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We investigate the long-standing puzzle of phase separation in a granular monolayer vibrated
from below. Although this system is three-dimensional, an interesting dynamics occurs mostly
in the horizontal plane, perpendicularly to the direction of vibration. Experiments [Olafsen and
Urbach, Phys. Rev. Lett. 81, 4369 (1998)] demonstrated that for high amplitude of vibration the
system is in the gas-like phase, but when the amplitude becomes smaller than a certain threshold, a
phase separation occurs: a solid-like dense condensate of particles forms in the center of the system,
surrounded by particles in the gas-like phase. We theoretically explain the experimentally observed
coexistence of dilute and dense phases, employing Navier-Stokes granular hydrodynamics. We show
that the phase separation is associated with negative compressibility of granular gas.

PACS numbers: 45.70.Mg, 45.70.Qj, 05.70.Fh

A vertically vibrated monolayer of spherical grains
is probably the simplest experimental system exhibit-
ing regular large-scale patterns and phase separation
[1], propagating fronts [2], melting transitions [3], non-
Maxwellian velocity distribution, and other non-trivial
statistical properties of non-equilibrium steady-state [4–
7]. In the most of these experiments, a thin layer of spher-
ical grains is energized by precise vertical vibrations. The
most important dimensionless parameters affecting the
dynamics are the normalized filling fraction (or number
density) f = 〈n〉/nc, aspect ratio, and dimensionless ac-
celeration Γ, i.e the amplitude of the vibration acceler-
ation of the bottom plate normalized by the gravity ac-
celeration g: Γ = 4π2ν2A0/g, where A0 and ν are the
displacement amplitude and the frequency of vibration,
nc = 2/(

√
3d2) is the hexagonal close packing density.

For sufficiently high magnitude of vibrations Γ, a
quasi-two-dimensional granular gas with nearly uniform
spatial density is observed. However, upon reducing the
acceleration below a certain critical value Γ that depends
on the filling fraction f , a transition to a bimodal regime
occurs [1], which is characterized by a single dense clus-
ter of closely packed almost immobile grains surrounded
by a gas of agitated particles. Despite the fact that this
striking phenomenon is known for almost 15 years, no
consistent continuum description rooted in granular hy-
drodynamics was developed to date [8]. In contrast, con-
tinuum description of a phase separation and coarsen-
ing in some-what similar system, electrostatically driven
granular layers, was successful [9–11].

In this paper we develop quasi-two-dimensional hy-
drodynamic description of vertically-vibrated granular
monolayers. The description is based on the granular
inelastic Navier-Stokes equation averaged over the verti-
cal (z) component. We take into account the specifics
of energy injection and momentum redistribution due to
collisions of particles with the vibrating bottom plate.
The model parameters are calibrated against available
experimental data. We obtained analytically the domain
of co-existence between two phase-separated states; the

phase diagram is consistent with experimental data.
The model. Experiments show that for low enough ac-

celeration of vibration Γ, one can observe a coexistence
of a dense phase and a gas phase [1]. Since in the steady-
state, the pressure of the two states should be the same,
the high density phase should have a low effective hori-
zontal temperature, Th and the dilute gas phase should
be “hot”. To maintain this steady state despite inelastic
collisions between the particles, one needs to continu-
ously pump energy into the system. Since the particles
take the energy from the vertically vibrating plate, we
will also consider the dynamics of the (vertical) kinetic
energy Ev and the vertical temperature Tv. Below are
the two equations for the energy balance:

∂Ev

∂t
= A(Γ)−BEv

1/2 − C (Tv − Th) (1)

∂Th

∂t
= C(Tv − Th)−I(n, Th)−

BTh

Ev
1/2

+
∇(κ∇Th)

n
(2)

Let us discuss now every term in Eqs. (1)-(2). The
termA(Γ) describes the energy gain due to vibration; this
coefficient will be determined later on from single particle
experiments [12]. The second term in Eq. (1) describes
energy losses due to inelastic particle collisions with a
plate. One can derive this term, considering a single
bouncing particle on a plate [2]. If the maximal kinetic
energy of a particle before the collision is Ev, then after
the collision it becomes α2Ev, where α is the particle-
plate restitution coefficient. Since the time between the
consecutive collisions is 2

√
2Ev/g, the energy loss term

is proportional to
√
Ev and B = (1 − α2)g/(2

√
2).

When the particles collide, part of the energy goes from
vertical degrees of freedom to the horizontal motion. This
is described by the collision term C (Tv − Th), which en-
ters Eq. (1) with minus sign and enters Eq. (2) with plus
sign. Here C is proportional to the frequency of collisions:
C = c

√
Th/λ, where

√
Th is the horizontal thermal veloc-

ity, λ is the mean free path, and c is unknown constant
of order unity. The second term in Eq. (2) represents
energy losses due to inelastic collisions between particles.
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As we show below, this term is not responsible for phase
separation, in contrast to instabilities in other granular
systems [13, 14]. The third term represents energy losses
due to inelastic collisions with a plate [15], while the last
term describes thermal conduction in a horizontal plane.
In order to describe the high-density phase, we need

to employ constitutive relations valid up to the densities
close to the close packing density nc. Various expres-
sions for pressure, inelastic heat losses and transport co-
efficients were recently suggested [16]. Here we use the
interpolation between the dilute and dense limits, pro-
posed in Ref. [17] and successfully employed in Ref. [18].
The pressure, inelastic heat losses, coefficient of thermal
conductivity and the mean free path are given by:

p = nT
nc + n

nc − n
, I =

2µ(1− r)

γ

T
3/2
h

λ

κ =
σ n(a1λ+ d)2 T

1/2
h

λ
, λ =

1√
8nd

nc − n

nc − a2 n
(3)

where a2 = 1 −
√

3/8, and σ, γ, and a1 are numerical
factors of order unity.
Finally, we need to distinguish between the vertical ki-

netic energy Ev, measured in experiments [12] and the
vertical temperature Tv, which is related to the vertical
velocity fluctuations. The difference between Ev and Tv

becomes crucial for high densities. Indeed, a dense clus-
ter bouncing on a plate as a whole might have substantial
vertical kinetic energy, but at the same time its vertical
temperature is extremely low. Clearly, Tv tends to zero
at the density of close packing. Therefore, we assume
Tv = [(nc − n)/nc]

δEv. The power δ describes how fast
Tv tends to zero when n → nc. Therefore, δ is a decreas-
ing function of the vibration acceleration Γ: for the same
density the synchronization in the vertical motion of a
cluster is smaller for larger values of Γ.
The coefficient A before the gain term in Eq. (1) can

be found from experiments with single particle [12]. In
a steady state for a single particle one obtains A(Γ) =

BEg
1/2, where we use an empirical expression for the

maximal kinetic energy of the bouncing particle [12, 19]:

Eg =
g2

ω2

c1Γ(Γ− Γ1)

1− α+ c2(1 − α)2
,

where c1 = 3.8, c2 = 4.45, α is the particle plate restitu-
tion coefficient, and ω is the frequency of vibrating plate.
This expression is meaningful only for the values of ac-
celeration that exceed a certain threshold, Γ > Γ1; there
are various estimates of the value of this threshold accel-
eration: Γ1 = 0.85 [12] or Γ1 = 0.79 [19].
Every term in Eq. (2) is measured in units T/t, where

the temperature T is measured in units of g2/ω2 and time
t in units of 1/ω. Assuming a steady state, we multiply
every term by ω/g2 and obtain the following equations

b̄
(

E1/2
g − E1/2

v

)

− c
√
Th

λ
(Tv − Th) = 0, (4)
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FIG. 1: (Color online) The ratio of vertical energy and the
horizontal temperature the ratio Ev/Th versus driving Γ, com-
pare to Ref. [20]. An inset shows the steady state pressure
versus driving Γ, compare to Ref. [19]. The parameters are:
R = 0.0885, b̄ = 0.4335 (ω = 40Hz, d = 1mm, α = 0.9),
Γ1 = 0.6, δ = 1.85/Γ2 , and z = nc/n = 2.

− b̄Th

E
1/2
v

− RT
3/2
h

λ
+

c
√
Th

λ
(Tv − Th)

+

√
3z

2

d

dx

(

κ̄ T
1/2
h

dTh

dx

)

= 0. (5)

Two parameters that enter Eqs. (5) are b̄ = Bdω2/g2

and R = 2µ(1−r)/γ. One can estimate these dimension-
less parameters independently from experiments [1, 12].
Roughly, R is of the order of 0.1 and b̄ is of the order of
unity for intermediate frequencies of vibration.
Homogeneous steady-state. Let us find first the uni-

form solution of Eqs. (4)-(5). From Eq. (5) one find

that (c/λ) (Tv − Th)/Th = b̄/(T
1/2
h E

1/2
v ) + R/λ so that

the ratio of the vertical and horizontal temperatures is

Tv

Th
= 1 +

b̄λ

cT
1/2
h E

1/2
v

+
R

c
. (6)

When Γ is large, the temperatures are large as well and
the ratio Tv/Th approaches 1+R/c ≃ 1, so the two tem-
peratures are almost equal for large driving. However,
for small driving, the second term in Eq. (6) becomes
large and the vertical temperature is much larger than
the horizontal temperature, in agreement with the re-
sults of molecular dynamics simulations [20]. The ratio
Th/Ev (computed for some intermediate density) as a
function of driving is shown in Figure 1. The inset shows
the steady state pressure as a function of vibration accel-
eration. For large Γ, the pressure increases linearly with
Γ in agreement with experiments [19].
We also computed the steady state pressure p as a func-

tion of the normalized average area fraction f = 〈n〉/nc,
see Fig. 2. For the values of f above a certain threshold
(to the right of the dashed line), the pressure decreases
with f . This is the negative compressibility that drives
the instability of the homogeneous state and leads to
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FIG. 2: (Color online) The steady state pressure p vs nor-
malized area fraction f (solid line). For large enough f ,
the pressure decreases with f ; this negative compressibility
drives the instability of the uniform state. The parameters
are Γ = 0.9, b̄ = 0.9736 (ω = 60Hz, d = 1mm, α = 0.9),
Γ1 = 0.6, δ = 1.34/Γ2 .

phase separation. Similar negative compressibility phe-
nomena was observed in granular systems, where the par-
ticles were driven by a thermal side wall [14] or for vig-
orously vibrated granular layers confined by a top lid
[21, 22].
Phase coexistence. Equation (4) is a quadratic equa-

tion for Ev. One can solve it for Ev and substitute the
result to Eq. (5). This can be rewritten as:

√
3z

2

d

dx

(

κ̄ T
1/2
h

dTh

dx

)

=
RT

3/2
h

λ
+

b̄

(

Th

E
1/2
v

+ E1/2
v − E1/2

g

)

, (7)

All quantities here are functions of the inverse density
ζ = nc/n: Th = Th(ζ(x)), λ = λ(ζ(x)), Ev = Ev(ζ(x)).
Eq. (7) can be written as (d/dx)(F (ζ) dζ/dx) = Φ(ζ).
Multiplication by F (ζ)(dζ/dx) and integration over x
yields the modified area rule

∫ zg

1

F (ζ)Φ(ζ)dζ = 0, (8)

which determines the conditions for coexistence of the
gaseous phase (ζ = ζg) and the dense solid-like phase
(ζ = 1). This equation was solved numerically, the re-
sults are shown in Fig. 3. Figure 3 shows a phase diagram
in the Γ (driving, vertical axis) - f (average area fraction,
horizontal axis) plane, computed from Eq. (8) both for
inelastic particle collisions (R 6= 0) and for elastic colli-
sions between the particles (R = 0). There are three dif-
ferent regions in the diagram. When Γ < Γ1, particles do
not detach from the plate. For larger Γ, one can observe
either a uniform gaseous state or a coexistence between
the gaseous state and a dense solid-like condensate, de-
pending on the average area fraction. Interestingly, this
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FIG. 3: (Color online) Phase diagram as computed from Eq.
(8). Experimental observations [1] are denoted by squares.
The dashed line corresponds to elastic particle collisions,
R = 0, the solid line corresponds to R = 0.0885 (as in [1]),
the dash-dotted line corresponds to R = 0.0885 and takes
into account the density gradient term in the heat flux. The
parameters are b̄ = 0.9736 (ω = 60Hz, d = 1mm, α = 0.9),
Γ1 = 0.6, δ = 1.34/Γ2 .

coexistence does not occur for sufficiently small values of
f , f < fc, this prediction can be tested experimentally.
The phase diagram shows that above some critical

value of the vibration acceleration Γ, the phase coex-
istence is not possible for any average area fraction: the
only possible state for large Γ is a gas phase. If we now
slowly quench the vibration for f > fc, a condensate
will form, surrounded by the particles in a gas phase.
The model suggests that for smaller f the phase coex-
istence occurs at a smaller threshold Γ, in a agreement
with experimental observations [1, 19]. Surprisingly, the
results do not significantly depend on the inelasticity of
collisions between the particles; one does not need inelas-
tic particle collisions to reproduce experimental observa-
tions. Instead, the phase separation mechanism is related
to the nontrivial interplay between energy injection and
the vertical temperature of the particles.
For inelastic particle collisions, there is an additional

contribution to the heat flux from the density gradient
term Q ∼ µ∇n [23, 24]. The transport coefficient µ was
computed for small and moderate densities, but the ex-
pression for high densities remains unknown. Below we
heuristically compute this term in the spirit of Ref. [17].
Suppose, the temperature in the system is the same, but
there is a density gradient ∇n in the x-direction. Con-
sider the number of particles crossing a line perpendicular
to this direction in a time interval δt. During this time
a particle collides just once on average, in every colli-
sion it loses energy (1 − r2) v2. The energy flux is due
to this single collision of every particle during this mean
free path λ: the number of particles moving from left to
right is not equal to the number of particles moving from
right to left. The number of particles moving from right
to left (or from left to right) per unit cross section area
equals nright(λ + d)/2 (or nleft(λ + d)/2). The differ-



4

ence between these two quantities should be multiplied
by energy loss in one collision. Choosing δt = λ/

√
T

(the ratio of the mean free path to the thermal velocity)
yields Q = (0.5(λ+d)2/λ)(1−r2)T 3/2 dn/dx. Therefore,
µ = µ0(r)[(λ+ d)2/λ]T 3/2, where µ0(r) is a function of r
that becomes zero for elastic collisions. The factor µ0(r)
is chosen such that the expression for µ is consistent with
the dilute limit [23]. Figure 3 shows that the effect of this
term is small both due to relatively high restitution co-
efficient and due to the structure of the density gradient
term: at high densities it is negligible compared to the
temperature gradient term in the heat flux.
In conclusion, we demonstrated that the bistability

and phase separation in vibrated granular monolayers
observed experimentally in [1] can be captured in the
framework of granular hydrodynamics equations. The
bistability results from non-trivial energy injection mech-
anism from vibrating plate to a granular gas. The model,
calibrated against available experimental data and sim-
ulations [1, 12, 19, 20] is in a good agreement with the
observations: it yields, in particular, a phase diagram
consistent with that of Ref. [1]. While we have stud-
ied phase separation in one-dimensional geometry, Eqs.
(1)-(2) are also valid in two dimensions. In this case,
however, the dynamics of the front between dense and
dilute phase will also be controlled by the curvature, i.e.
the radius of the cluster [25].
A phase separation in quasi-one-dimensional granular

system was studied in Ref. [21, 22]. The phase separation
was attributed to negative compressibility of granular gas
in a certain range of concentrations. The experimental
system considered in Ref. [22], a vibrated granular gas
confined on a horizontal plate with a top lid, is different
from ours: the most interesting regimes of phase sepa-
ration in Ref. [22] occur for acceleration Γ > 4, when
the motion of particles is strongly affected by collisions
with the confining lid. In contrast, for these parame-
ters our system will be in a uniform gas state. However,
the fundamental mechanism of phase separation, nega-
tive compressibility of granular gas, is similar.

It is well-known that in large enough system phase
separation results in the formation of a large number of
clusters; the cluster consequently coarsen [25]. In a simi-
lar system, granular layer energized by electric field, the
number of clusters decays inversely proportional to time
[9–11]. We anticipate similar scaling behavior for ver-
tically vibrated granular monolayers. However, due to
relatively small aspect ratio and number of particles in
the experimental cell, only a few clusters (typically 1-3)
can be observed simultaneously [1].
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