, frictional substrates, or other external forces and – in addition to the

particular constitutive relationship ruling the behavior of the membrane itself – the final

result is the shape of the body.

Focusing on cellular motility, and swimming in particular, the only external stress is

that exerted by the viscous fluid on the deforming surface. Provided that the deformation

of the membrane is not time-reversible, the work performed by the body against the fluid

generates a macroscopic velocity [11]. Dual to this problem is fluid pumping, wherein an

actively deforming tethered membrane transports fluid, rather than propelling itself through

the bulk. This aspect of fluid transport is the focus of the current paper.

To understand the origin of fluid transport by a beating membrane, one only needs to

know the deformation of the surface and the fluid properties; this is, in fact, how previous

work on the subject has been developed, either to model actual organisms or to provide

concepts for locomotion that do not occur in Nature [12, 15–18]. If the kinematics of a
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membrane deformation are prescribed, the transport characteristics require thus only solving

the fluid mechanics problem [15].

A more physically-relevant model would start from knowledge of the internal forcing,

and then both the deformation and the transport would be solved for at the same time.

Recently there have been attempts to prescribe not merely the kinematics, but instead the

internal dynamics of a deforming body as model for the physics of axonemal beating in

eukaryotic cells [19, 20]. The physical problem becomes then: given an internal state, and

a dynamic evolution equation, what are the macroscopic results? Past work has focused on

active filaments, and our present study extends thus this dynamical analysis to membranes.

In this manuscript we present a model for the internal force generation in an active

membrane. Introducing two models for internal actuation, and taking advantage of the

asymptotic limit of small forcing, we analytically derive the membrane deformation from

its linear response, and then use the deformation to deduce the (quadratic) fluid transport.

Our results are recovered by scaling arguments, which allow us to intuitively quantify how

the three-way balance between internal forcing, passive (elastic) constitutive modeling and

external viscous forcing impacts fluid transport.

II. TRANSPORT BY GENERAL DEFORMATION OF A SHEET

A. Setup

For the microscopic regimes that we are interested in the fluid flow is well modeled by

the incompressible Stokes equations, ∇ ·σ = 0, ∇ · u = 0, where u is the fluid velocity, and

σ is the fluid stress tensor. For this work we consider only Newtonian fluids, such that the

first condition becomes ∇p = µ∇2u, where p is the pressure and µ is the shear viscosity. We

consider an infinite, two-dimensional sheet that passes a traveling wave of arbitrary shape

h over its surface (see Fig. 1 for notation), in the absence of thermal fluctuations. If there

is no variation in the y-direction then the fluid is two-dimensional and a streamfunction ψ

such that u = ψzx̂− ψxẑ can be defined.

For an arbitrarily shaped traveling waveform h(kx − ωt), we apply a no-slip boundary
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FIG. 1. Generalized Taylor swimming sheet passing a traveling wave in the positive x direction

with constant wave speed c = ω/k. The wavelength is 2π/k and the height of the membrane

denoted h(kx − ωt). In the reference frame of the sheet, the material points undergo transverse

displacements, while at infinity a uniform pumping flow U develops.

condition to the sheet to get

ux =
∂ψ

∂z
|S = 0, (1a)

uz = −∂ψ
∂x
|S = −∂h

∂t
, (1b)

where (...)|S indicates that the quantity in parentheses must be evaluated across the sheet

(designated by the manifold S). This is precisely what leads to geometric nonlinearities and

precludes a full analytical solution to the present problem.

B. Fluid pumping

We expand the waveform as h = εh(1) + ε2h(2) + ... where ε is a small parameter denoting

the magnitude of the wave amplitude. The stream function ψ and pumping velocity U is

expanded similarly.

To leading order, we write h(1) = <{
∑∞

n=1 bne
in(kx−ωt)} and, following Childress [21], solve

for the stream function to obtain

ψ(1) = <{
∑
n

ω

k
bn(1 + nkz)e−nkzein(kx−ωt)}, (2)

where it is implicitly assumed that all sums range from n = 1 to n =∞.

At this order there can thus be no flow far from the sheet: the h → −h symmetry

demands that any expansion of the velocity U be symmetric in powers of h.
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At second order, then, we find that

ψ(2)
z (x, 0) = −ψ(1)

zz (x, 0)<

{∑
n

inkbne
in(kx−ωt)

}
. (3)

Since the sheet is periodic, averaging this quantity over one period in space yields the flow

at infinity, or the macroscopic fluid transport velocity, and we obtain

U (2) =
1

2

∑
n

ωk|nbn|2. (4)

Importantly, we see that the knowledge of only the first order height coefficients, bn, leads

to the determination of the fluid transport properties at second order.

C. Stress

In the following section we will invoke local force balance at leading order to determine

the membrane shape and thus we need to know the distribution of stress from the fluid. The

pressure at first order is given by

p(1) = −2µω<{
∑
n

inkbne
−nkzein(kx−ωt)}, (5)

while the components of the fluid stress are

σ(1)
zz = −p(1) + 2µ

∂2ψ(1)

∂x∂z
, (6a)

σ(1)
xz = 2µ

(
∂2ψ(1)

∂x2
− ∂2ψ(1)

∂z2

)
. (6b)

III. ACTIVE MEMBRANE MECHANICS

We now proceed to derive the dispersion relations for two models of active elastic sheets

that will provide a quantitative bridge between the microscopic formulation and the macro-

scopic flow.

In general the internal forces (i.e. the forces not originating with the viscous fluid) will

consist of a passive elastic response and an active component. The general enthalpy func-

tional that describes the internal energetic state of the membrane is given by [22]

G =

∫
κ

2
(C − C0)2dS +

∫
γdS +Gact. (7)
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FIG. 2. Active membrane where active two-dimensional moments are prescribed with density

f(x, t). Normal deformations arise over regions with a gradient in the active stress.

Here κ is the bending rigidity of the membrane, C is the mean curvature, C0 is the so-called

spontaneous curvature of the membrane, γ is the surface tension and Gact is the active

contribution to the enthalpy, whose form depends on the particular model of activity, and

which we give two examples for below.

Real biological membranes are complex, containing proteins embedded in the surface,

several layers of chemical activity, or possibly even an elaborate scaffolding of interlinked

polymer networks (relevant, e.g., to the cytoskeleton in eukaryotic cells). For simplicity, we

ignore these effects, as well as possible viscous dynamics inside the membranes, and focus

on bending energetics [23, 24]. In addition, although spontaneous curvature can lead to

interesting morphological consequences in cells and vesicles ([25, 26]), we work with C0 = 0

and only consider local curvature changes from inclusions in the membrane. The form of

the active contribution to the enthalpy, Gact, depends on the particular method of internal

forcing [27]. Below we consider two models, focusing on internal bending moments and

normal forcing to the membrane respectively.

A. Active bending stresses

1. Setup

In this first model, we assume that there is a distribution of forces acting entirely within

the surface of the membrane. These forces then generate a moment distribution that de-

pends on the thickness of the membrane itself. We then define an internal, prescribed two-

dimensional moment per length (units of force) f(x, t) (see Fig. 2). Balancing this activity

with internal passive response and viscous fluid forces yields the instantaneous equations of
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mechanical equilibrium

κ∇2C + n̂ · σ · n̂|S = ∇2f (normal), (8a)

τ + t̂ · σ · n̂|S = 0 (tangential), (8b)

where τ = γ + κC2 is the physical tension in the membrane, and t̂ and n̂ are vector

tangent and normal to the membrane respectively. This equation is correct for any arbitrary

distribution of forces, or any shape of the membrane, as long as ∇ is taken to be the

covariant gradient. For long-wavelength membrane deformation, however, we already solved

the fluid mechanics that results in fluid transport. In this case the membrane shape can be

parameterized by a height field h(x, t), and the curvature C ≈ ∇2h. To lowest order in the

expansion of the height, the equations for the pointwise force balance across the membrane

then become

2κ
∂4h(1)

∂x4
− ∂2f

∂x2
= −p(1) − 2µ

(
∂2ψ(1)

∂z∂x

)
S

, (9a)

τ (1) = µ

[
∂2ψ(1)

∂z2
− ∂2ψ(1)

∂x2

]
S

. (9b)

Using the expression for the first order stream function from the previous section, we find

that to first order the tension τ (1) = 0: to lowest order in the deformation of the membrane,

only normal effects are important [24].

2. Scalings

Using scaling arguments we derive in this section the expected scaling of the pumping

velocity by the active membrane. In the context of the classical Taylor swimming sheet, the

swimming velocity is expected to scale as U ∼ c(bk)2, where c = ω/k is the wave speed.

Two physical regimes need to be considered, those of “stiff” and “floppy” membranes.

In the stiff regime, viscous forces are negligible compared to bending resistance, and thus

the dynamic balance is between elastic and active stresses. The elastic stress in a mem-

brane with rigidity κ, typical height deformation beff , and deformations occurring at typical

wavenumbers k scales like κbeffk
4, while the active stress is on the order of f0k

2. This yields

a value for the effective height of the membrane as beff ∼ f0/κk
2. We then expect pumping

in the stiff regime, Us, to occur at speed Us ∼ c(beffk)2 ∼ ωf 2
0 /κ

2k3.
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In contrast, in the floppy limit the bending resistance is negligible and the dynamic bal-

ance is between viscous stresses and internal activity. The typical shear stress on the sheet

scales as µcbeffk
2. Force balance leads thus to the scaling f0k

2 ∼ µcbeffk
2, and the deforma-

tion is given by beff ∼ f0/µc. Fluid pumping in the floppy limit, Uf , is thus predicted to

happen with speed Uf ∼ c(beffk)2 ∼ f 2
0k

3/µ2ω. Interestingly, in floppy limit, the dependence

of the pumping speed on both the sheet frequency and wavenumber is opposite to that in

the stiff limit.

To characterize the floppy-to-stiff transition, we introduce the dimensionless group a =

1/k` where ` = (κ/µω)1/3 is the elasto-viscous penetration length that determines how

strongly the membrane shape is effected by the bending resistance versus the viscous forces

(similar to the so-called “Sperm number” used to model viscous locomotion of flagellated or-

ganisms [20, 28]). When a� 1 the membrane is stiff and hence it is energetically prohibitive

to introduce an excitation of linear dimension the order of 1/k, so the viscous forces do not

modify the shape of the membrane and the waveform is a result of the balance between activ-

ity and rigidity alone. In contrast, when a� 1, the membrane is floppy, and the fluid forces

dynamically balance the internal forces to determine the shape. Using the two scalings de-

rived above in the stiff and floppy regime, we note that Uf/Us ∼ κ2k6/µ2ω2 = (k`)6 = 1/a6.

3. Asymptotics

Expanding the distributed moment in powers of the small parameter, namely f = εf (1) +

ε2f (2) + ..., and furthermore expanding in the same basis as the height field such that

f (1) = f0<{
∑
fne

in(kx−ωt)}, we utilize the results for the pressure and streamfunction from

the previous section to find the linear response for the height field as a function of the

internal tangential stress

bn =
f0

2κk2 [n3 + i2a3]
fn. (10)

Using the result Eq. (10), we are then able to derive the pumping flow, Eq. (4), as a

function of the activity, elasticity, and viscosity, and we obtain

U (2) =
1

2

∑
n

ωk|nbn|2 =
1

8

ωf 2
0

κ2k3

∑
n

n2|fn|2

n6 + 4a6
· (11)
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In the stiff limit, a � 1, the asymptotic results in Eq. (11) recover the scaling derived in

Sec. (III A 2). For the floppy limit, a � 1, the series in Eq. (11) is only asymptotically

convergent, but for a finite sum the scaling in Sec. (III A 2) also holds.

B. Active normal stresses

1. Setup

In the section above we neglected the details of the activity within the membrane, in

favor of a more generic modeling approach describing the relationship between fluid flow,

internally applied bending moments, and passive bending resistance. In a biological context,

many sources of activity could instead generate normal stresses in the membrane. Our second

model, described below, considers a concentration of active elements dispersed throughout

the membrane and generating fluid stresses. Active membranes, consisting of elements

roughly similar to the model that we use have been considered in the past for modeling

the morphology of cellular membranes [6, 29], or measuring non-equilibrium effects in shape

fluctuations [10, 30], but in this work we seek to use a fluid mechanics motivated model to

describe as simply as possible methods of force generation due to active inclusions.

A schematic of the proposed model system is sketched in Fig. 3. A dilute concentration

of “pumps”, each one capable of driving a microscopic flow through the membrane surface,

act as inclusions, effectively modifying the material properties. Not only does the shape of

the individual pump alter the shape of the membrane [6, 30], but the flow itself generates

fluid stresses on the surface.

Each pump is modeled as a circular aperture of radius d. Since d is a molecular length

scale far smaller than any other length scale, L, in the system, we can approximate the flow

as resulting from a point source embedded in on a flat surface [31], such that the stream

function is given by ψ = −q/2π[1 − (̂t · r/r)3], where t̂ is the radial tangent vector on the

surface, r is the position of interest in the fluid, and q is the volumetric flow rate through

the inclusion. The corresponding pressure drop across the aperture is δp = 3qµ/d3.

In order to satisfy the equations of force balance we need to calculate the normal and

tangential stress due to not just one pump, but a concentration of inclusions. Each pump

has a preferred direction, and thus we must generally consider the concentration difference,
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(a)

(b) (c)

FIG. 3. Schematic illustration of membrane deformation by active inclusions: (a) Active inclusions

embedded in the surface; the inclusions induce flow fields which lead to pressure drop and thus

normal stresses acting on the membrane; (b) Zoomed-in version of the membrane where the size

of each inclusion and the local bending of the membrane are schematically represented; (c) Sketch

of the streamlines for a single circular aperture in a flat surface pumping fluid with flow rate q; at

leading order the molecular length scale, d, is much smaller than the typical membrane scale, L,

and thus the flow is assumed to be unaffected by membrane curvature.

n = n+ − n−, where n+ and n− are the concentrations of pumps pointing in the positive

and negative z directions, respectively. For convenience we will consider the dimensionless

quantity φ = n/n0, where n0 is the equilibrium concentration difference [30].

The normal stress on the membrane due to a single inclusion is simply the pressure

drop from the fluid, while the tangential stress on the surface of the membrane decays like

1/ρ2, where ρ =
√
x2 + y2. The length scale d dominates this contribution, and locally

this implies that the tangential stress per length is of the same order as the pressure drop,

i.e. t̂ · σ · n̂ ∼ qµ/d3. However, because the stream function is axisymmetric, the tangential

component of the fluid stress integrates to zero over the entire membrane, and thus does

not enter the force balance equations.

A general functional describing the enthalpy of the membrane including active pumps is

given by

G =

∫
κ

2
(C −H0φ)2dS, (12)

where H0 a signed measure of the intrinsic curvature for the active elements, and we have
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neglected effects from 2D compressibility in the concentration, as well as higher order effects

coming from gradients in the concentration field [10, 30, 32].

Performing the functional extremization and linearization for the active pump enthalpy,

and including the fluid stresses from pump activity, we now find the dynamic equations to

be

2κ
∂4h(1)

∂x4
− κH0

∂2φ

∂x2
= −p(1) − qµ

d3
φ

−2µ

(
∂2ψ(1)

∂z∂x

)
S

, (13a)

τ (1) = µ

[
∂2ψ(1)

∂z2
− ∂2ψ(1)

∂x2

]
S

. (13b)

As in the case addressed in the previous section, the tangential stress balance yields zero

tension at leading order.

2. Scalings

Here again we use scaling arguments to derive the expected form for the macroscopic flow

pumped by the membrane. In addition to the stiff (s) versus floppy (f) regimes explained

above, we must consider in addition the competition between the spontaneous curvature and

the deformation induced by the active pumping mechanism: In one limit the local stiffness

introduced by the molecular curvature of the inclusions overrides the pumping activity (we

denote this limit h), while in the opposite limit the spontaneous curvature is dominated by

the pump activity (denoted a). We have thus four different limits to characterize.

Let us denote by φ0 the typical magnitude of the dimensionless concentration of pumps,

and the typical force generated by the pumps as fact = qµ/d. To measure the competition

between the natural curvature of the inclusions (h case) and the one arising from the activity-

induced fluid flow (a case), we introduce the dimensionless parameter, A = H0κd
2k2/fact.

For stiff membranes (a� 1), in the limit where the bending from activity is predominant,

i.e. A� 1, force balance reveals that beff ∼ factφ0/κd
2k4, while in the opposite limit where

the bending arises from molecular curvature (A � 1), we get beff ∼ φ0H0/k
2. In contrast,

for floppy membranes (a � 1), the case of active inclusions (A � 1) leads to the scaling

beff ∼ factφ0/µω0d
2k, while in the limit where the inclusions pump a very small amount of

fluid transverse to the membrane (A� 1), we obtain beff ∼ H0φ0κk/µω.
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Now, the expected fluid velocities in the four different limits can be found by again using

the analogy with the swimming sheet, U ∼ c(beffk)2. For stiff active membranes (a � 1,

A� 1), we expect Usa ∼ ω(factφ0)2/κ2d4k7, while stiff inactive membranes (a� 1, A� 1)

should lead to Ush ∼ ω(H0φ0)2/k3. In the inactive case we note that the fluid velocity no

longer depends on the membrane stiffness, as the intrinsic curvature H0 governs the bending

penalty at the same order in κ as local deformations in the height field.

In the case of floppy active membranes (a � 1, A � 1), we expect to obtain Ufa ∼

(factφ0)2/µ2d4ωk, while for inactive floppy membranes (a � 1, A � 1) the pumping flow

should scale like Ufh ∼ (H0φ0κ)2k3/µ2ω. It is notable that even in the inactive case, the

mismatch of curvature between the inclusions and the elastic membrane they are embedded

in can, alone, lead to deformation that gives rise to fluid transport; even in the floppy limit

consequences of the bending rigidity κ cannot be neglected.

3. Asymptotics

Using the Fourier decomposition for the concentration of inclusions, φ(x, t) =
∑
φne

in(kx−ωt),

the linear response of Eq. (13) is found to give

n4k4bn +
i2µωnk

κ
bn = −H0n

2k2φn −
fact
κd2

φn. (14)

As before we must expand in the limit of small active forcing so that we can recover

linear response relationships; for values of the relevant parameters that might be expected

in a physically realizable system, see the Discussion section below.

The final linear response for the height takes the form

bn = − fact
κk4d2

1 + An2

n4 + i2a3n
φn. (15)

Plugging Eq. (15) into Eq. (4) we finally find that the macroscopic velocity is given by

U (2) =
1

2

∑
n

ωk|nbn|2 =
∑
n

1

8

ωf 2
act

k7d4κ2

[
(1 + An2)2

n8 + 4n2a6

]
|φn|2. (16)

In the stiff (a � 1) and floppy (a � 1) limits, as well as the limits where intrinsic pump

curvature dominates (A � 1) or is dominated by (A � 1) deformation from the active

normal stresses, the final asymptotic results in Eq. (16) confirm all the scaling predictions

in Sec. III B 2.

12



IV. DISCUSSION

In summary, although the framework for characterizing fluid transport and locomotion

by a waving sheet has existed since the 50’s, in this work we have attempted to go beyond a

prescription of surface deformation by instead prescribing internal activity (so starting from

dynamics instead of kinematics). Both membrane deformation and fluid transport can then

be solved by solving a dynamic balance between activity, passive resistance, and external

fluid stresses. We have used two models to cover a range of possible forcing, namely a planar

distribution of bending moments that generate normal deformation, and a simple model of

active constituents that produce normal permeative flow, resulting in sheet undulation.

From an experimental standpoint, what is the typical magnitude of the flow which could

be induced by active mechanisms similar to the ones described in this paper? For lipid

bilayers, bending rigidities are on the order of κ ∼ 10−19Nm [29], and using cross-linked

molecular motors as one model microscopic force generator, a single molecular machine could

generate forces on the order of∼ 1pN [33]. If these were distributed throughout a membrane,

say with a dimensionless concentration of φ ∼ 10−3, we could expect a magnitude for the

internal moment per unit length of f0 ∼ 10−15N . On cellular length scales L ∼ 100µm, with

k ∼ 1/L, the range of frequencies ω ∼ 100 − 102Hz could include both the stiff and floppy

regimes, and as a result we could expect macroscopic velocities on the order of U ∼ 1µm/s

for low frequencies (stiff limit) or U ∼ 1− 100µm/s for higher frequencies (floppy regime).

For transmembrane proteins capable of inducing a microscopic flow through a surface,

such as aquaporins or proton pumps, the volumetric flow rate is difficult to estimate, but we

can use previous simulation results for guidance [34, 35]. For membrane constituents such

as lipids or proteins a typical radius of gyration gives H0 ∼ 1nm−1 [29]. This yields a value

for the parameter A ∼ (10−18N)/f0. For molecular motors generating fluid flow normal to

the membrane with a force per motor on the order of f0 ∼ 1pN , this makes A� 1, i.e. the

active limit; for aquaporins or other active pores that are not designed specifically to move

cellular structures, A� 1. With a frequency of oscillation of ω ∼ 1Hz, these membranes are

in the stiff limit. With a dimensionless concentration as small as φ0 ∼ 10−3, the macroscopic

pumping velocity can be as large as U ∼ 10− 100µm/s for the active case, and U ∼ 1µm/s

for inactive membranes.

One possible experimental realization for a self-propelled active membrane could be in
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the form of a closed bilayer vesicle with embedded active pumps. For a spherical vesicle of

radius R and wavelength undulations satisfying λ � R, we can use the above calculations

in tandem with the swimming results of Stone and Samuel [17] to get an estimate of the

vesicle swimming speed

U ẑ ≈ − 1

4πR2

∫
S

udS, (17)

where u = U (2)t is the local fluid velocity created by the activity-induced membrane defor-

mation; up to a geometric constant, we thus get that the instantaneous swimming velocity

of this active vesicle is the same as that given in our calculations above. Several previous

studies have examined the possibility of self-propelled vesicles [18, 36, 37], and our results

connecting the internal stress state to macroscopic motion can thus be used as a probe of the

activity. One could envision a situation where the diffusivity of active vesicles would be ex-

perimentally measured; in the presence of active pumps, this diffusivity would be enhanced

by the propulsion velocity as Deff ∼ U2/Dr, where Dr is the vesicle rotational diffusion [38],

which could then be directly related to the activity via the results derived in this paper.

Our framework could serve, for example, as a way to rule out specific forms of activity in a

membrane.
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