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We use confocal microscopy to study the compressibility of a random close packed sample of
colloidal particles. To do this, we introduce an algorithm to estimate the size of each particle.
Taking into account their sizes, we compute the compressibility of the sample as a function of wave
vector q, and find that this compressibility vanishes linearly as q → 0, showing that the packing
structure is incompressible. The particle sizes must be considered to calculate the compressibility
properly. These results also suggest that the experimental packing is hyperuniform.
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The random packing of objects has been studied sci-
entifically for nearly a century [1, 2]; see Ref. [3] for
a review. This problem is often termed “random close
packing” (rcp) or “maximally random jammed packing”
[4]. Important recent work has focused on the packing of
highly polydisperse systems [5], ellipsoids [6], and tetra-
hedra [7], but the simplest packing problem is the packing
of monodisperse spheres. In the past decade, simulations
studying monodisperse spheres have generated large rcp
configurations with 105 − 106 spheres [8, 9]. These simu-
lations enable study of density fluctuations at very large
length scales, or equivalently, small wave vectors q. They
find that the static structure factor S(q) approaches zero
linearly as q → 0, that is, S(q) ∼ q for small q. This find-
ing has been termed “hyperuniformity” [10]. One corol-
lary is that the sample is incompressible, as the isother-
mal compressibility χ in simple liquids can be found from
ρkBTχ = S(0) where ρ, kB, and T are the mean density,
Boltzmann constant, and temperature. These observa-
tions of close-packed samples are in contrast, for exam-
ple, with simple liquids for which S(0) > 0 [10, 11]. The
existence of hyperuniformity has been seen in a variety
of systems, see for example discussions in Refs. [3, 12].
In general, long wavelength density fluctuations are im-
portant for diverse fields including critical phenomena
[13] and the shear flow of glassy materials [14]. Likewise,
understanding random close packed samples is relevant
for understanding liquids, glasses, biological systems, and
granular materials [1, 3, 15]. The key connection between
these two ideas was suggested in 2003 by Torquato and
Stillinger, who conjectured that all close packed samples
should be hyperuniform given some reasonable ideas of
what it means to be close packed [10].
In 2010 we published an experimental study of a ran-

dom close packed sample of colloidal particles observed
with confocal microscopy [16]. Our data set was the po-
sitions of more than 500 000 slightly polydisperse par-
ticles [17], and we found that S(q → 0) > 0, implying
that the experimental sample was compressible. A 2010
simulation of a binary sample found similar results [18].
These results seem to demonstrate random close packed
samples that are not hyperuniform. However, in 2011
two groups showed that in polydisperse samples, care-

ful consideration of the individual particle sizes recovers
hyperuniformity and incompressibility [11, 12]. In partic-
ular, Berthier et al. showed how to compute the isother-
mal compressibility when the individual particle sizes are
known, and demonstrated that samples with S(0) > 0
nonetheless can be incompressible [11]. They examined
data from a two-dimensional bidisperse granular experi-
ment and confirmed that χ(0) = 0. The reason S(0) > 0
in polydisperse systems is because density fluctuations
are coupled to composition fluctuations, but such sam-
ples can still be incompressible and hyperuniform.

In this manuscript, our goal is to determine if our
experimental sample is hyperuniform and incompress-
ible. To do this, we first develop a method to deter-
mine each particle size from microscopy observations of
a random close packed sample of colloidal particles. We
use numerically generated packings to confirm that our
method accurately determines the particle radii. Us-
ing these radii, we analyze our experimental data using
the method of Berthier et al. [11]. Our results confirm
that our experimental system is hyperuniform and in-
compressible. In contrast to the experimental data of
Ref. [11] (a two-dimensional bidisperse sample), we study
a three-dimensional sample with a continuous distribu-
tion of sizes.

As we use the analytical method introduced by
Berthier et al [11], we briefly summarize their method
here. They consider a wave vector dependent isother-
mal compressibility χ(q) which is related to the structure
factor of a monodisperse sample by ρkBTχ(q) = S(q).
They then derive an exact formula relating χ(q) and
S(q) for a polydisperse sample, although the formula
is “conceptually and computationally difficult” to eval-
uate [11]. Thus, they derive a series of approximate
formulas, of which the first order approximation is suf-
ficient for samples of low polydispersity such as ours.
To start with, they define single-particle density fields
ρi(q) = exp(iq · ri) where ri is the position of parti-
cle i. They also define the size deviation of particle i as
ǫi = (ai−ā)/ā, where ai is the radius of particle i and ā is

the mean radius. (Note that
√

〈ǫ2i 〉 = p defines the poly-
dispersity p of a sample.) These ǫi’s are the small param-
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eters used in the approximation. Using these variables,
they define a 2 × 2 matrix S(q) with elements Suv(q) =
1

N
〈ǫu(q)ǫv(−q)〉, with u, v ∈ 0, 1, ǫu(q) = ΣN

i=1
ǫui ρi(q),

and N is the total number of particles. The matrix ele-
ments can be used to provide a first order approximation
χ1(q) as ρkBTχ1(q) = S00 − [S01]2/S11. They confirm
that χ1(0) ≈ 0 in cases for which the sample polydis-
persity is less than 10%, while S(0) 6= 0 for those cases.
Their results suggest that random close packed systems
are hyperuniform and incompressible even when the sam-
ple is polydisperse [11, 12]. It is important to note that
strictly speaking, the relationship between structure and
compressibility is a thermodynamic one and thus it as-
sumes the sample is equilibrium, which a random close
packed sample certainly violates. However, Ref. [11] is a
good demonstration that this condition is not crucial.

In our prior work, we used colloidal particles to gen-
erate a random close packed sample, and imaged this
with confocal microscopy. We reprise the key experimen-
tal points here; a more detailed experimental discussion
is in Ref. [16]. We use sterically stabilized poly(methy
methacrylate) (PMMA) particles with ā = 1.265 µm.
Previously we reported that these particles had a polydis-
persity of ∼ 5% [16]; below, we determine that the true
polydispersity is 6.7%. The PMMA particles are sus-
pended in a solvent mixture that is slightly lower density
than the particles. The sample is mixed and then the par-
ticles are allowed to sediment until they are close packed.
We use a confocal microscope to take clear images deep
inside our dense sample [19]. Overlapping images are
taken, with total volume 492 × 514 × 28 µm3. Within
this volume, particles are identified within 0.03 µm in x
and y, and within 0.05 µm in z [19, 20]. The total data
set contains 543 136 particles [17].

Estimating particle radii – The average particle size
ā is obtained from the position of the first peak of the
pair correlation function [16]. It is difficult to determine
subtle size differences between individual particles from
microscopy due to diffraction. However, obtaining the
positions of each particle can be done accurately. A large
particle will be slightly farther from its neighbors as com-
pared to a small particle, and we use this idea as a start-
ing point for an estimation method for each particle size.

Given that our sample is jammed, each particle must
be in contact with several of its neighbors. In fact, a nu-
merical simulation of random close packed monodisperse
particles showed that the mean contact number is 6 [10].
When particle i contacts with particle j, the separation
between these two particles is given by rij = ai + aj ,
where ai and aj are their radii. The average of rij over
all neighbors j is given by 〈rij〉j = ai + 〈aj〉j . Next,
consider separations rjk between particle i’s contacting
neighbors j and contacting neighbors k of those particles.
Again, we take an average of rjk with respect to parti-
cles j and k, giving 〈〈rjk〉k〉j = 〈aj〉j + 〈〈ak〉k〉j . Then
we subtract 〈〈rjk〉k〉j from 〈rij〉j , leading to

ai = 〈〈ak〉k〉j + 〈rij〉j − 〈〈rjk〉k〉j . (1)
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FIG. 1: (Color online) (a) Scatter plot of the calculated ra-
dius ai

c from our method (Eqn. 1) as a function of the given
radius ai

g using data from a simulated packing with polydis-

persity 7%. The solid line corresponds to ai
c = ai

g. (b) The
particle size uncertainty ∆a found by analyzing simulation
data from packings with a given polydispersity, both without
noise (circles) and with noise added to the particle positions
(triangles). The dashed line corresponds ∆a = p.

In practice, we choose the Z = 5 nearest neighbor par-
ticles from particle i as the particles j, and assume these
are the contacting particles. Likewise for each particle j
we identify its Z closest neighbors for the particles k. The
choice Z = 5 is justified below. To compute 〈〈ak〉k〉j , we
use ā as an initial guess for the particle sizes, and then
iterate five times to get more accurate values for ai. In
this way ai is found from the the particle separations,
which are obtained directly from microscopy.

To validate our method, we simulate polydisperse rcp
samples using the algorithm of Refs. [21, 22]. We use
512 particles with mean radius ā = 1 and polydispersity
from 0.01 to 0.12, generating 5 independent configura-
tions for each polydispersity. The particle size distribu-
tion is a Gaussian. Using the simulated position cen-
ters, we calculate the radii of the particles aic by our
method. Figure 1(a) shows a scatter plot of aic as a
function of the given radii aig from a simulation with 7%
polydispersity. The calculated radii are located around
aic = aig. We define the uncertainty of the size estimation

as ∆a =
√

〈[(aic − aig)/a
i
g]

2〉i. ∆a is plotted as a func-

tion of polydispersity p as circles in Fig. 1(b). We find
∆a ≈ p/6. The polydispersity of aic matches that of aig.

One experimental complication is that there is an un-
certainty in the position of each particle. In our experi-
ment, the uncertainties are 0.024ā in x and y and 0.0395ā
in z. We add this positional uncertainty to the true sim-
ulated positions, and then redetermine the particle radii.
As expected, this increases the uncertainty ∆a of the final
radii, shown by the triangles in Fig. 1(b). ∆a increases
by ∼ 0.01 compared to the case without positional noise.
Positional noise is fatal when the polydispersity is less
than 0.02, but otherwise our method results in more ac-
curate radii even in the presence of noise.

While the mean contact number for particles at jam-
ming should be 6, this contact number fluctuates from
particle to particle. Thus our choice of a fixed Z = 5 in-
troduces some noise. Revising our method to allow Z to
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FIG. 2: (Color online) The uncertainty of the particle radius
∆a is plotted as a function of the number of contacting neigh-
bors Z used in the algorithm. The data are from the simulated
packings with a polydispersity p = 0.07 with positional noise.
Circles correspond to Eqn. 1 using 〈〈ak〉k〉j = ā with no it-
eration. Squares correspond to five iterations of Eqn. 1, and
triangles correspond to ten iterations.

vary from particle to particle decreases ∆a only slightly
at best. At worst, this is quite sensitive to how contacts
are defined, and ∆a can be larger than the case with fixed
Z. We justify our choice of Z = 5 from the data shown
in Fig. 2. The square symbols show how ∆a depends
on Z for five iterations of Eqn. 1, and the data have a
minimum at Z = 5 although it is apparent that Z = 3, 4,
and 6 work almost as well. Figure 2 also demonstrates
that five iterations (squares) is essentially as good as ten
iterations (triangles).

Next, we estimate each particle size of our experimen-
tal data with our method. Given that Eqn. 1 requires
information about both a particle’s nearest neighbors
and also second nearest neighbors, only particles suffi-
ciently far from the edges of our images have accurate
sizes. We modify our algorithm slightly for the experi-
mental data as follows. We find the coordination number
zi of each particle, the number of neighboring particles
within a distance 2.8a (the first minimum of the pair cor-
relation function) [16]. From the particles in the interior
of the sample, we find the average coordination number
z̄ ≈ 12. Then, for every particle, we estimate the num-
ber of touching neighbors Ti = 5zi/12 where we round
Ti to the nearest integer. For particles at the edge of
the imaged volume, Ti < 5 as not all of the neighbors
are imaged. Then for each particle, when averages over
contacting neighbors j are done in Eqn. 1, these aver-
ages are over the Ti nearest neighbors. After iterating
Eqn. 1 to find all radii, the edge particles are removed by
cropping the data to a volume of 440 × 461 × 14.2 µm3,
containing 217 816 particles.

Based on these particles with their calculated sizes, the
volume fraction of this sample is found to be φ = 0.647
± 0.007, where the uncertainty of φ is due to the uncer-
tainty in determination of each particle size. Figure 3
shows a distribution of the estimated particle sizes. This
sample has a polydispersity of 6.7% [30]. Given this mea-
sured polydispersity, Fig. 1(b) shows that ∆a ≈ 0.023
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FIG. 3: (Color online) Probability of particle sizes in our
experimental sample. The average size is 1.265 µm and poly-
dispersity is 6.7%.
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FIG. 4: (Color online) (a) The static structure factor S(q).
(b) ρkBTχ0(q) [no approximation] and ρkBTχ1(q) (first or-
der approximation of Ref. [11]), from the experimental data.
Square symbols correspond to ρkBTχ0(q), which is propor-
tional to S(q) at small q. Circle symbols correspond to
ρkBTχ1(q). The error bars (drawn for every fifth point) are
from using different windowing functions in the Fourier trans-
form. The lines are linear fits to the data for 0.2 < qā/π < 0.5.

(corresponding to ā∆a = 0.03 µm). The experimental
distribution is not a Gaussian and this is not an artifact
of our method, as a simulated Gaussian size distribution
with positional noise leads to a measured Gaussian size
distribution.

Compressibility of experimental packing – Using our
estimated particle sizes, we now study the wave vector
dependence of the compressibility χ0(q) and χ1(q) of our
experimental data. Given the aspect ratio of our box,
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which is thin in the z direction, we compute the Fourier
transforms using wave vectors in the qxqy plane. Figure
4 shows ρkBTχ0(q) and ρkBTχ1(q). Our experimental
data do not obey periodic boundary conditions, and the
effect of the boundaries appears near q = 0. We calcu-
late χ0(q) and χ1(q) with a variety of window functions,
and the fluctuations due to these different choices are in-
dicated by the error bars in Fig. 4. χ0(q) and χ1(q) are
independent of the choice of Fourier window functions for
qā/π > 0.2. For qā/π > 0.5, an upward curvature is seen
as the first peak of S(k) is approached; this curvature
starting at qā/π ≈ 0.5 is also seen in simulations with
106 particles [8]. Thus we do a linear fit to ρkBTχ0(q)
and ρkBTχ1(q) in the region 0.2 < qā/π < 0.5, shown
as the lines in Fig. 4. Both functions have linear be-
havior in this region, and this is the same region fit in
Ref. [16]. We find ρkBTχ1(0) = 0.002 ± 0.004, while
ρkBTχ0(0) = 0.049 ± 0.008 as reported previously [16].
The uncertainties are due to the uncertainties of particle
positions and sizes, and the choice of the fitting range.
Our observation that χ1(q) ∼ q shows that long wave-
length density fluctuations are suppressed. This is con-

sistent with the observations of Berthier et al. and show
that our system is incompressible [11]. To be clear, we
are neglecting the solvent, so technically we are demon-
strating that if we place hard spheres with the estimated
sizes at the locations we measure from the colloidal sam-
ple, the hard sphere system will be incompressible.

To summarize, we have presented a method to estimate
the sizes of individual colloidal particles from experimen-
tal knowledge of only their positions, and relying on the
fact that the sample is close-packed. Numerical simula-
tions confirm that our method is robust even in the pres-
ence of realistic experimental noise. Using the positions
and sizes of over 200 000 random close packed particles
from our experiment, we confirm that our experimental
system is hyperuniform and incompressible. Our results
are consistent with prior work [11, 12] and the data can
be used with other algorithms for quantifying hyperuni-
formity in polydisperse samples [12].
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