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Abstract

We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale

simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. 132, 11876,

2010). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig pro-

jection operator technique, we derive the Generalized Langevin Equations (GLE) for the coarse-

grained representations of the liquid. The chosen slow variables in the projection operators define

the length scale of coarse graining. Each polymer is represented at two levels of coarse-graining:

monomeric as a bead-and-spring model and molecular as a soft-colloid. In the long-time regime

where the center-of-mass follows Brownian motion and the internal dynamics is completely re-

laxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from

the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained

representation to recover the monomeric description. Change in entropy and change in friction

are the two corrections to be accounted for to compensate the effects of coarse-graining on the

polymer dynamics. The solution of the memory functions in the coarse-grained representations

provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees

of freedom provides the correction of the change in entropy due to coarse-graining. The resulting

rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of

the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene,

represented as soft colloidal particles, by applying our rescaling approach shows a good agreement

with data of translational diffusion measured experimentally and from simulations. The proposed

method is used to predict self-diffusion coefficients of new polyethylene samples.

∗ Author to whom correspondence should be addressed. Electronic mail: mguenza@uoregon.edu
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I. INTRODUCTION

The past few years have witnessed a growing interest in the design and application of coarse-

graining methods to simulate complex fluids.[1] This effort has been motivated by the need

for improving computational efficiency with the purpose of investigating complex systems

on the numerous lengthscales on which their properties develop.[2–6] Computer simulations

have the capability of providing detailed microscopic information on the static and dynam-

ics of the systems under study,[7] but they are limited in the range of timescales and in

the number of molecules that can be simulated because the precision of the calculations

degrades with the number of computer iterations with a behavior that depends on the Lyu-

panov exponent of the system. Once the number of particles is set, the window of achievable

timescales that can be investigated becomes defined.[8, 9] Because the maximum number

of iterations decreases with increasing number of simulated particles, it is particularly dif-

ficult to simulate systems where characteristic lengthscales are diverging, such as a system

approaching a second order phase transition.[10, 11]

Recent improvements of computational machines have lead to a considerable extension of

the maximum time- and length scales that can be reached by simulations where the system

is described at the atomistic level. However, for many complex systems, including liquids

of high-molecular weight macromolecules, the computational power is still inadequate to

describe, at the atomistic level, the long-time dynamics. For example, the most recent and

advanced simulations of long chains that have an extended number of entanglements adopt

a simplified model, which treats the structure of the polymer as a collection of beads and

springs interacting through a FENE potential. This model allows for the simulations of

a large number of polymers, which is important for the proper calculation of viscoelastic

properties, and reaches full relaxation for all but the longest chains simulated.[12]

Progress has been made when the focus is on qualitative behavior and scaling

exponents.[10, 13] For example, if the complex intra- and inter-molecular non-bonded in-

teractions are simplified into an identical potential, the computational efficiency improves

dramatically as the code does not need to identify and treat uniquely different pairs of in-

teracting sites. This strategy, however, has the disadvantage that the thermodynamics of

the system is not properly described because the interactions are too drastically simplified.

The need for methods that are fully predictive of the physical properties of a system on
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the basis of the specific chemical structure of the sample and its thermodynamic conditions

has stimulated new interest in developing fast quantitative simulations. Such predictive

approaches are useful, for example, to evaluate a priori the structure and dynamics of newly

synthesized polymeric materials, in relation to their technological applications. Following

this perspective, several procedures have been proposed to speed up atomistic simulations,

while conserving their power of predicting quantitative properties.[14, 15] A few simulations

of long entangled chains have been performed using united atoms (UA).[14, 16–18]. For UA

the effective unit is very close to the atom is size, i.e. CHx with x = 1, 2, 3, which allows for

some gain in the computational time.

A useful strategy to improve the outcome of simulations on the long timescale and large

lengthscale is the use of coarse-graining procedures.[2, 19] A coarse-graining procedure aver-

ages out irrelevant degrees of freedom, which occur on lengthscales smaller than a designated

cutoff length, and this allows for the extension towards large scales of the simulations. An-

other way to put it is that, because the interaction potentials become softer, the maximum

time and lengthscale increase as the basic timestep of the mesoscale (MS) simulations be-

comes larger. The characteristic lengthscale of coarse-graining has to be defined on the basis

of the properties that need to be investigated. In this paper we discuss a first-principles way

of selecting meaningful lengthscales for the structural and dynamical coarse-graining.

Several considerations need to be made to properly develop a coarse-graining procedure.

As the coarse-grained liquid is represented as a function of new coordinates, an effective

potential needs to be derived to be used as an input to the MS simulation. Care has to be

taken to make the potential reproduce the structure of the system, namely pair distribution

functions, and to be thermodynamically consistent. A common procedure to optimize the

coarse-grained description is to use self-consistent numerical methods that are optimized

to reproduce atomistic descriptions through iterative procedures. Usually the target is the

optimization of specific quantities, such as the pair distribution function,[20] the forces

generated by the soft potential,[6] or directly the thermodynamic properties.[21]

We recently proposed an approach that starts from the Ornstein-Zernike (OZ) equation

where the atomistic sites are defined as real sites, and the coarse-grained sites are defined as

auxiliary sites.[22–28] Because our procedure is analytical, and no optimization of parame-

ters is needed in our approach as the potential is explicitly dependent on the thermodynamic

and molecular parameters, it opens up the possibility of deriving a formal solution to key
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problems. For example, it is straightforward to show that the structural properties are

consistent between the two levels of description, i.e. atomistic and coarse-grained.[22] More-

over, the thermodynamic properties of the coarse-grained polymer liquid (e.g. isothermal

compressibility,[22] pressure in the virial and in the compressibility routes, total and cohesive

energy) are shown to be formally consistent in the two levels of coarse-graining.[29] Local

structure is easily included a posteriori through a multiscale modeling procedure.[28, 30]

Finally, it is possible to derive an analytical rescaling factor for the dynamics, which is the

main focus of this paper.

While the structure is well described by simulations of the coarse-grained system on the

scale larger than the scale of coarse-graining, the dynamics in MS simulations is unrealisti-

cally fast. Because local degrees of freedom are averaged out, the coarse-grained molecules

move rapidly over a simplified free energy landscape. As the system explores efficiently this

“reduced” configurational landscape, the measured dynamics is artificially sped up by the

smoothness of the potential. This is useful when coarse-grained representations are used

to rapidly reach an equilibrated state of the system before starting the atomistic molecular

dynamics (MD) simulation. However, to directly collect information on the dynamics of

systems from MS MD simulations, it is necessary to develop formalisms that rescale the un-

realistically fast dynamics into the slower dynamics at atomistic resolution. In this paper we

discuss in details an analytical procedure we recently proposed to rescale the mesoscale dy-

namics. The procedure is able to predict center-of-mass dynamics in quantitative agreement

with experiments and atomistic simulations.[31]

The common strategy to rescale the dynamics is to build a “calibration curve”. The

latter is obtained through the numerical fitting of dynamical quantities and optimization

of the related parameters until the agreement of dynamical properties calculated in an

all-atom and in a MS simulations is obtained.[32, 33] However, the numerical calculation of

optimized calibration curves for the dynamics is quite difficult to achieve for macromolecular

systems, as the dynamics is mode dependent: there are in principle N internal modes in

any molecule formed by N units and the degree of polymerization of a long chain can be of

the order of one million monomers. Moreover, numerically optimized parametric quantities

are in general not transferable between systems in different thermodynamic conditions or

with different chemical structure or increasing degree of polymerization. To overcome this

problem, it is common to select as coarse-grained units ones that are very close in size to the
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atomistic units, so that the needed corrections to reach consistency in dynamic properties

are minimal. In this case, corrections to the measured dynamics can be evaluated through

a perturbative formalism which should rapidly converge to the desired value. The resulting

computational gain is, however, still limited. Recently a numerical Ornstein-Zernike-based

approach, with atomistic-level coarse-graining and the Percus -Yevick closure approximation,

has been proposed, which shows different rescaling factors depending on the time correlation

function under study.[34] Another coarse-grained approach for polyethylene melts describes

a polymer chain as a collection of soft blobs connected by elastic bands, which enforce chain-

chain uncrossability. Simulations follow an effective Langevin equation, whose parameters,

i.e. effective potential, frictions and random forces, are obtained by numerical optimization

from an atomistic MD simulation. The optimized equation of motion (eom) reproduces well

experimental data of the system.[35]

Our approach is different from others in several ways. First of all it is analytical rather

than numerical, providing the formal rescaling factor by solving the eoms in the two levels of

representation. In this way, there is no need of performing an atomistic simulation to input

numerical quantities in our formalism. Second, thermodynamic and molecular parameters

enter directly into the rescaling procedure, which therefore can be applied directly to predict

diffusion coefficients in different thermodynamic conditions and for homopolymer melts with

different degrees of polymerization. It is important to note that the molecular radius of

gyration, which is an input to the theory, is also density and temperature dependent: this

has to be taken into account when the theory is used as a predictive tool. The tests of our

rescaling approach, presented in this paper and in the previous publication,[31] show that

the proposed procedure is accurate in the range of temperatures (T = 400K ÷ 509K) and

densities (ρm = 0.031 sites/Å3 ÷ρm = 0.033 sites/Å3 ) considered.

The dynamics measured in MS simulations of coarse-grained systems is directly rescaled

into its atomistic counterpart using approximate closed-form expressions of friction and

entropy. The two levels of coarse-graining, which allow for a straightforward analytical

solution, are here two simple isotropic models: a soft sphere description for the molecular

coarse-graining, and a bead-and-spring description for the monomer level coarse-graining.

More sophisticated coarse-grained models can be developed for intermediate lengthscales[26,

27]; however, the formalism can become more involved.[36] At the atomistic level the polymer

is described as a ”bead-and-spring” type of approach where the chain is a collection of friction
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points connected by harmonic springs. This is an implementation of the most popular

model to treat unentangled polymer melt dynamics, i.e. the Rouse model, and maps well

into the dynamics of polymers described not only by UA simulations, but also by atomistic

simulations and experiments, as it contains both local chemical structure, semiflexibility,

and finite size effects.[37–39] It is a very accurate and molecular specific model, which has

been shown to describe well, for example, the dynamics of the protein CheY, by testing its

predictions of NMR relaxation against experiments.[37, 40]

In our coarse-grained model a polymer chain is represented as a soft-colloidal particle.[22,

42–44] Because the lengthscale of the coarse-graining is of the order of the molecular radius

of gyration, i.e. the size of the molecule, the direct predictions of the rescaling procedure

are suitable for properties on lengthscales larger than Rg and on timescales longer than

the longest time of intramolecular relaxation, i.e. the longest correlation time in the Rouse

theory. Internal dynamics cannot be obtained directly from the coarse-grained simulation;

however, the rescaled diffusion coefficient leads to the monomer friction coefficient, which can

be used as an input to well-tested theories of polymer dynamics, and indirectly recovering

the dynamics in the complete spectrum of polymer relaxation. An example of this kind of

calculation is presented in this paper in Section VIC. The extended level of coarse-graining

provides a good test of our procedure, as large deviations could result from the rescaling

if the method were not correct. Furthermore, our procedure can be useful in the study of

long-time relaxation, given that large length scales and long timescales are most difficult to

simulate for polymeric systems.

Although the outline of our rescaling theory has been published recently in a short

paper,[31] this paper presents a detailed derivation and discussion of our approach, which in-

cludes the prediction of the dynamics for new samples. After introducing our coarse-grained

model input to the mesoscale simulations, we formally derive the rescaling approach for

the dynamics, starting from the Liouville equation and using projection operators. Friction

coefficients in the two descriptions are derived from the solution of the memory functions,

while the rescaling of the simulation time is obtained from the entropic contribution, which

accounts for the intramolecular degrees of freedom neglected in the soft colloid represen-

tation. Theoretical predictions compare well against UA MD simulations,[14, 45–47] and

experiments,[39, 48–51]. We also calculate the diffusion coefficient for new PE samples in

thermodynamics conditions for which UA-MD data are not available. The purpose of these
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calculations is to show that our method is not a simple rescaling of the mesoscale data

through a shift of the diffusion coefficient to bring dynamical results to coincide with atom-

istic simulations, as is conventionally done. Instead our approach is fully predictive and can

be used to calculated the diffusion coefficient, and the monomer friction, for new samples.

The paper is structured as follows: after introducing our coarse-grained model in Section

II and the projection operator technique to derive the equations of motion in the two levels

of coarse graining in Section III, we formally derive the rescaling approach for the dynamics

from the solution of the memory functions in Section IV. We then present the MS simulations

(Section V), as well as the results obtained from the same, and apply the rescaling procedure

to the data from MS simulations (Section VI). Predictions of dynamical quantities and direct

comparison for several samples, both from atomistic simulations and from experiments,

provide a stringent test of the approach and show good quantitative agreement. A brief

discussion in Section VII concludes the paper.

II. COARSE-GRAINING OF POLYMERIC LIQUIDS: STRUCTURAL PROPER-

TIES

In this section we briefly review the theoretical background of the pair distribution func-

tions that are input to our rescaling equation. The structure of a polymeric liquid, at

lengthscales equal or larger than the monomer size, is fully specified by the momomer total

distribution function, h(r), which for polymer melts depends on two characteristic length-

scales, namely the density fluctuation lenthscale, which is the atomic length, and De Gennes’

correlation hole lengthscale.[52] The latter is of the order of the molecular radius-of-gyration,

Rg =
√

N/6l, which is the overall dimension of the polymer, where N is the degree of poly-

merization and l is the statistical bond length. We select l and Rg because these are the

two lengthscales that define the structural properties of the polymeric liquid.

At the monomer level traditional dynamical approaches, such as the Rouse model and

semiflexible models, adopt a bead-and-spring representation where each monomer can be

modeled as a friction point connected by springs (see Fig. 1). A similar model, where the

polymeric chain is described as a collection of “sites” centered at the center of the monomeric

unit, is also in conventional theories of polymer liquids.[53, 54] Although “site” is the word

most used in the liquid state community and “monomer” or “bead” is the common wording
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FIG. 1: Illustration of monomer and overall coarse-graining of a homopolymer linear chain.

in the literature on polymer dynamics, in this paper they identify the same CHx unit and

henceforth they will be used interchangeably. It is important to notice that all the CH2

units are assumed to be equivalent and independent of the position along the chain.

The coarse-graining of a polymer at the Rg lengthscale represents each molecule as

an interacting soft colloidal particle with symmetric or asymmetric shape.[42–44] In our

model,[22–25] the macromolecular liquid is represented as a liquid of symmetric soft col-

loidal particles interacting through a pair potential. This potential has a range of the order

of few Rg, and each soft-colloidal particle is centered at the center-of-mass of a polymer (see

Fig. 1).

The coarse-graining procedure that translates the monomer description into the solf-

colloidal representation is performed starting from an Ornstein-Zernike equation where

monomers are assumed to be real sites, while the center-of-mass (cm) are auxiliary sites.[41]

The cm-cm total intermolecular correlation function is expressed as a function of the polymer

parameters as [22, 23]

hcc(r) =
3

4

√

3

π

ξ′ρ
Rg

(

1− ξ2c
ξ2ρ

)

e−3r2/(4R2
g) − 1

2

ξ′ρ
r

(

1− ξ2c
ξ2ρ

)2

eR
2
g/(3ξ

2
ρ) (1)

×
[

er/ξρerfc

(

Rg√
3ξρ

+

√
3r

2Rg

)

− e−r/ξρerfc

(

Rg√
3ξρ

−
√
3r

2Rg

)]

,

where erfc(x) is the complementary error function. Here ξ′ρ = Rg/(2πρ
∗
ch) = 3/(πρl2) with

ρ∗ch ≡ ρchR
3
g being the reduced molecular number density, ρch = ρ/N is the molecular density,

ρ the site number density, and l is the statistical segment length. The length scale of density

fluctuations, ξρ, is defined as ξ−1
ρ = ξ−1

c + ξ′−1
ρ , and ξc = Rg/

√
2 is the length scale of the

correlation hole.[52]

In the limit of long chains, N → ∞, Eq.(1) reduces to

hcc(r) ≈ −39

16

√

3

π

ξρ
Rg

(

1 +
√
2
ξρ
Rg

)(

1− 9r2

26R2
g

)

e
− 3r2

4R2
g . (2)

For polymers with N ≥ 30, a plot of h(r) shows that the two equations, Eqs.(1) and (2),

are indistinguishable.[22, 23]

The structure of the liquid on the lengthscale of the polymer radius-of-gyration and

larger, as represented by hcc(r), is in quantitative agreement with the output of both the
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atomistic UA MD and the MS MD simulation of the coarse-grained liquid. The theory re-

covers identical analytical expressions of the compressibility in the atomistic and the coarse-

grained representations, indicating thermodynamic consistency between the two levels of

description.[22, 23]

Eqs.(1) and (2) are de facto coarse-graining equations, which translate the atomistic

description of a polymer liquid, onto its representation as a liquid of interacting soft colloidal

particles of size Rg. The advantage of our coarse-graining approach is that it is analytical and

general as it applies to systems with different thermodynamic conditions, different degree of

polymerization and different bond length.[22–30]

III. DYNAMICAL COARSE-GRAINING: FROM THE LIOUVILLE TO THE

LANGEVIN EQUATIONS

While the structure of the polymeric liquid, as represented by the total correlation func-

tion, is identical in the atomistic and coarse-grained descriptions,[22, 23] the dynamics of the

coarse-grained system, as measured in the MS MD simulations of the soft-colloidal particles,

is unrealistically accelerated. In Fig. (2) we show, for a polyethylene chain with N = 44,

the mean-square-displacement of the center-of-mass obtained in MS MD simulations of the

polymer liquid represented as soft-colloidal particles and the mean-square-displacement di-

rectly measured in UA MD simulations . The dynamics in the coarse-grained representation

is several orders of magnitude faster than the atomistic description. Because the level of

coarse-graining of the model presented here is extended, this effect is more evident than in

other models; however, accelerated dynamics is present in any simulation of coarse-grained

systems.

It has been argued that there are two main effects of coarse-graining that accelerate

the dynamics: namely, the change in entropy and the change in the friction coefficient.

Öttinger has presented an approach for systems far from equilibrium that accounts for

those effects.[55] We propose here a procedure, based on first-principles theory to properly

account for both contributions through the introduction of the necessary corrections for

systems where the fluctuation dissipation theorem applies, e.g. close to equilibrium.

To coarse-grain the dynamics of the polymeric liquid on the lengthscale of the radius of

gyration, we adopt a Mori-Zwanzig projection operator technique, where the selected slow
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FIG. 2: Cm mean-square displacement, for a polyethylene melt with N = 44, from MS MD

simulations (triangles) and UA MD simulations (squares). Dashed lines show the diffusive limits

of the two samples.

variables are the position and momentum coordinates of the polymer center-of-mass. This

description should represent well center-of-mass diffusion.[56–58]

The atomistic level representation is obtained following the same Mori-Zwanzing proce-

dure, but choosing as the slow relevant variables the ensemble of position and momentum

coordinates of the center of mass of the monomeric unit, which for a polyolefin is the CHx

unit, with x = 1, 2, or 3. This model is consistent with the representation of the polyethylene

chain in UA MD simulations,[59, 60] and it has been shown to describe at a high level of

accuracy the dynamics of polyolefins at the monomer lenghtscale.[37, 62, 63]

In the long-time regime the two descriptions, soft-colloid and monomeric/UA, should

be identical as they both recover the diffusive dynamics of the center-of-mass.[64] In fact,

they are not, as the soft-colloidal description is heavily coarse-grained and its dynamics is

accelerated. The analytical rescaling factor is derived directly from the comparison between

the soft-colloid and the monomer dynamical equations.

As this coarse-graining and rescaling procedure is general, it can be adopted to formalize

the dynamics of the molecular liquid at the desired level of coarse-graining. However, the

projection operator technique rests on a separation of timescales between the slow relevant

variables onto which the dynamics is projected, and the fast irrelevant variables that are

averaged out. If no separation of timescales is observed, it is necessary to include correc-

tions to the projected dynamics, which appear as contributions to the friction coefficient,

expressed as memory functions. In the system investigated here, polymer melt dynamics,

no clear separation of timescales occurs between the dynamics of the ”tagged” chain and

the dynamics of the surrounding molecules.[59] For this reason, the Generalized Langevin

Equation generated from this procedure needs to account for the correction terms to the

projected dynamics, which are represented by the memory function contributions.[65]

For a liquid of n macromolecules containing N monomers, the first-principle Liouville

equation is simply written as

∂f (R,P, t)

∂t
= iLf (R,P, t) , (3)
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with

f (R,P, t) =
n
∏

j=1

[

N
∏

a=1

δ(rja(t)−Rj
a)δ(p

j
a(t)−Pj

a)

]

, (4)

the instantaneous distribution in reduced phase space, and Ri
a and Pi

a are the phase-space

variables associated with the Cartesian position and momentum coordinates of the bead a

belonging to molecule i, namely ria(t) and pi
a(t). The formal solution of Eq.(3) is

f (R,P, t) = e−iLtf (R,P) , (5)

with the shorthand notation f (R,P) = f (R,P, 0)

The Liouville operator is defined as

iL = −
n
∑

j=1

N
∑

a=1

[

∂Uj

∂rja
· ∂

∂pj
a

− pj
a

m
· ∂

∂rja

]

, (6)

where the total energy Uj in the Hamiltonian, H , contains both intramolecular, U0
j , and

intermolecular, Wij , pairwise decomposable potential contributions. The intermolecular

potential contains both interactions between the n tagged chains, W 0
jk, and between the

tagged chains and the surrounding ones, Wjk, so that the usual condition applies that

L0f(R,P) = 0. The statistical average of the phase space density is defined as

< f (R,P) >=

∫

dr

∫

dpf (R,P)ψ (r,p) , (7)

with the equilibrium distribution of particle positions and coordinates

ψ (r,p) = e−βH

[
∫

dr

∫

dpe−βH

]−1

, (8)

where β = (kBT )
−1, kB the Boltzman’s constant, and T the absolute temperature. Following

Mori-Zwanzig, we define the projection operator, P̂ , for the coarse-grained model we adopt,

namely the monomer and the soft-colloidal.

A. Monomer level representation of the polymer chain

In our atomic-level description each macromolecule is represented as a collection of con-

nected beads, or friction points. In the field variables for one molecule (n = 1),

g (R,P, t) =

[

N
∏

a=1

δ (ra(t)−Ra) δ (pa(t)−Pa)

]

, (9)
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the projection operator is defined as

P̂ h (R,P, t) =

∫

dR′

∫

dP′

∫

dR′′

∫

dP′′ < h (R,P, t) g (R′,P′) > (10)

< g (R′,P′) g (R′′,P′′) >−1 g (R′′,P′′) ,

where P̂ = (P̂ )2 and P̂ g (R,P) = g (R,P). Here we use for the field variable the symbol

g (R,P, t) to indicate that the slow variables in the projection operator can be different than

the ones in the general formalism of the preceding section. By applying the projection oper-

ator to both the left and the right sides of the Liouville equation, one recovers a generalized

Langevin equation.[57–60] Briefly, the generalized Langevin equation in the phase space is

then transformed into its analog equation in space coordinates, yielding

m
d2ra(t)

dt2
= β−1 ∂

∂ra(t)
lnψ(r)−

∫ t

0

dτ
N
∑

b=1

βpb

3m
< Fa(t) · FQ̂

b (t− τ) > +FQ̂
a (t) , (11)

where ψ(r(t)) is the intramolecular distribution function. The inertial contribution in

Eq.(11) can be discarded, as the liquid has a low Reynolds number and the dynamics is

overdamped. The Generalized Langevin Equation is simply written as

ζm
dra(t)

dt
=

1

β

∂

∂ra(t)
lnψ(r) + FQ̂

a (t) , (12)

with the averaged friction coefficient, in the Markov limit,

ζm ≈ β/3 N−1
N
∑

a,b=1

∫ ∞

0

dτ < Fa(t) · FQ̂
b (t− τ) > . (13)

This equation describes how the monomer friction coefficient is generated from the space

and time correlation of the random forces that act on two different segments of the ”tagged”

polymer chain, a and b. The extent of the correlation depends on the propagation of the

forces through the macromolecule, its structure and local flexibility. The forces are generated

by the monomers of the surrounding molecules randomly colliding with the monomers of

the tagged chain: the collision strength depends on the structure of the liquid and on the

interparticle potential. A more explicit definition of the friction coefficient is given in the

following sections.
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B. Solution of the Generalized Langevin Equation in the monomer representation

The intramolecular distribution function is approximated in our description by a Gaussian

distribution

ψ(r) =
[

(2π)N det(A−1)
]−3/2

e−
3

2l2
r
T
Ar , (14)

which holds for polymer chains longer than about 30 monomers.[37] This leads to a Gen-

eralized Langevin Equation where the intramolecular contribution is linear in the monomer

coordinates

ζm
dra(t)

dt
= −3kBT

l2

N
∑

b=1

Aa,brb(t) + FQ̂
a (t) , (15)

and is simply solved through transformation into normal modes of motion.[37, 64] The matrix

A is defined, for a semiflexible polymer represented as a Freely Rotating Chain (FRC), as

the product of two matrices, M and U,

A = MT





0 0

0 U−1



M , (16)

with the connectivity matrix, with dimensions N ×N , defined as

M =





















N−1 N−1 N−1 ... N−1

−1 1 0 ... 0

0 −1 1 ... 0

... ... ... ... ...

0 ... 0 −1 1





















, (17)

and the U matrix defined as a function of the stiffness parameter g as

Uij =<
li · lj
|li||lj|

>= g|j−i| . (18)

Here, g = − < cos θ > and θ is the angle between two consecutive bonds in the FRC

representation of a homopolymer.[64] The stiffness parameter, g, is specific of the chemical

structure and thermodynamic conditions of the sample under study.
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C. Center-of-mass level representation of the polymer chain

In the soft colloidal particle representation the projection operator targets the center-

of-mass of the polymer. The field variable (n = 1, N = 1, a = cm) is simply defined

as

g (R,P, t) = [δ (rcm(t)−R) δ (pcm(t)−P)] . (19)

Applying the projection operator in the new field variable to the Liouville equation, where

U = 0 and Wij 6= 0, leads to the generalized Langevin equation

∂

∂t
g (R,P, t) = −

∫ t

0

ds

∫

dR′

∫

dP′M(R,P,R′,P′)g (R′,P′, (t− s)) (20)

+ F (R,P, t) ,

which reduces, following the procedure briefly outlined in Section IIIA, to

m
d2rcm(t)

dt2
= −

∫ t

0

dτ
βpcm

3m
< Fcm(t) · FQ̂

cm(t− τ) > +FQ̂
cm(t) . (21)

In the overdamped regime,

ζsoft
drcm(t)

dt
= FQ̂

cm(t) , (22)

where ζsoft is the friction coefficient for the colloidal particle, ζsoft ∼= β/3
∫∞

0
dτ <

Fcm(t) ·FQ̂
cm(t− τ) >. Eq.(22) obeys the fluctuation-dissipation relation 〈Fcm(t) · Fcm(t

′)〉 =
δt−t′6kBTζsoft.

The choice of the field variables in the projection operator defines the length scale of

coarse-graining and the variables in which the resulting Generalized Langevin Equation is

expressed. Because the derivation just presented depends on the basic assumption that the

correlation function of the bath variables are short lived in the presence of heavy particles,

and correction terms represented by the memory functions are minimized when a clear

separation of timescale is observed between the slow variables in the projection operator

and the fast variables that are averaged out, this criteria provides a way of selecting the

relevant lengthscales for the coarse-graining, when dynamical properties are under study.

For example, as far as polymer dynamics is concerned, we know that for times longer

than the longest Rouse correlation time, τR ≈ R2
g/D, polymer internal dynamics is fully

relaxed and the monomer dynamics follows the motion of the center-of-mass, which is long

14



lived. This suggests that the center-of-mass coordinates are a good choice to represent the

projected slow dynamics for time t >> τR. This reasoning holds for both unentangled and

entangled polymer dynamics as the longest relaxation time, after which free diffusion and

Brownian motion set in, is τR with the proper diffusion coefficient, i.e. for unentangled

chains Dunent ∝ N−1 and for entangled chains Dent ∝ N−2.

IV. ANALYTICAL RESCALING OF THE COARSE-GRAINED DYNAMICS

The two Langevin equations, Eqs.(15) and (22), display the two levels of coarse-graining

of the macromolecular liquid, which are adopted in this paper. The comparison of the two

equations, which in the longtime regime should predict identical dynamics for the poly-

mer center-of-mass, shows that the two equations differ because of the presence of the

intramolecular free energy in the monomer description, which is absent in the soft colloidal

approximation, and because of the different friction coefficients in the two representations.

A. Free energy rescaling

The elimination of degrees of freedom increases the entropy of the system, as every

coarse-grained state corresponds to a number of preaveraged microstates. In an extreme

picture we can imagine that the preaveraging due to the coarse-graining procedure is in

effect transforming the energy of the system, expressed for example in the Liouville equation

by an Hamiltonian, into a free energy in the corresponding Langevin equation. While the

Hamiltonian contains kinetics and potential energy, the free energy includes an entropic

contribution due to the preaveraged microstates for each coarse-grained state.

As far as the free energy correction is concerned, the system described by the larger cutoff

lenghtscale is the one where the level of coarse-graining is most extensive and the highest

entropic correction has to be included. This correction can be calculated from the comparison

of the two equations. Because the system described at the monomer level is exploring in

time the intramolecular energy states of the configurational landscape, its dynamics is slowed

down with respect to the colloid representation where intramolecular degrees of freedom are

not present. To take this effect into account we calculate the correction that has to be

included in the soft-colloid representation to take into account the time spent by the atomic
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system to explore the internal degrees of freedom.

Consistent with the monomer-level model adopted in our study and with UA MD simu-

lations, the polymer is described as a collections of beads, or friction points, connected by

harmonic springs. Each bead corresponds to a CHx moiety, with x = 2 or 3, depending

if the unit is imbedded in the chain or is terminal. This model has been shown to pro-

vide a realistic representation of the dynamics of numerous polymeric systems with different

chemical structure.[37, 38, 40, 62, 63]

The intramolecular potential is defined as

U(r) =
3kBT

2l2

N
∑

i,j=1

Ai,jri · rj , (23)

with U(r) not to be confused with the semiflexibility matrix of Eq.(18). Here A is the

connectivity matrix of Eq.(16), which represents the structure and local flexibility of the

polymer [66, 67], ri the position of bead i in a chain of N beads or united atoms, and

li = ri+1 − ri the bond vector connecting two adjacent beads.

The statistically averaged internal energy for one molecule consisting of N monomers is

given by
〈

U

kBT

〉

= N

∫

Ue−
3

2l2
r
T
Ard r =

3N

2l2

∫

rTAre−
3

2l2
r
T
Ar . (24)

After solving the integral by normal mode transformation, as reported in Appendix I, this

model predicts the average energy dissipated in the internal modes to be 〈U/(kBT )〉 = 3N/2.

The soft-colloidal representation, instead, has no internal degrees of freedom.

The simulation time t̃, as measured in the MS simulation of the coarse-grained system,

translates into the real time t after including the rescaling due to the energy, which is reduced

by the amount of energy dissipated in the fluctuations due to internal degrees of freedom.[68]

For our model

t = t̃Rg

√

m

kBT

3

2
N , (25)

with the particle mass, m, and size Rg. This rescaling slows down the coarse-grained dy-

namics, but only partially accounts for the observed phenomenon because the rescaling of

the friction needs to be included.

16



B. Monomer friction coefficient

The rescaling of the friction coefficient is calculated considering the friction of the poly-

mer center-of-mass in the monomer/UA representation, and comparing the result with the

friction of the cm of a soft colloidal particle. The expression for each of the friction coeffi-

cients is derived from its definition as the integral of the memory function contribution to

the Generalized Langevin Equation (GLE) in the two levels of representation.

The effect of coarse-graining the Liouville equation, or projection onto the slow degree of

freedoms, is the appearance in the Langevin equation of the dissipation terms, given by the

random force and the friction coefficient. Systems with different levels of coarse graining

have different friction and, as a consequence, different diffusion coefficients.

For a particle in a liquid, the center of mass mean-square displacement is defined as

〈∆R2(t)〉 = 6D t , (26)

with D the diffusion coefficient. For a polymer, the cm diffusion coefficient is given by

D = kBT/(Nζm), where ζm is the friction coefficient of a monomer, while for a liquid of

soft colloidal particles Dsoft = kBT/ζsoft, with ζsoft the friction coefficient of the colloidal

particle. The two should be identical in the long-time limit, but they are not, as the diffusion

coefficient obtained from MS MD simulation is much larger (much faster dynamics) than

the one obtained from UA MD. The correction factor to scale down the MS MD diffusion

coefficient, DMS, is ζsoft/(Nζm), which yields the rescaled mean-square displacement

〈∆R2(t)〉 = 6DMS ζsoft
Nζm

t . (27)

The thermodynamic conditions of the system under study, i.e. density and temperature, and

its molecular structure, i.e. the radius-of-gyration, enter the equation above both directly

through the definitions of the friction coefficients, Eqs.(44) and (49) and indirectly through

the mesoscale simulation from which the diffusion coefficient, DMS, is measured.

To solve Eq.(27) we start from the definition of the monomer friction coefficient, ζm,

which is given in the Markov limit by the memory function

ζm ∼= 1

N

N
∑

a,b=1

∫ ∞

0

dτΓa,b(τ) . (28)
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Γa,b(t) is the function that describes the correlation, through the polymer chain between

monomers a and b, of the random forces generated from the random collisions of the sur-

rounding molecules undergoing Brownian motion, with [58–60]

Γa,b(t) ∼= β

3
ρ

∫

dr

∫

dr′g(r)g(r′)F (r)F (r′) r̂ · r̂′
∫

dRSQ
a,b(R; t)S

Q(|r − r′ + R|; t) , (29)

where g(r) = h(r) + 1 is the monomer radial distribution function, F (r) is the total force

exerted by all the matrix polymer on the monomer, and SQ(r; t) is the projected dynamic

structure factor of the matrix fluid surrounding the polymer. The unit vectors r̂ and r̂′

define the directions of the total exerted forces. The derivation of Eq.(29) is not completely

new and is briefly reported in Appendix II.

Eq.(29) rests on the approximations that the fluid is isotropic and that many-body cor-

relation functions can be described with good accuracy as products of pair distribution

functions. The solution of this equation is sometimes carried on by introducing a mode-

coupling approximation,[59–61] however we follow a different procedure. The dynamic struc-

ture factor, which is ruled by the projected dynamics, is approximated by its real dynamics

counterpart, SQ(r; t) ≈ S(r; t), simplifying the solution of Eq.(29). This is an acceptable ap-

proximation when the Langevin equation is expressed as a function of the slow variables[65]

and holds for our system in the long-time, diffusive regime[62].

In order to separate the spatial coordinates of S(|r−r′+R|; t) in Eq. (29) it is convenient

to use the Fourier transform

S(r; t) =
1

(2π)3

∫

eikrS(k; t) dk , (30)

where the dynamic structure factor is calculated in reciprocal space as the sum of intra- and

inter-molecular contributions

S(k, t) =
1

N

∑

αγ

Sαγ(k, t) =
1

N

∑

αγ

ωαγ(k, t) + ρ
1

N

∑

αγ

hαγ(k, t) . (31)

Here ωαγ(k, t) is the time dependent intramolecular probability distribution functions for

monomers α and γ, on the same molecule, to be separated by a reciprocal distance k, while

hαγ(k, t) is the corresponding intermolecular contribution.

Given that the dynamics on the global scale is driven by the polymer diffusion, the

intramolecular probability distribution function in reciprocal space can be expressed, in the
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limit of large lengthscales, k ≤ 1/Rg, as

ωαγ(k; t) ≈ exp

[

−k
2l2|α− γ|

6

]

exp
[

−k2Dt
]

, (32)

where D is the polymer center-of-mass diffusion coefficient and l = N−1
∑N

i=1 |li| is the

average segmental length.

Because in Eqs.(28) and (29) the order of the summation and time integrals can be

changed, the double summation reduces the inter- and intramolecular distributions to their

averages over the bead distribution. The site-averaged intramolecular probability distribu-

tion function, ω0(k), is well approximated by the Debye formula,[64]

ω0(k) =
1

N

∑

αγ

ωαγ(k) =
2N(ek

2R2
g + k2R2

g − 1)

k4R4
g

, (33)

or by its Pade’ approximant

ω0(k) ≈
N

1 + k2ξ2c
. (34)

The site-averaged intermolecular probability distribution is defined by the Ornstein-

Zernike equation

h(k) =
1

N

∑

αγ

hαγ(k) =
ω2
0(k)c(k)

1− ρc(k)ω0(k)
, (35)

where c(k) is the direct correlation function. At the monomer level we follow Curro and

Schweizer’s PRISM thread approach,[53, 54] where the polymer chain is modeled as a thread

of vanishing thickness, c(k) ≈ c0, with c0 = −(1 − 2ξ2ρ/R
2
g)/(2N

2ρchξ
2
ρ/R

2
g). Substitution of

c0 and Eq. (34) into Eq. (35) gives

h(k) =
h0

(1 + k2ξ2ρ)(1 + k2ξ2c )
, (36)

where h0 = h(k = 0) = (ξ2ρ/ξ
2
c −1)/ρch is related to the compressibility of the system.[22, 23]

Because in the large length scale regime, of interest here, the relaxation of the liquid is

dominated by the polymer diffusion, the dynamic structure factor is approximated as

S(k; t) ≈ S(k) exp
[

−k2Dt
]

. (37)

Finally, after introducing the integral representation of the delta function

∫

dR eiR(k1+k2) = (2π)3 δ(k1 + k2) , (38)
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the last integral in Eq.(29) simplifies to

∫

dRS(R; t)S(|r−r′+R|; t) = 1

(2π)6

∫

dk1

∫

dk2 S(k1; t) S(k2; t)e
ik2(r−r

′)

∫

dR eiR(k1+k2) .

(39)

Because the functions ω0(k) and h(k) are even with respect to k, the equation reduces to

three contributions: the first is due to intramolecular interactions ω2
0(k), the second includes

the cross product ω0(k)h(k), and the last is due to the intermolecular contribution h2(k).

This leads to the following expression

∫

dRS(R; t)S(|r−r′+R|; t) = 1

(2π)3

∫

dk (ω2
0(k)+2ρh(k)ω0(k)+ρ

2h2(k))e−2k2Dtei k(r−r
′) .

(40)

Because we are assuming that monomers are interacting through a hard core potential,

which is consistent with the PRISM thread model,[53, 54] the force is a delta function and

therefore

g(r)F (r) = g(d)β−1δ(r − d) . (41)

where d is a hard core diameter, identical for any CH2 bead in the chain, in the spirit of

the UA-MD description and PRISM approach. When we compare our equations with data

of experimental or simulated systems, where monomers interact through a Lennard-Jones

potential, the latter has to be mapped onto a hard-core potential with the effective diameter,

d.[69]

The final expression for the monomer friction coefficient is given by

ζm =
1

48 π3
ρg2(d) (βD)−1

{

J [ω0(k), ω0(k)] + 2ρJ [ω0(k), h(k)] + ρ2J [h(k), h(k)]
}

, (42)

with the function

J [α(k), β(k)] =

∫

dr

∫

dr′
∫ ∞

0

dk
sin(k|r− r′|)
k|r− r′| r̂ · r̂′ δ(r − d)δ(r′ − d)α(k)β(k) . (43)

The solution of Eqs.(42) and (43) is given by a lengthy but analytical expression, which is a

function of the molecular parameters, ξρ, Rg, thermodynamic parameters, ρ, β, the diffusion

coefficient, D, and of the hard-core diameter d, as
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ζm ≈ 2

3
(Dβ)−1ρg2(d)

(

1

12
πN2d2Rg

[

15
√
2 + 40

d

Rg

+ 12
√
2

(

d

Rg

)2
]

+ (44)

ρπNh0
1

3
√
2(R2

g − 2ξ2ρ)
2

[

12
√
2ξ7ρ + 12d4R3

g

(

1− 2

(

ξρ
Rg

)2
)

+

4
√
2d3R4

g

(

5− 14

(

ξρ
Rg

)2

+ 2

(

ξρ
Rg

)4
)

+ 3d2R5
g

(

5− 14

(

ξρ
Rg

)2

− 4
√
2

(

ξρ
Rg

)5
)

−12
√
2e

− 2d
ξρ ξ7ρ

(

1 +
d

ξρ

)2
]

+ ρ2πh20
1

12(R2
g − 2ξ2ρ)

3

[

40d3R6
g + 15

√
2d2R7

g

−24
√
2d4R3

gξ
2
ρ − 144d3R4

gξ
2
ρ + 6

√
2d4R5

g

(

2− 9

(

ξρ
d

)2
)

+

12R2
gξ

7
ρ

(

4

(

d

ξρ

)3

− 7

(

d

ξρ

)2

+ 9

)

− 8ξ9ρ

(

4

(

d

ξρ

)3

− 9

(

d

ξρ

)2

+ 15

)

−

e
− 2d

ξρ 12ξ4ρ(d+ ξρ)
(

R2
g(d+ 3ξρ)(2d+ 3ξρ)− 2ξ2ρ(2d

2 + 5ξρd+ 5ξ2ρ)
)

])

.

This expression is general and holds for any homopolymer melt represented as a collection

of identical beads interaction through a hard-core potential of range d. The value of d is

specific of the monomeric structure of the homopolymer.

C. Friction coefficient for a liquid of interacting soft colloidal particles

The friction coefficient for a point particle interacting through a soft repulsive potential

is much smaller than the friction of the macromolecule before coarse-graining. In fact, the

friction coefficient of an object can be estimated using Stokes’ formula where ζ = 6πηrH,

with η the fluid viscosity and rH the hydrodynamic radius. The latter can be evaluated from

the surface area of the object exposed to the solvent, which can be estimated by ”rolling”

a solvent molecule on the object. It is evident that the surface available to the solvent in

a bead-spring representation of a polymer is much higher than the surface available to the

solvent for a point particle interacting through a soft, long-ranged potential.

To calculate the friction coefficient for a soft colloidal particle, we start from the Gen-

eralized Langevin Equation that describes the time evolution for the position coordinate of

the molecular center-of-mass, i.e. Eq.(22) where the friction coefficient for soft particles is
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given by

ζsoft ∼= (β/3) ρch

∫ ∞

0

d t

∫

dr

∫

dr′g(r)g(r′)F (r)F (r′) r̂ · r̂′
∫

dRS(R; t)S(|r− r′ +R|; t) .
(45)

Eqs.(29) and (45) look identical, with just a different form of the density prefactor. In

reality the form of the pair-distribution function, g(r), the force exerted by the surrounding

molecules on the tagged chain, F (r), and the dynamic structure factors, S(R, t), are different

quantities in the monomer and soft-colloid representations.

We assume that the dynamic structure factor in reciprocal space has the form

S(k; t) ≈ S(k) e−Dtk2 = (1 + ρchh
cc(k)) e−Dtk2 (46)

where hcc(k) is the center of mass total pair correlation function

hcc(k) = h0

[

1 + k2R2
g/2

1 + k2ξ2ρ

]

e−
k2R2

g

3 . (47)

with h0 = (ξ2ρ/ξ
2
c − 1)/ρch, as defined in the previous section. Eq.(47) is just the Fourier

transform of Eq.(1). Eq.(46) indicates that in the long-time regime, which is of interest

here, the relaxation of the liquid is largely driven by the center-of-mass diffusion, while

internal dynamics and local modes of motion are already fully relaxed. This is a reasonable

assumption given that the lengthscale of our treatment is the overall polymer dimension,

and no structural or dynamical information is retained on the local scale.

To perform our calculation we need to defined an approximate analytical form of the

effective force. To do so we adopt the simplified form of hcc(r), Eq.(2). Then, we re-

duce further the expression by neglecting the small attractive component of the poten-

tial. Finally we approximated the real potential, v(r), with its mean-force counterpart

w(r) ≈ −kBT ln [h(r) + 1] properly rescaled. The real potential, calculated through the

HNC approximation as described in the following section, is a complicated function of h(r).

However it can be related, in an approximated way, to the simpler potential of mean force

through the equation

v(r) ≈ v(0)

w(0)
w(r) , (48)

where v(r) ≈
√
3w(r) for all the samples considered in this study. These approximations

define the force F (r) and the pair distribution function, g(r) = h(r)+1, entering the equation

for the friction coefficient.
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The resulting expression for the friction coefficient of the soft colloidal particle is expressed

as a function of the diffusion coefficient D, β, ρch and the two length scales Rg and ξρ as

ζsoft ∼= 4
√
π(Dβ)−1ρchRgξ

2
ρ

(

1 +

√
2ξρ
Rg

)2
507

512

[

√

3

2
+

1183

507
ρchh0 +

679
√
3

1024
ρ2chh

2
0

]

. (49)

This expression is an approximated analytical form for the friction coefficient of a soft

colloidal particle.

V. MESOSCALE SIMULATIONS

Here we present numerical calculations to illustrate and discuss the rescaling procedure of

the preceding sections. We first perform MS MD simulations of the coarse-grained polymer

liquid, where each chain is represented as a soft colloidal particle, centered at the center-

of-mass of a chain, and interacting with the surrounding particles through a soft repulsive

potential of the order of few times the chain dimension, Rg. The simulations of the soft

colloidal liquid produce dynamical properties that are accelerated due to the soft nature of

the potential in the coarse-grained representation. These properties are rescaled following

our procedure, and then compared with existing data, when they are available.

In a previous paper we briefly presented calculations of the rescaled dynamics for a variety

of systems including UA MD simulations and experimental data of PE diffusion available

in the literature, that we use to test the accuracy of our procedure. We selected UA MD

simulations as our test (see Table I) because they have been shown to reproduce with a high

level of accuracy the dynamical properties of PE melts, such as diffusion and viscosity.[71, 72]

We also compared predictions of rescaled MS-MD simulations with experiments for samples

with temperature T = 509 K, monomer site density ρ = 0.0315302 sites/Å3 and N =

36, 72, 106, 130, 143, 192, and 242. [39, 48–51]. Our MS-MD simulations, properly rescaled,

provided good quantitative predictions of the diffusion coefficient for those systems.[31]

In this paper we use those same systems to illustrate our procedure. Moreover we present

new results for PE samples, not present in the literature, to underline the predictive power of

the theory, where no calibration curve is necessary. Once a system is selected, its structural

and thermodynamic parameters are defined and are used as input to the MS MD simulation

so that the whole procedure is free of adjustable parameters, with the exception of the

parameter d that is fixed for PE once and for all samples.[14, 45–47]
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Systems that we simulated include liquids of chains with increasing degree of polymer-

ization, as described above. As the molecular weight of the polymer increases, the systems

cross the threshold from unentangled to entangled dynamics. For entangled systems the dy-

namical rescaling approach that we propose is modified to include a one-loop perturbation

that accounts for the presence of entanglements. Simulations of soft colloidal liquids are

performed for entangled systems, and the rescaling applied to predict diffusion.

TABLE I: Polyolefin melts UA MD simulation parameters

System T [K] ρ[sites/Å3] (RUA
g )2[Å2]

PE 30a 400 0.0317094 63.5695

PE 44a 400 0.0323951 110.3197

PE 48b 450 0.0314487 111.0832

PE 66a 448 0.0328993 177.5348

PE 78b 450 0.0321465 205.9221

PE 96a 448 0.0328194 281.7989

PE 122b 450 0.0325479 346.2655

PE 142b 450 0.0326600 420.7070

PE 174b 450 0.0327680 525.1816

PE 224b 450 0.0328835 690.5038

PE 270b 450 0.0329520 856.4648

PE 320b 450 0.0330034 980.1088

a from Refs. [45–47]; b from Ref. [14, 15]

Details about our MS MD simulations have been reported in previous papers of ours and

will not be repeated here.[28, 30, 31] Briefly, MS MD simulations were implemented in the

microcanonical (N, V, E) ensemble on a cubic box with periodic boundary conditions. We

used reduced units such that all the units of length were scaled by Rg (r̃ = r/Rg) and energies

were scaled by kBT . Temperature and radius-of-gyration were utilized for dimensionalizing

the results obtained from the MS MD simulations, after they were performed.

The number of particles, i.e. polymer chains, in our simulations varies from 1728 (N = 40)

to 85184 (N = 1000) depending on the system. This number is determined by the box size,
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which is larger than twice the range of the potential, and by the liquid density. The potential

is long-ranged, due to the many-body effects entering through the OZ equation.

Each simulation evolves for about 50, 000 computational steps. For the entangled melts

the potential is longer ranged than for the unentangled systems, and therefore it is cut

at larger distances requiring a bigger box size. The reduced density used in simulations,

ρsim = ρR3
g where ρ is the site density, varies around 1 for unentangled melts, and exceeds

2 for weakly entangled melts. A typical MS simulation takes between 2 hours (N = 40) to

4 days (N = 200) on one CPU workstation, while using the code that works in parallel, the

computational time is further reduced.

A. Interparticle potential

The pair potential acting between two effective coarse-grained units is formally derived

from the colloidal representation of the liquid, specifically h(r), using an hyper-netted-chain

(HNC) closure approximation to the Ornstein-Zernike equation.[56] This approximation is

known to work well for liquids of particles interacting through a soft potential.[69] The po-

tential input to the MS MD simulation, vcc(r), is derived from the total correlation function

for the soft colloidal representation of the liquid, hcc(r), defined in the limit of long chains,

N → ∞, as in Eq.(2). The potential is calculated using the hypernetted chain approximation

as

βvcc(r) = hcc(r)− ln[1 + hcc(r)]− ccc(r) . (50)

Here the direct correlation function, ccc(r) is given in reciprocal space in terms of hcc(k) as:

ccc(k) =
hcc(k)

1 + ρchhcc(k)
. (51)

It is important to define the correct potential acting between the coarse-grained units

to achieve a realistic representation of the large scale properties of a system through MS

MD. Because coarse-grained potentials result from the mapping of many-body interactions

into pair interactions, through the averaging over microscopic degrees of freedom, they are

parameter dependent. During the coarse-graining procedure, the potential acting between

microscopic units, which is given by the Hamiltonian of the system, reduces to an effective

potential, which is a free energy in the reference system of the microscopic coordinates.

The coarse-grained potential so obtained contains contributions of entropic origin due to
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the microscopic, averaged-out degrees of freedom and is therefore state-dependent. This

can be observed in the form of the total correlation function between coarse-grained sites,

Eq.(2) from which the potential is derived. The correlation function explicitly includes

the structural and thermodynamic parameters of the polymer, i.e. the radius-of-gyration,

density screening length, and number density. The temperature enters directly through

Eq.(50) and indirectly through the molecular parameters, such as Rg. The radius of gyration

is also density dependent.

B. Results from mesoscale molecular dynamics simulations

Before entering the details of applying our rescaling approach we focus on the ”raw”

dynamics obtained directly from the MS MD simulations. Fig. 3 displays the mean-square

displacement for the MS MD simulation of a polyethylene melt with N = 44. At short times

the inertial term in the Langevin equation is dominant as the particles undergo ballistic

dynamics, while in the long-time regime the system crosses over to diffusive dynamics. The

diffusion coefficient is higher than the value measured in UA MD simulations, and the

transition from ballistic to diffusive regime happens after about 5000 simulation steps (dot-

dot vertical line on top panel of Fig. 3), which corresponds to a distance of roughly 30Rg.

Such a large distance reflects the fact that in MS MD simulation the point particles interact

through a very soft potential and the density is also very low. Because the particle has to

”collide” many times to undergo the crossover to diffusive dynamics the latter takes place

at a large lengthscale.

Moreover, the bottom panel in Fig. 3 displays the velocity correlation function

〈(v(t)− v(0))2〉 and shows that, consistent with the mean-square-displacement, once more

the inertial term becomes negligible at the same crossover time that the diffusive regime sets

in. Since our MS MD simulation are performed at equilibrium, the avarage kinetic energy

per particle 〈mv2(t)/2〉 = 3/2 kBT , and therefore

lim
t→∞

〈

(v(t)− v(0))2
〉

= lim
t→∞

[

2
〈

v2(t)
〉

− 2 〈v(t)v(0)〉
]

= 6kBT/m . (52)

The dynamical transition is displayed as a dashed line on the bottom panel of Fig.3,

taking into account that our simulations are in reduced units and m = 1, kBT = 1. The

figure shows that the velocity autocorrelation function reaches it’s asymptotic value at about
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FIG. 3: Top panel: cm mean-square displacement (solid line) from MS MD simulation in reduced

units as a function of simulation time steps for the PE44 melt sample. The slopes for the ballistic

and the diffusive regimes are shown as dashed and dot-dashed lines correspondingly. Bottom

panel: cm velocity time correlation function showing when the inertial term becomes negligible.

The asymptotic value of 6 kBT/m is depicted as a dashed line.

the same time as the diffusive regime sets in for the mean-square-displacement.

VI. APPLICATION OF THE RESCALING PROCEDURE

As stated above, the accelerated dynamics that is a consequence of the coarse graining

of the system can be rescaled by taking into account the two main effects of the procedure,

namely the change in the entropic contribution to the free energy of the system due to the

averaging of the internal degrees of freedom and the change in the friction coefficient due

to the different shapes of the molecule in the two different levels of coarse-graining. The

difference in shape relates to the change in the molecular surface available to the surrounding

molecules, and to the correlation of the random forces generated by intermolecular collisions.

The first rescaling is given by the inclusion a posteriori of the internal degrees of freedom,

averaged out during the coarse-graining procedure, as a correction term in the free energy of

the system, which accounts for the difference in entropy. The energy correction affects the

time of the measured dynamics as the change from a bead-spring description to a soft-colloid

representation leads to the rescaling of the time reported in Eq.(25), also taking into account

the fact that because the potential is expressed in normalized quantities, the simulation runs

using reduced units of energy, kBT = 1 and the normalized length r/Rg.

The second rescaling of the dynamics is calculated starting from the ratio between the

friction coefficients in the two coarse-grained representations, as described in Eq.(27).

A. Calculations of the monomer friction coefficient, ζm

Because our formalism maps the Lennard-Jones liquid described by the UA MD simula-

tion into a liquid of polymers interacting through a monomer hard-core repulsive potential,

it is necessary to define an effective hard-core diameter, d. This is done by requiring the

27



FIG. 4: Plot of Dβζm as a function of hard core diameter d. From left to right, the three panels

show curves for polyethylene melt with N = 30, N = 44, and N = 96.

friction of the chain with N = 44 to follow the expected scaling behavior for the diffusion

of an unentangled polymer chain, D = kBT/(Nζm). Since all except two of the atoms in

our PE chains are CH2 monomers, we assume that the potential is identical for all the

units along the homopolymer chain. Moreover we assume that the range of the repulsive

interaction, d, is independent of liquid density.[70]

Among the different samples, we selected the chain with N = 44 to optimize d, because

this sample follows unentangled dynamics while the polymer is long enough to obey the

Gaussian intramolecular distribution of monomer positions, which justifies the analytical

form of the intramolecular structure factors used in our formalism. Fig. 4 displays the

monomer friction coefficient, from Eq.(44), expressed as the dimensionless quantity Dβζm,

as a function of the hard sphere diameter d, for polyethylene melts of three different degrees

of polymerization. The 1/N scaling is reported as a dot-dashed line in the figure.

In these calculations, the numerical values of N , ρ and Rg were taken from the data of the

UA MD simulation against which the proposed approach is tested. The value of the radial

distribution function at the contact was set to g(d) = 1/2, which is the conventional value

assumed in the PRISM thread theory for polyethylene chains. This value is intermediate

between zero and the first solvation shell value. The optimized hard-core diameter for

N = 44 is d = 2.1Å, which is an intermediate value between the bond length, l = 1.54 Å,

and the Lennard-Jones σ-parameter, σ = 3.95 Å, in the intermonomer potential of the UA

MD.[46, 47] The unentangled scaling is fulfilled for PE30 at d = 2.07 Å and for PE96 at

d = 1.96 Å, which are close to the one for PE44. Because the PE96 sample has a degree of

polymerization that is close to the entanglement value of Ne = 130, its dynamics is likely

to be in the crossover regime where the effect of entanglements start to be felt, since the

transition from the unentagled to the entangled dynamics is very broad.

Table II displays the numerical values of the dimensionless monomer friction coeffi-

cient, Dβζm, for polymeric liquids with different degree of polymerization, N , across the

untentengled-to-entangled transition. For both unentangled and entangled systems the hard

sphere diameter has been fixed to the value of the unentangled ones, d = 2.1Å, so that the

intermolecular monomer potential is not changed as a function of N . While for unentangled
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systems the monomer friction coefficient was calculated from Eq.(44), for entangled chains

we adopted a perturbative approach to account for the effect of entanglements. Let’s denote

Dβζm = J(ρ,N,Rg, d) , (53)

where for unentangled systems J(ρ,N,Rg, d) ≈ N−1. Following a one-loop perturbation,

and including the definition of the diffusion coefficient for a macromolecule comprised of

N monomers with ζm the monomer friction coefficient D = (βζmN)−1, the normalized and

perturbed friction coefficient becomes

Dβζ ′m = NDβζmJ(ρ,N,Rg, d) = N(Dβζm)
2 . (54)

The one loop perturbation is in the spirit of the reptation model where both the chain

reptating and the chains involved in the entanglements relax with the same diffusive mecha-

nism: each brings a N−1 scaling contribution, which is the trademark of polymer Brownian

motion. Interestingly, in our model the diffusion coefficient of entangled polymers under

certain fixed monomer density and temperature shows apparent scaling exponents different

from −2 (see Fig.6). The resulting scaling exponents emerge cumulatively from output of

mesoscale simulations and both steps of rescaling.

Because Eq.(54) applies only when the systems are entangled, to predict the diffusive

behavior of new samples it is necessary to estimate a priori the crossover degree of polymer-

ization, Ne. Several methods have been presented in the literature to estimate Ne from ther-

modynamic conditions and molecular parameters.[73] Those methods provide similar values

of Ne. Moreover, the expressions for the unentangled and entangled frictions, Eqs.(44) and

(54), predict values that differ only slightly in the crossover region. In this way, selecting the

unentangled expression to represent entangled systems, or viceversa, in the crossover region

would result in small inconsistencies in the calculated diffusion coefficients.

Table II includes intra- (Dβζm(ωαγ)) and inter-molecular (Dβζm(hαγ)) contributions to

the monomer friction coefficient, as well as the self intramolecular contribution, Dβζm(ωαα).

In general, the calculated total friction is comparable in magnitude to the self intramolecular

contribution, Dβζm(ωαα). Moreover, the total intramolecular contribution, Dβζm(ωα,γ), is

of the same order of magnitude of the itermolecular contribution, Dβζm(hα,γ), but with

the opposite sign, which is reasonable as the liquid is almost incompressible. This result

shows that the conventional approximation of replacing the structure factor, Sα,γ(k), by the
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single chain analog, ωα,γ(k), can lead to errors in the evaluation of the memory function for

macromolecular liquids.[74] The table also displays the value of the dimensionless friction

coefficient NDβζm, which for unentangled systems should be ≈ 1. As expected, we see

deviation from the unentangled behavior in the very short chains and in the crossover to

entangled dynamics at N ≈ 100.

TABLE II: Monomer friction coefficient contributions with hard sphere potential for d = 2.1Å

System Dβζm(ωαα) Dβζm(ωαγ) Dβζm(hαγ) Dβζm NDβζm

PE 30 0.03378 0.08484 -0.04883 0.03601 1.0804

PE 44 0.02744 0.06244 -0.03991 0.02253 1

PE 48 0.03101 0.07984 -0.04904 0.03080 1.4782

PE 66 0.02539 0.05703 -0.03823 0.01880 1.2409

PE 78 0.02632 0.06287 -0.04179 0.02107 1.6439

PE 96 0.02239 0.04766 -0.03325 0.01441 1.3834

PE 122 0.02400 0.05533 -0.03831 0.01701 2.0757

PE 142 0.02245 0.04967 -0.03501 0.01466 2.0815

PE 174 0.02193 0.04827 -0.03438 0.01389 2.4170

PE 224 0.02133 0.04664 -0.03359 0.01304 2.9219

PE 270 0.02039 0.04344 -0.03164 0.01180 3.1849

PE 320 0.02184 0.04956 -0.03585 0.01371 4.3874

B. Calculation of the friction coefficient of a soft colloid, ζsoft

Starting from Eq.(49) we calculated the friction coefficient, Dβζsoft, for polymer liquids

represented as soft colloidal particles. Table III shows the dimensionless friction coefficient

for several systems. The molecular parameters, N and Rg, and the thermodynamic condi-

tions of density ρ and temperature T , are taken from the UA MD simulations, see Table I.

The dimentionless friction coefficient for these systems is Dβζsoft(1 + hcc) ≈ 0.002 − 0.01,

while we would expect Dβζsoft(1 + hcc) ≈ 1 for unentangled systems, see Table III. These

data show that the theoretically calculated friction coefficient (without rescaling) for the soft

colloidal systems greatly underestimate the friction coefficient, as also observed in the MS
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TABLE III: Soft colloids friction coefficient contributions

System Dβζselfsoft Dβζsoft(h
cc) Dβζsoft(1 + hcc)

PE 30 0.044273 -0.029932 0.014341

PE 44 0.020769 -0.012441 0.008328

PE 48 0.024639 -0.015289 0.009349

PE 66 0.012619 -0.006659 0.005960

PE 78 0.012019 -0.006254 0.005765

PE 96 0.008055 -0.003712 0.004344

PE 122 0.007423 -0.003334 0.004089

PE 142 0.006159 -0.002612 0.003546

PE 174 0.005218 -0.002108 0.003109

PE 224 0.004298 -0.001648 0.002650

PE 270 0.003660 -0.001351 0.002310

PE 320 0.003521 -0.001288 0.002233

MD simulations, and hence give rise to accelerated dynamics as discussed previously. It also

shows that intra- and inter-molecular contributions to the friction coefficient are compara-

ble in magnitude: both of them need to be taken into account when calculating dynamical

properties of polymer melts.

C. Results from the rescaling procedure. Comparison with simulation and exper-

imental data

Some of the results reported in this section were already briefly presented in our short

paper.[31] Our discussion here makes use of some of those data as a starting point to illustrate

with an example the details of the proposed rescaling procedure and highlight its strengths

and weaknesses.

In order to rescale the unrealistic fast dynamics of MS MD simulations we applied our

rescaling procedure and compare the predicted dynamics with data from UAMD simulations

and experiments. We use as input parameters the thermodynamic conditions and molecular

parameters of each sample under study. The rescaling procedure is given by Eq.(27), where
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DMS is the diffusion coefficient from the MS-MD simulation, the soft colloid friction coef-

ficient is calculated using Eq.(49), and the monomer friction coefficient is given by Eq.(44)

for unentangled chains, and Eq.(54)with Eq.(44) for entangled ones. Eq.(27) depends on the

temperature and density of the system investigated and on its molecular radius-of-gyration.

Indirectly those parameter enter our procedure through the diffusion coefficient from

mesoscale simulations, DMS. Specifically temperature enters through the rescaling of the

time, as the time step in the mesoscale simulation is adimensional and becomes dimensional

once it is rescaled by the energy, following a well-established procedure. Moreover, ther-

modynamic and molecular parameters enter indirectly through the soft potential, Eq.(50),

which is parametric and includes density, temperature, and the molecular radius-of-gyration.

Finally, thermodynamic parameters enter directly through the definitions of the friction

coefficients in the monomer and soft-sphere descriptions, Eqs.(44) and (49) respectively.

Specifically, the monomer friction coefficient is a function of ρ, N , Rg, plus a hard sphere

diameter, d, which is used to map the Lennard-Jones potential of the united atom simula-

tion onto a repulsive hard-core potential with an effective bead diameter. The hard sphere

diameter d is assumed to be independent of the thermodynamic conditions, for the range

of temperature and density simulated here, and constant for all the monomers in the ho-

mopolymer chain. The criteria of choosing numerical value for d have been already explained

and discussed.

In an analogous way, the soft-sphere friction coefficient depends on the chain number

density, which relates to the monomer number density through N as ρch = ρ/N , and Rg

is the radius of gyration of the polymer chain. It also depends on the density fluctuation

length scale ξρ, which is expressed as a function of Rg and ρch as ξρ = Rg/(
√
2 + 2πρchR

3
g),

and on the parameter h0 = h(k = 0) = −(1 − 2ξ2ρ/R
2
g)/ρch. In fact, the dimensionless

combination Dβζsoft is determined by only three parameters: ρ, N and Rg. In conclusion,

once thermodynamic parameters, Rg and d are defined, there are no adjustable parameters

in our method.

The predicted diffusion coefficients from our rescaled MS MD simulations are in good

agreement with the data for all the test systems. As an example, Table IV displays the

diffusion coefficients obtained directly from the MS MD, DMS, once they are rescaled to

include the internal degrees of freedom, and after the second rescaling of the friction, Dcm,

as well as the values of the diffusion coefficient from the UA MD simulations, DUA, against
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which we compare our predicted diffusion. The table shows that while the initial values

of the diffusion are orders of magnitude larger than the data from UA MDs, the rescaled

coefficients are very close to the real values. For the entangled systems we adopt the pertur-

bative approach described in Section VIA obtaining predicted values that are in quantitative

agreement with the UA MD simulations. Entangled samples are from references [14, 15],

and are mostly in the weakly entangled regime. For these samples the UA MD simulations

include a small number of chains: n = 40 for N = 78, n = 22 for N = 142, n = 32 for

N = 174, N = 224, N = 270 and N = 320, with n the number of chains in the simulation

and N the degree of polymerization. These numbers show one advantage of adopting a

coarse-grained description as typically our samples include thousands of chains. Simulat-

ing a large ensemble of molecules is necessary, for example, when the goal is to investigate

large-scale fluctuations or the relative relevance of intra- vs inter-molecular contributions to

the dynamics.

TABLE IV: Diffusion coefficients in Å2/ns from MS MD compared with UA MD simulation

System T [K] DMS Dcm DUA

PE 30 400 4.44×103 58.9 82.9

PE 44 400 5.29×103 44.5 46.0

PE 48 450 5.80×103 36.7 50.8

PE 66 448 6.04×103 29.0 31.8

PE 78 450 6.73×103 23.6 26.0

PE 96 448 6.98×103 21.9 23.3

PE 142 450 8.45×103 6.92 7.93

PE 174 450 8.51×103 4.53 5.70

PE 224 450 8.80×103 2.73 3.28

PE 270 450 9.39×103 2.14 2.06

PE 320 450 8.73×103 1.03 1.30

Fig. 5 illustrates how our approach can be used to calculate dynamics also in the short

time regime. The figure shows the mean-square-displacement of the center-of-mass from UA

MD in comparison with the one calculated from the diffusion coefficient rescaled from the MS

33



FIG. 5: Plot of mean-square displacement as a function of time for unentangled PE melts.

The rescaled MS MD simulation (line) is compared with UA MD simulation (symbols) for

N = 44, 66, 96. Also shown is the outcome of the theory for cooperative dynamics (dashed lines).

MD. The agreement is quantitative in the long time regime. In the short time regime, the UA

MD simulation data exhibit a subdiffusive behavior, even if polymers are unentangled. In a

series of papers we have shown that the subdiffusive regime is a consequence of the presence

of cooperative dynamics involving several polymer chains moving in a correlated way inside

the dynamically heterogeneous liquid of macromolecules.[59, 62] A detailed discussion of

this phenomenon, which is of intermolecular origin, has been provided before and will not

be repeated here. Our theory, the Cooperative Dynamics Generalized Langevin Equation

(CD-GLE), needs as an input the diffusion coefficient and predicts the subdiffusive behavior

for times shorter than the longest correlation time as a function of the number, n′ ∝
√
N , of

macromolecular chains moving in a cooperative way. Fig. 5 shows the results from our CD-

GLE calculations as dashed lines. Here, the input monomer friction coefficient is calculated

from MS MD using the rescaling procedure. The number of chains undergoing cooperative

dynamics is n′ = 30 for N = 96, n′ = 25 for N = 66, and n′ = 14 for N = 44.

The subdiffusive behavior shown in UA-MD data is not visible in the rescaled MS MD

data as the dynamics are accelerated. The effective temperature experienced by the polymer

is much higher than the temperature in UA MD simulations as the energy is not dissipated

in the internal degrees of freedom.

Finally we discuss the calculations of the monomer and soft-colloid friction coefficients for

a set of polyethylene chains investigated experimentally.[39, 48–51] The experimental data

do not report the values of Rg at the desired thermodynamic conditions, T = 509 K and

density ρ = 0.0315302 sites/Å3, while it is known that the chain conformation, and Rg, are

temperature dependent. To calculate the input parameters for our MS MD simulations we

adopt a freely rotating chain model, for which the mean-square end-to-end polymer distance

is given by[67]

〈

R2
ete

〉

= Nl2
[

1 + g

1− g
− 2g

N

1− gN

(1− g)2

]

, (55)

and R2
g ≈ 〈R2

ete〉 /6 for a chain with Gaussian statistics. For polyethylene melts at this
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temperature and density the stiffness parameter is g = 0.785. [39]

The values of the monomer and soft-colloid friction coefficients for the experimental

samples, calculated from Eqs. (44) and (49) respectively, are presented in Table V. The

Table shows the large difference between the predicted dimensionless friction coefficients,

Dβζsoft and NDβζm, for the same macromolecule coarse-grained at two different length

scales. From the values displayed in Table V we calculate the rescaling factor for the friction

coefficient measured in MS MD simulations, following the procedure described in this paper.

Because the data have different thermodynamic parameters of density and temperature,

their scaling behavior cannot be inferred from their plot, even if an apparent N−1 scaling is

followed by the unentangled samples and the typical reptation N−2 scaling by the entangled

ones.

TABLE V: Theoretically calculated dimensionless friction coefficient for monomer (d = 2.1Å) and

soft colloid with RFRC
g for experimental samples

System (RFRC
g )2[Å2] Dβζsoft NDβζm

PE 36 101.4350 0.007846 0.5153

PE 72 219.5710 0.004927 0.8946

PE 106 331.1465 0.004543 1.8407

PE 130 409.9056 0.003497 1.5354

PE 143 452.5669 0.003318 1.6822

PE 192 613.3669 0.002828 2.2412

PE 242 777.4485 0.002500 2.8186

T = 509K, ρ = 0.0315302 [sites/Å3]

TABLE VI: Predicted diffusion coefficients in Å2/ns from MS MD and experimental data from

Refs. [39, 48–51]

System PE36 PE72 PE106 PE130 PE143 PE192 PE242

Dcm 111 50 23 14 11 5.6 3.2

Dexp 120 41 14 12 8.6 6.5 4.5
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D. Theoretical predictions of diffusion coefficients for polyethylene samples

In this section we report theoretical predictions from rescaled mesoscale simulations of

the diffusion coefficients for a series of PE samples for which data of chain dynamics, either

from simulations or from experiments, are not available in the literature. The degree of

polymerization of each sample is not larger than the ones already investigated. However,

because there are no data to fit any parameter, these calculations illustrate the predictive

power of our method. Diffusion coefficients calculated by combining the mesoscale simula-

tions with the rescaling procedure presented in this manuscript, are displayed in Fig.6 as a

function of the degree of polymerization (triangles down).

MS MD simulations are performed for N = 44, 60, 80, 100, 200, 300, 400, 500 and 1, 000,

at constant monomer density ρm = 0.0323951 [sites/Å3] and temperature T = 400 K.

The value of Rg at increasing N is calculated using a freely rotating chain model with

the stiffness parameter from the UA MD data for PE44 (see Table I). The hard sphere

diameter is fixed to the value reported in the previous sections for PE, d = 2.1Å, and the

pair distribution function at contact is g(0) = 1/2 as described early on in this paper. While

the simulations of the small samples can be performed on a single CPU machine, for systems

with a higher degree of polymerization is convenient to adopt parallel computing. For those

systems, simulations were run using the LAMMPS code[75], with our potential as an input,

remotely on a 64 CPU machine available through the TeraGrid[76]. The simulation for the

PE1000 sample included 46,656 molecules and required about 2 days of computer time. By

comparison with our single CPU calculations, running the simulation in parallel reduces the

computer time by a factor of 102. The number of particles in the simulation is determined

by the length of the box size, which for the PE1000 sample is equal to 22 Rg, i.e. larger than

twice the range of the potential, to eliminate molecular self-interaction through the periodic

boundary conditions.

While we assume that small changes of density and temperature do not affect the hard-

core diameter, d, even a small difference in ρm can noticeably change the prefactor in Eq.(27).

The monomer friction coefficient is calculated using Eq.(44) for unentangled systems and

Eq.(54) for entangled ones.

In conclusion, the data set just discussed (triangles down in Fig.6) is for samples at

ρm = 0.0324 sites/Å3 and T = 400K. Here the semiflexibility parameter and bond length
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are calculated from the radius-of-gyration of the N = 44 sample measured in UA MD

simulations. All the other data at increasing N are predicted while keeping the semiflexibility

parameter and the bond length constant in the freely-rotating-chain expression, as discussed

above.

Moreover, Fig.6 displays data from a second set of MS MD simulations (triangles up)

performed at ρm = 0.0315 sites/Å3 and T = 509 K and increasing N . This set of simulations,

rescaled with our method, quantitatively reproduces the experimental data (circles) reported

in Ref. [39]. Note that the value of D reported here for N = 106 is slightly different than

the one reported in our previous paper,[31] which was incorrectly calculated. All the other

points are identical to the ones reported previously.[31] The predicted values of the diffusion

coefficient appear to be consistent with the known experimental behavior.

Finally, if we assume that the change in diffusion coefficient from one set, with ρm =

0.0324 sites/Å3 and T = 400K, to the other, with ρm = 0.0315 sites/Å3 and T = 509K, is

mostly due to the difference in temperature, the behavior illustrated in Fig.6 is consistent

in the entangled regime with the analysis performed in Ref.[77]. The diffusion coefficients of

unentangled chains follow the scaling behavior of the Rouse approach, while the entangled

chains show a scaling with degree of polymerization of −2.5. Although the latter scaling

exponent disagrees with the “reptation model”, it is known that experimental samples of

weakly entangled chains also show a scaling exponent of −2.5. For those polymer chains,

which are just across the transition from unentangled to entangled dynamics, constraint re-

lease and ”tube” fluctuations are relevant. The observed scaling behavior is also consistent

with the scaling of the viscosity observed experimentally.[78] The advantage of our method

with respect to UA-MD simulations is that even in the case of long entangled chains it is

possible to include a large number of molecules, improving the statistics of calculated corre-

lation functions. Overall this plot shows that it is possible to provide reasonable predictions

of large scale dynamical properties by properly rescaling mesoscale simulations.

VII. DISCUSSION AND CONCLUSIONS

The need for developing a fundamental approach to rescale dynamical data obtained

from MS simulations of coarse-grained systems has been a long-standing problem from the

time that coarse-graining approaches started being developed. Because MS simulations
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FIG. 6: Plot of diffusion coefficients as a function of degree of polymerization, N . The

rescaled results from MS MD simulations at ρm = 0.0324 sites/Å3 and T = 400K (tri-

angles down) are compared with simulations data for N = 44 (square). Also reported

are MS-MD data at ρm = 0.0315 sites/Å3 and T = 509K (triangles up) which match the

experimental data (circles) from Ref.[39]. The scaling exponents for unentangled, N−1

(dashed line), and entangled dynamics, N−2.5 (dot-dashed line) are also displayed.

are less computational demanding than atomistic simulations, it is possible to investigate

larger systems for longer times than in all-atom simulations, allowing one to extend the

maximum time and length scales accessible through simulations and to improve the statistics

of measured averaged quantities. Considering that the number of particles in a simulation

should be large enough to ensure proximity to the thermodynamic limit, MS simulations of

coarse-grained systems could become an indispensable tool to investigate the structure and

dynamics of macromolecular liquids.

One advantage of a MS simulation of a coarse-grained system is that the simulation

speeds up because of the averaging of the internal degrees of freedom, leading to a softer

potential and allowing the study of longer timescales than in a fully atomistic simulation.

This implies, however, that the dynamical properties resulting from the MS MD are faster

than their real counterpart, for example the ones from UA MD and need to be rescaled.

It is the common procedure to rescale the measured dynamics numerically by bringing a

time correlation function to agree with the one measured in atomic level simulations, how-

ever we adopt a different strategy. We have proposed a first principle approach to derive an

analytical form of the rescaling procedure to be applied to the dynamics measured directly

from MS MD of a coarse-grained polymer liquid. Our approach allows for the reliable pre-

diction of the long-time diffusion of a polymer melt as it would be measured in an atomistic

or UA-MD simulation. The rescaling procedure has been tested so far against simulations

and experiments of polyethylene liquids both unentangled and entangled. Calculated diffu-

sion coefficients for samples for which we do not have data either experimental or simulated,

show consistent behavior.

We start by running MS MD simulations of coarse-grained polyethylene melts where

each polymer is represented as a point particle. The analytical intermolecular potential,

input to the MS MD, is derived from the Ornstein-Zernike equation with the hypernetted
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closure approximation. The correction term to the measured dynamics of the MS MD

simulations, is calculated from the solution of the Generalized Langevin Equations written

for the coarse-grained and for the monomer-level representations of the macromolecular

liquid. Those equations are formally derived from the Liouville equation by assuming two

different lengthscales characterizing the relevant slow dynamics, i.e. monomer and center-

of-mass, onto which the Liouville equation is projected.

While the Mori-Zwanzig projection operator technique suggests a reliable criteria to select

the proper length scale of coarse-graining for dynamical properties, the GLEs thus generated

allow one to derive analytical forms of the rescaling contributions associated with the coarse-

grained dynamical equations. The rescaling procedure includes two contributions, given by

the changes in entropy and in the friction coefficient during coarse-graining. The entropic

contribution emerges from the averaging of the internal degrees of freedom, while the friction

is due to the change in shape, and as a consequence the change of the molecular surface

exposed to the surrounding molecules. Both corrections depend on the thermodynamic

conditions of the system simulated, and on the molecular structure through the radius-

of-gyration of the macromolecule. Thermodynamic and molecular quantities enter both

directly through the rescaling equations and indirectly through the effective potential in

the mesoscale simulations. In this way the dynamics predicted from the rescaling of each

mesoscale simulation is specific of the system under study.

A feature of the coarse-graining models we study is the mapping of the polymeric liquid

onto simple representations, which are isotropic. At the molecular level the polymer is

described as a soft isotropic sphere. At the monomer level, the bead-and spring description

affords equivalent beads in the chain, which is a reliable approximation due to the high

number of statistically equivalent structural configuration of the molecule. Chain end effects

enter in the model through the finite size of the polymer in the matrix representation of the

equations. Moreover, because the monomers in a homopolymer are structurally identical,

with the exception of the two end monomers, the intermolecular monomer-monomer hard-

core interaction potential is assumed to be identical for any pair of monomers, and each

monomer is supposed to have identical friction coefficient.

Although the theoretical picture is straightforward, our approach has the advantage of

being described in closed-form expressions, even if approximated, which allows for an analyt-

ical solution of the rescaling formalism. This has the potential of being useful in improving
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our understanding of the nature of coarse-graining procedures.

VIII. INTERNAL ENERGY CALCULATION FOR A FREELY-ROTATING-

CHAIN MODEL

The effective mean-force potential for one homopolymer composed of N monomers can

be expressed through the structural matrix A as

U =
3kBT

2l2

∑

i,j

Ai,j ri · rj =
3kBT

2l2

∑

x,y,z

∑

i,j

xiAi,jxj =
3kBT

2 l2
rTAr , (56)

with the matrix A being real and symmetric, and diagonalized by the orthonormal matrix

of the eigenvectors Q−1 = QT , so that

rTAr = ξTQ−1AQξ = ξTΛξ , (57)

where Λ is the matrix of the eigenvalues, and ξ is the matrix of the normal modes defined

by r = Qξ.

In this model, the equilibrium distribution function is

Ψeq(r) = Nxe
− 3

2l2
xTAxNye

− 3

2l2
yTAyNze

− 3

2l2
zTAz = Ne−

3

2 l2
rTAr = Ne−

1

2
rTA′ r , (58)

where for convenience of notation we introduced the matrix A′ = 3A/l2. Here Nx is the

normalization factor, defined by enforcing
∫

dxΨx = 1, as

Nx =

(

3

2πl2

)N/2

[det(A)]1/2 , (59)

with Nx = Ny = Nz = N1/3. The statistically averaged internal energy for one molecule

consisting of N monomers simplifies to
〈

E

kBT

〉

= N

∫

Ue−
1

2
rTA′rd r = N

∫

1

2
rTA′re−

1

2
rTA′r . (60)

In one dimension,

〈

E

kBT

〉

x

=
3Nx

2l2

∫

dx xTAx e−
3

2l2
x
T
Ax = Nx

3

2l2

[

Nxl
2

3

Nx
∏

i=1

√

2πl2

3λi

]

=
N

2
, (61)

which gives, as the final result for the internal energy of one molecule consisting of N

monomers,
〈

E

kBT

〉

=
3N

2
. (62)
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IX. THE DYNAMIC MEMORY FUNCTION

We briefly report here the derivation of Eq.(29) starting from Eq.(13). The product of

the direct and projected forces is expressed as a function of the density field variables as

< F(0) · FQ̂(t) >∼= F(r) · F(r′) < ρα(r; 0)ργ(r; t) > . (63)

Because the fluid is uniform and isotropic, the density fields can be replaced by their fluc-

tuation variables, ∆ρα(r, t) = ρα(r, t)− < ρα(r) >, where the ensemble-averaged density

field is approximated by < ρα(r) >≈ ρg(r). The correlation of the random forces is then

expressed as

< F(0) · FQ̂(t) >∼= r̂ · r̂′ρ2g(r)g(r′)F (r)F (r′)< ∆ρα(r)∆ργ(r
′, t) >

< ρα(r) >< ργ(r′) >
, (64)

where we adopt a kind of ”dynamical” Kirkwood superposition approximation in a weighted

average form

< ∆ρα(r)∆ργ(r
′, t) >≈ ρ

∫

dR g(r)g(r′)S(R, t)S(|r− r′ +R|t) . (65)

Eq.(65) describes the multipoint correlation between the density fluctuations at a distance

r from segment α at time zero, and the density fluctuations a distance r′ from segment γ at

time t. Because α and γ can be on the same or on different polymer chains, no assumptions

are made a priori about the relative importance of intra and intermolecular correlations. In

this way, the chain connectivity does not play a dominant role in our description from the

very beginning. We then calculate both intra and intermolecular contributions and show

that both need to be included in the calculation of the memory function as intramolecular

contributions are comparable in size to the intermolecular ones. Substitution of Eq.(65) into

Eq.(64) leads to Eq.(29).
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