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We study the structural correlations and the nonlinear response to a driving force of a two-
dimensional phase-field-crystal model with random pinning. The model provides an effective con-
tinuous description of lattice systems in the presence of disordered external pinning centers, allowing
for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes
an amorphous glassy ground state, with only short-ranged positional and orientational correlations
even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase
evolves into a moving plastic-flow phase and then finally a moving smectic phase. The transverse re-
sponse of the moving smectic phase shows a vanishing transverse critical force for increasing system
sizes.
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I. INTRODUCTION

Pinning and sliding of lattice systems, which can form
periodic structures in the absence of perturbations, are
subjects of considerable interest. In the presence of pin-
ning disorder and driving forces, they can exhibit a wide
variety of interesting equilibrium and non-equilibrium
behavior with partially ordered and glassy structures.
Important examples in two dimensions include vortex
lattices in superconducting films [1], atomic layers ad-
sorbed between sliding surfaces [2] or on oscillating sub-
strates [3, 4], and colloidal crystals on a rough substrate
[5, 6]. Although in three dimensions a topological or-
dered phase, the Bragg glass [7], with quasi-long range
positional order is possible in the weak disorder regime,
the two-dimensional limit is qualitatively different due to
the proliferation of thermally and disorder-induced dis-
locations even in the weak-disorder regime. Analytical
and numerical studies for the equilibrium behavior [7–
12] have shown that, in two dimensions, positional and
orientational order are both destroyed by weak pinning
disorder and topological defects at any nonzero tempera-
ture leading to a liquid-like phase in the thermodynamic
limit. In the absence of thermal fluctuations (zero tem-
perature) an amorphous glass is expected [9, 13]. For
the system under a driving force moving at high veloc-
ities, it has been shown analytically that some compo-
nents of the disorder remain static in the co-moving ref-
erence frame, leading to a moving glass phase [13]. In
three-dimensional systems, such state can show topolog-
ical order as a moving Bragg glass [13–15]. In two di-
mensions, however, this phase corresponds to a moving
smectic glass, which retains quasi long-range order in the

direction transverse to the driving force but only expo-
nential correlations in the parallel direction [13, 14, 16–
21].

In modeling such lattice systems, both for static and
dynamic properties, it is essential to include the peri-
odicity of the lattice and allow for topological defects
(dislocations and disclinations). These topological de-
fects are not contained in pure elastic models that have
completely different properties, specially in two dimen-
sions. A phase-field-crystal (PFC) model was introduced
recently [22–24] that allows for both elastic deformations
and topological defects within an effective continuous de-
scription of the lattice system while still retaining infor-
mation on short length scales. By extending the PFC
model to take into account the effect of an external pe-
riodic pinning potential [25], a two-dimensional version
of the model has been used to describe commensurate-
incommensurate transitions in the presence of thermal
fluctuations [26] and the driven response [27] including
inertial effects [28]. However, in order to study the stat-
ics and dynamics of the disordered system, quenched pin-
ning disorder needs to be included in the PFC modeling.

In this work, we study the structural correlations and
nonlinear response to a driving force of a two-dimensional
PFC model with random pinning. The model provides
an effective continuous description of lattice systems in
presence of disordered external pinning centers, allow-
ing for both elastic and plastic deformations. We show
that in the presence of disorder, the phase-field crystal as-
sume an amorphous glassy ground state, with only short-
ranged positional and orientational correlations even in
the limit of weak disorder. Under increasing driving
force, the pinned amorphous-glass phase evolves into
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a moving plastic-flow phase and then finally a smectic
phase. The transverse response of the moving smectic
phase shows a vanishing transverse critical force for in-
creasing system sizes.

II. PFC MODEL WITH RANDOM PINNING

POTENTIAL

The effective Hamiltonian of the PFC model with an
external pinning potential [25] can be written in a dimen-
sionless form as

Hpfc =

∫

d~x{
1

2
ψ[r+(1+∇2)2]ψ+

ψ4

4
+V (~x)ψ(~x)}, (1)

where ψ(~x) is a continuous field at position ~x in two
dimensions and V (~x) is the pinning potential. The field
ψ(~x) is conserved and its average value, ψ̄, together with
r are the relevant parameters in the model.
In the absence of the pinning potential, V (~x) = 0, the

energy functional of Eq. (1) can be minimized by a con-
figuration of the field ψ(~x) forming a hexagonal pattern

of peaks with wave vector of magnitude | ~Q| ≈ 1, when
the values of the parameters r and ψ̄ are chosen appro-
priately. This structure of peaks can be regarded as the
ground state of a lattice system with perfect crystalline
order, where the phase field ψ(~x) represents the devia-
tion of the particle number density ρ(~x) from a reference
value ρ0, ψ(~x) = (ρ(~x)−ρ0)/ρ0. The energy functional of
Eq. (1) can then be used to describe both elastic as well
plastic properties of the lattice system [22, 23], including
the effects of thermal fluctuations [26]. An external driv-

ing force ~f in the lattice system, can be represented by
an additional contribution to the effective Hamiltonian
as

Hf = −

∫

d~xρ(~x)~x · ~f, (2)

which will lead to nonequilibrium behavior. The effects of
the driving force have been recently investigated in some
detail [27, 28], in absence of disorder. Inertial effects
of the lattice system can also be described within the
PFC model, by including an additional kinetic energy
contribution to the effective Hamiltonian as

Hkin =

∫

d~x
~g2(~x)

2ρ(~x)
, (3)

where ~g(~x) is the momentum density field.
The dynamical equations describing the time evolution

of the lattice system in presence of thermal fluctuations
and the external force can be written as [28]

∂ψ

∂t
= −∇ · ~g; (4)

∂gi
∂t

= −∇i
δHpfc

δψ
+ ψfi − γgi + νi(~x, t);

〈νi(~x, t)νj(~x
′, t′)〉 = 2kBTγδ(~x− ~x′)δ(t− t′)δi,j ,

where ~f = (fx, fy) is the spatially uniform external force
and ~ν(~x, t) is a thermal noise satisfying the fluctuation-
dissipation relation corresponding to a temperature T
and damping coefficient γ.
In the present work, we only consider the limit of very

large γ, when inertial effects are negligible, leading to the
overdamped dynamical equations

∂ψ(~x, t)

∂t
= −∇ · ~g; (5)

γgi = −∇i
δHpfc

δψ
+ ψ(~x, t)fi + νi(~x, t);

〈νi(~x, t)νj(~x
′, t′)〉 = 2kBTγδ(~x− ~x′)δ(t− t′)δi,j ,

The above coupled equations for ψ and ~g can also be
combined into a single equation for ψ, giving

γ
∂ψ

∂t
= ∇2 δHpfc

δψ
− ~f · ∇ψ + ζ(~x, t); (6)

〈ζ(~x, t)ζ(~x′, t′)〉 = 2kBTγ∇
2δ(~x− ~x′)δ(t− t′).

The generalization of the PFC model with an external
periodic pinning potential studied previously [25–28] to
the case of a quenched random pinning potential consid-
ered here is straightforward. Such a model is relevant
for studying diverse systems such as, adsorbate layers
with quenched impurities or on substrates with disorder,
and vortex lattice in superconductors in the presence of
pinning centers. To this end we model the quenched po-
tential in the simplest way by defining at every spatial
location V (~x) = Dµ(~x), where µ(~x) is a δ-correlated dis-
tribution

〈µ(~x)µ(~x′)〉 = δ(~x− ~x′), (7)

and D is an amplitude characterizing the strength of the
disorder. Since, there is no characteristic length scale in
such pinning potential, it is particularly suitable for the
investigation of finite-size effects using small system sizes
as done in this work. In this dense pinning model, the
separation between pinning centers can be much smaller
than the distance between the density peaks in the phase-
field crystal. This corresponds to a physical system where
the length scale of the varying pinning potential is smaller
than the average lattice spacing of the system. Such a
scenario could be realized e.g. in the case of colloidal
particles confined near a rough glass plate [5, 6].
For the numerical calculations, the phase field ψ(~x) is

defined on a space grid (idx, jdy) with periodic boundary
conditions. The simulations in presence of thermal fluc-
tuations and the driving force were performed using Eq.
(5), using Euler’s method with the Laplacians and gra-
dients evaluated by finite differences. In the absence of
external force and thermal fluctuations, the equation of
motion (6) was used in most simulations, and solved us-
ing a semi-implicit algorithm. The linear part is treated
implicitly, while the non-linear term is treated explicitly
[29]. The field at time t+ dt is obtained according to

ψ̂(~k, t+ dt) =
ψ̂(~k, t) + (−k2)N̂T (~k, t)

1− dt(−k2)ω̂(~k)
, (8)
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where, ψ̂(~k, t) is the Fourier transform of ψ(~r, t), −k2 is
the equivalent in inverse space of the laplacian ∇2 and

ω(~k) = r+(1−k2)2 is the inverse space equivalent of the

linear operator r + (1 +∇2)2. The term N̂T (~k, t) is the
Fourier transform of the nonlinear part ψ(~x, t)3 + V (~x).

III. POSITIONAL AND ORIENTATIONAL

CORRELATIONS

To investigate the influence of disorder on the struc-
tural properties of the phase-field crystal, we study the
behavior of the static correlation functions from calcula-
tions of the structure factor S(~k) and orientational sus-
ceptibility χ, which measure translational order and ori-

entational order [30], respectively. S(~k) can be obtained

from the positions ~Rj of the peaks in the phase-field pat-
tern as

S(~k) =
1

Np

NP
∑

j,j′=1

e−i~k·(~Rj−
~Rj′ ), (9)

whereNp is the number of peaks, while χ can be obtained
from the local orientational order parameter φ6(Rj) as

χ =
1

Np

Np
∑

j,j′=1

φ6(Rj)φ
∗

6(Rj′ ). (10)

The orientational order parameter φ6(Rj) is a measure
of the six-fold orientational symmetry of the crystalline
order and is defined as

φ6(Rj) =
1

Nj

Nj
∑

l=1

ei6θj,l , (11)

where the summation is taken over the Nj nearest neigh-

bors of the peak at position ~Rj and θj,l is the angle of
the bond jl with an arbitrary axis. The disorder aver-
aged S(k) and χ are obtained by averaging over different
realizations of the disorder configurations V (~x).
In the absence of disorder, solutions of the PFC model

form a periodic hexagonal array of peaks in the ground

state with wavector ~Q, which has both long range posi-
tional and six-fold orientational order. Positional order
can be characterized by the scaling of the structure factor
S(Q) with system size L, which behaves as S(Q) ∝ L2 for
a perfectly ordered state. Disorder can destroy positional
long range order and lead to quasi long-range or short-
range positional order, which corresponds to correlations
that decay with distance r as a power law r−η or ex-
ponentially e−r/ξ, respectively. For these distinct types
of correlations the corresponding structure factor is ex-
pected to behave as S(Q) ∝ L2−η and S(Q) ∝ const.,
for large system sizes. We find it convenient to define
an effective exponent ηp to characterized the positional

order in different regimes, from a power law fit of the
normalized structure peak as

S(Q)/Np ∝ L−ηp . (12)

With this definition, since Np ∝ L2, ηp → 0 indicates
long range order, ηp → η < 2 quasi long-range order and
ηp → 2 short-range order. An analogous effective expo-
nent ηo characterizing the orientational correlations, can
be defined from the finite-size dependence of the orienta-
tional susceptibility χ as

χ/Np ∝ L−ηo . (13)

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present our numerical results for the
static behavior and the driven response of the phase-field
crystal at zero temperature (without thermal noise), ob-
tained in the absence and presence of the external force,
respectively. The dynamical equations, Eqs. (5) and
(6), were integrated numerically on a uniform square grid
with dy = dx = π/4. The total system size Lxdx×Lydy
accommodates approximately L2/100 density maxima.
The PFC parameters are set to r = ψ̄ = −1/4, where the
ground state of the model is a perfectly ordered hexago-
nal phase in the absence of disorder, and γ = 1. For the
case without external force and thermal fluctuations we
used a rectangular box of size Lxdx×Lydy with dy = π/4

and dx = dy/(
√

(3)/2). In order to check the size effect
we performed calculations for several values of Lx from
128 to 512.

A. Ground state

We first search for the the lowest-energy state of the
phase-field crystal in the absence of the external driv-
ing force. For this purpose, we have used the simu-
lated annealing method to avoid trapping in higher en-
ergy metastable states. First, simulations of equilibrium
states at some initial temperature corresponding to fi-
nite noise terms in the dynamical equation (Eq. (5)) are
performed using arbitrary initial configurations. Then
the initial temperature is slowly decreased to zero lead-
ing to a final configuration with a minimum energy. This
annealing procedure is repeated for different initial con-
figurations and the zero-temperature configuration with
the lowest energy is identified as the ground state.
Fig. 1 shows the behavior of the structure factor peak

and orientational susceptibility as function of the system
size obtained by simulated annealing, in the weak disor-
der regime, D = 0.03. The effective exponent for both
positional and orientational correlations obtained from a
power law fit of the size dependence in Fig. 1 is consistent
with two, indicating that correlations are short ranged.
Larger disorder strength gives the same result. This be-
havior suggests that the ground state of the phase-field
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crystal in presence of pinning disorder is an amorphous
glass. This is expected on theoretical grounds. In fact,
analytical studies by renormalization-group methods [7–
9] and computer simulations [10, 12] indicate that, in two
dimensions, quasi long-range positional and orientational
order are destroyed by weak disorder or thermal fluctua-
tions, leading to a liquid-like phase in the thermodynamic
limit. In the absence of thermal fluctuations (zero tem-
perature) an amorphous-glass state is expected [9, 13].
The length scale for the crossover to such state increases
with decreasing disorder strength.
Long-range order in presence of weak disorder has

been found at low temperatures in some other models
[31], which however describe structural (internal) disor-
der [9, 30] rather than external pinning disorder as con-
sidered here. On the other hand, in some molecular-
dynamics simulations of particle models of colloidal crys-
tals on a disordered substrate [33], quasi long-range or-
der was observed at low temperatures in a weak disor-
der regime, although no detailed finite-size analysis was
carried out. Quasi long-range order has also been ob-
served in experiments on colloidal crystals on a rough
substrate [6]. However, the apparent positional and ori-
entational order in such cases can also be explained as a
finite-size effect due to a large but finite crossover length
scale, which increases with decreasing disorder strength
[9, 11]. Another possible explanation is the effect of slow
dynamics, which requires a much longer time scale to
observe the true equilibrium state, leading to partially-
ordered metastable states. In Sec. IVc, we examine sim-
ilar states for the PFC model, which were obtained using
the dynamical equations in absence of thermal annealing.

B. Behavior under a driving force

To obtain the driven response of solutions of the phase-
field crystal model, we determine the steady state veloc-
ity of the peaks under a constant external force as de-
scribed by Eq. (5). The velocity is measured by tracking

the position of the peaks ~Ri(t) in the phase field ψ(~x)
during the simulation [27]. From the velocities of the

peak positions ~vi = d~Ri/dt, the steady state drift veloc-
ity is obtained as

~v = 〈
1

NP

NP
∑

i=1

~vi(t)〉, (14)

where NP is the number of peaks and 〈...〉 denotes time
average. The disorder averaged drift velocity is then ob-
tained by averaging over different realizations of the dis-
order configurations. The calculations were done without
thermal noise (zero temperature). The initial state at
f = 0 is obtained from simulated annealing as described
in Sec. IVa. The velocity response of the phase-field
crystal to the applied driving force is shown Fig. 2 for
strong disorder D = 0.1. The velocity response is non-
linear, with different behavior at low and large driving

FIG. 1: Size dependence of the (a) structure factor peak and
(b) orientational susceptibility, for weak disorder D = 0.03,
obtained from simulated annealing. The straight lines are
power-law fits to the data, S(Q)/Np ∝ L−ηp and χ/Np ∝

L−ηo . Inset in (a): lowest-energy pattern of the phase field
ψ(~x) for L = 190 .

forces, due to the effects of pinning. This property is
observed in different lattice systems with quenched dis-
order [13, 14, 34]. At sufficiently low drive, the drift
velocity is negligibly small and the phase-field crystal re-
mains pinned in the amorphous glassy phase. As the
force increases beyond a critical value, fc ≈ 0.05, corre-
sponding to a depinning transition, the phase-field crys-
tal moves with increasing steady-state velocity but with
different patterns at low and high velocities as can be
seen from the corresponding configurations in Fig. 3. At
low velocities above the critical force fc, the pattern of
the phase field has a liquid-like structure as shown in Fig.
3a for f = 0.2. The trajectories of the local maxima in
the phase field ψ(~x) correspond to a plastic flow due to
pinned and unpinned regions. For this moving state, the
corresponding structure factor (Fig. 4), averaged over
time and disorder, shows small and broad peaks. For
larger values of the driving force above a characteristic
value fd, there is a dynamical reordering transition to
a moving partially ordered phase as shown in Fig. 3c
for f = 0.8. The trajectories of the local maxima form
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FIG. 2: Longitudinal velocity response Vx to a driving force
fx averaged over disorder, for D = 0.1 and L = 128.

well defined static channels parallel to the driving force.
The structure factor now become larger and sharper as
shown in Fig. 4. Rough estimates of critical values fc and
fd obtained for different disorder strengths were used to
construct the qualitative dynamical phase diagram as a
function of disorder strength and applied force shown in
Fig. 5.

The nature of the moving phase at high velocities is
particularly interesting. Since the pinning potential acts
as a time oscillating perturbation in the co-moving refer-
ence frame, one would expects that the disorder effects on
the initial hexagonal structure should decrease with in-
creasing velocity. However, it has been shown that some
components of the disorder remain static [13], leading to
a moving glass phase. In two dimensions, such a phase
corresponds to a moving transverse glass characterized by
a smectic-like structure, which retains quasi long-range
order in the direction perpendicular to the applied force
but only exponential correlations in the direction paral-
lel to the force [13, 14]. This moving smectic state has
been observed in many different driven systems with dis-
order [16–21]. Indeed, for the present driven PFC model,
the pattern for the large driving force in Fig. 3d also
shows a smectic-like structure. To verify this behavior
more quantitatively, we have studied the finite-size de-
pendence of the structure factor peaks (Fig. 4) in the
transverse and longitudinal directions for the sliding state
at f = 0.8. The results shown in a log-log plot in Fig.
6 are consistent with a smectic phase in the thermody-
namic limit, where ordering only occurs in one spatial
direction. The height of the peaks in the transverse di-
rection decreases slowly with system size as a power law
S/N2

P ∝ L−η with η ≈ 0.3(1), consistent with quasi
long-range order, while in the longitudinal direction it
decreases much faster with η ≈ 1.4(6) as expected for
short-range order. This estimate of the critical exponent
η for the transverse peaks in the driven phase-field crys-

 

         (a)                   (b) 

    

         (c)                    (d) 

   

FIG. 3: (Color online) Snapshot of the phase field ψ(~x) and
corresponding trajectories of the peaks in ψ(~x) in the moving
state. (a) and (b) for f = 0.2 and (c) and (d) for f = 0.8.
Results are for L = 128 and D = 0.1. The trajectories in (b)
and (d)) are superpositions of snapshots of the peaks (open
circles in (a) and (c)) at consecutive times.

tal is comparable to the result, η = 0.5(1), obtained for
a particle model of driven vortex lattices in disordered
superconductors [16].

Another important property of the moving glass state
at large velocities is the existence of barriers to transverse
motion. It was predicted [13] that this should lead to a
transverse critical force at zero temperature for an ad-
ditional external force applied perpendicular to the ini-
tially driving force. However, it has also been argued
[14] that the transverse response at zero temperature is
nonuniversal, and qualitatively different behavior is pos-
sible for different physical systems. The former scenario
of transverse depinning has already been observed for
driven vortex lattices [16–21]. To find out which scenario
is realized in the present version of the PFC model, we
have studied the velocity response in the transverse di-
rection Vy at a large longitudinal force fx for different
realizations of the disorder configurations. We find that
the transverse depinning force is very sensitive to the dis-
order configurations and seems to vanish in some cases
as can be seen in Fig. 7, where the transverse velocity
response is shown for different realizations of the disorder
configuration for a system size L = 128. To investigate
if the transverse critical force is still nonzero in the large
system limit, we performed calculations for increasing
system sizes and the results were averaged over different
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FIG. 4: Structure factor, averaged of the disorder, in the
moving state, for (a) f = 0.2 and (b) f = 0.8. Results are for
L = 128 and D = 0.1.

FIG. 5: Qualitative dynamical phase diagram as a function of
disorder strength D and applied force f . fc is the depinning
force and fd is the critical value for the transition from plastic
flow to moving glass regimes.

FIG. 6: Finite-size behavior of the (a) transverse and (b)
longitudinal peaks in the structure factor, for the moving state
at fx = 0.8. The straight lines are power-law fits to the data,
S(Q)/Np ∝ L−η , for the largest sizes.

disorder configurations. Fig. 8 shows that the critical
value fcy for the onset of transverse depinning decreases
with increasing system size and therefore may actually
vanish in the thermodynamic limit. Although such be-
havior is possible according to analytical arguments [14],
it is unclear at the present which distinct feature of the
PFC model is responsible for it. Since a transverse criti-
cal force has been found for the same model in the case
of periodic pinning [27], we can only speculate that the
presence of disorder allows some defects to be generated
even by small transverse forces.

C. Glassy metastable states

In the previous section IVa we have determined the
lowest energy state in absence of a driving force (ground
state) using simulated annealing methods and found that
the configuration corresponds to an amorphous glass
state, with only short-ranged positional and orienta-
tional correlations. In this section, we will discuss some
metastable states. These are states corresponding to
local minima rather than the global minimum for the
ground state. Nonetheless, they may still be relevant un-
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FIG. 7: Transverse velocity response Vy to an additional force
fy for different disorder configurations, for the moving state
at fx = 0.8 when D = 0.1 and L = 128.

 
 

 

FIG. 8: Finite-size dependence of the transverse velocity re-
sponse Vy to an additional force fy averaged over disorder,
for the moving state at fx = 0.8 and D = 0.1.

der suitable experimental conditions.
Metastable states were obtained by starting with the

perfect hexagonal ground state in the absence of disor-
der and then allowing the system to evolve according
to the dynamical equation for a relatively short period
(5 × 105dt, dt = 0.5 ), for different disorder strengths in
the absence of thermal noise. The disorder strength D is
incremented in steps of of 0.009.
Fig. 9 shows the behavior of the effective exponents

ηp and ηo for positional and orientational correlations
of the final static configuration as a function of the dis-
order strength D. It appears that there are three dif-
ferent thresholds values of D: D1 ≈ 0.04, D2 ≈ 0.08
and D3 >> 0.12. Below D1, the weak-disorder regime,
the system has long-range orientational order and quasi-
long range translational order. Between D1 and D2 the
system exhibits both quasi-long range orientational and
translation order. Between D2 and D3 a hexatic order-
ing occurs which corresponds to quasi-long range orien-
tational order and short-range translational order. This
phase ordering is analogous to such a phase that occurs in
two dimensional crystals induced by thermal flucuations

FIG. 9: Effective power-law exponents for (a) positional ηp
and (b) orientational ηo correlation functions, obtained from
the dynamical equations without thermal noise. Inset in (b):
phase field pattern for D = 0.036.

[30]. Finally aboveD3, which is beyond the range ofD in-
vestigated, we expect that only short-range orientational
and translational order should remain. As described in
Sec. IVa, the lowest-energy state obtained by simulated
annealing is an amorphous glass rather than a partially-
ordered state observed in such netastable states. In fact,
the Inset in Fig. 9 indicates that the phase-field crystal
would remain essentially ordered for weak pinning if no
simulated annealing was performed. However, even in
this weak disorder regime correlations are actually short
ranged if the system is allowed to reach its true ground
state, as can be seen from the Inset in Fig. 1. Although
the ground state is an amorphous glass, the thresholds
D1 D2 andD3 in Fig. 9 can represent some characteristic
values for non-equilibrium behavior.

We have also investigated the metastable states for a
different model of disorder. In this sparse pinning model,
the pinning sites are separated by a minimum distance

Lp ≈ 2π/(| ~Q|
√

(3)/2)), i.e. they cannot come closer
to each other than the particles in the ideal hexagonal

ground state of the PFC model with wave vector ~Q. Such
model may be realized e.g. in the case of adsorbed atomic
layers on a substrate with impurities [2]. A finite density
ρs of randomly distributed pinning centers is assigned
with pinning strength (amplitude) Ds. Thus, unlike
the dense pinning model discussed above, there are now
two relevant parameters, namely ρs and Ds. Metastable
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FIG. 10: Effective power-law exponents for (a) positional ηp
and (b) orientational ηo correlation functions in the sparse

pinning model (see text for details), obtained from the dy-
namical equations without thermal noise. Inset in (b): phase
field pattern for Ds = 0.4.

states were obtained again starting from the hexagonal
state and incrementing Ds in steps of 0.02, while the
density of pinning sites ρs was fixed to ρs = 0.0082. For
this density of the pinning centers the ratio between the
pinning centers and the number of maxima of the ideal
triangular lattice is 0.375. Fig. 10 shows the behavior
of the effective exponents ηp and ηo for positional and
orientational correlations of the final static configuration
as a function of the disorder strength Ds obtained in
this sparse disorder model. Although the errorbars are
relatively large, there is again three distinct thresholds

values, D1 ≈ 0.45, D2 ≈ 0.7 and presumably D3 >> 1.3.
The results are qualitatively the same as that for the
dense pinning model.

V. CONCLUSIONS

We have studied a two-dimensional PFC model with
random pinning. The model provides an effective con-
tinuous description of lattice systems in the presence of
disordered external pinning centers, allowing for both
elastic and plastic deformations. The structural correla-
tions and nonlinear driven response are determined from
numerical simulations of the dynamical equations. We
find that in the absence of a driving force, the phase-
field crystal assumes an amorphous glassy ground state,
with short-ranged positional and orientational correla-
tions even in the limit of weak disorder. Under increasing
driving force, this pinned amorphous-glass phase evolves
first into a moving plastic-flow phase then followed by a
moving smectic phase. These results are largely in agree-
ment with previous analytical works [7–9]. An additional
new feature is that the transverse response of the moving
smectic phase shows a vanishing transverse critical force
for increasing system sizes. Finally, we have identified in-
teresting quasi-long range ordered metastable states by
evolving initially ordered states in the presence of disor-
der. The nature of these metastable states are insensitive
to the details of disorder and they may be relevant under
suitable experimental conditions.
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